用户名: 密码: 验证码:
数据局部时空结构特征提取与故障检测方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
实时过程监控是保证工业过程安全平稳运行以及产品质量的关键技术和有效手段。现代工业过程每天都生产和存储大量的过程测量数据,这些数据反映了生产过程及设备的运行情况。传统的多变量统计过程监测(MSPM)方法,利用过程数据进行统计建模和特征提取,并基于相应的过程监控算法实时监测,已经成为工业过程综合自动化技术研究的热点和前沿。MSPM大多采用维度约简方法提取数据特征,去除冗余信息,降维算法的数据特征提取能力直接影响到过程监控的性能。传统的维度约简算法,如PCA主要对数据的全局结构特征进行提取,没有考虑数据的局部结构信息。本论文从数据线性降维的角度出发,基于局部流形学习算法NPE的思想,对数据的空间和时序结构特征进行提取,并基于标准TE过程仿真验证本论文提出方法的有效性。
     1.将正交保持嵌入(ONPE)通过核方法扩展为核正交保持嵌入算法(KONPE),并将其应用于非线性故障检测。NPE算法从样本的局部空间结构出发,在降维的同时保留了数据的潜在流形结构信息,其正交约束算法ONPE进一步增强了对非线性数据的特征提取和区分能力。KONPE显式地考虑了数据间的非线性结构,提高了对非线性数据的提取能力,比传统的KPCA算法具有更强的空间结构保持能力,因此带来了更好的检测效果。
     2.在局部特征提取算法NPE的基础上,提出了基于数据非局部限制的空间局部结构分析方法:基于非局部约束的邻域保持嵌入算法(NSC-NPE)。NPE算法主要关注数据的局部结构特征,没有对非局部数据进行约束,丢失了数据信息。考虑该不足,提出对非邻域内的数据进行约束,据此构建了新的目标函数,给出了平衡数据局部和非局部结构的策略和计算方法。目标是使得数据降维后得到的维度约简空间不仅和原数据具有相似的局部近邻结构,而且其非近邻数据的关系特征也能够得到保留,因此包含了数据整体结构特征信息。同时相比于基于全局结构的方法(如PCA), NSC-NPE针对邻域内和非邻域内的数据分别采用不同的方法进行处理,能够更有效地解释数据的特征信息,因此也具有较好的故障检测效果。
     3.利用局部特征提取的方法,提出了针对动态数据的时序结构局部特征提取算法:时间近邻保持嵌入算法(TNPE)。并进一步考虑数据的时序-空间结构特征,提出了时空近邻保持嵌入算法(TSNPE)。实际的工业过程数据一般具有较强的动态相关性,这部分特征反映了数据的时序变化情况,因此在特征提取时需要保留该部分数据关系。传统的仅关注数据空间结构特征的方法不适用于对动态自相关数据的处理,基于此,我们为每个数据点建立基于时间的邻域空间,并对每个数据利用其邻域点进行线性重构,据此来获取数据间的动态相关关系,并在低维空间保留该局部特性。数值仿真和TE过程仿真结果表明了:基于动态相关信息保留的方法,更易于获得数据的本质特性,能够有效提取其时间和空间结构特征。
     4.以局部特征提取的线性维度约简算法NPE为例,深入分析了流形学习算法在过程监控领域的应用特点和本质机理。流形学习算法在过程监控领域的应用,经过近几年的发展已经取得了较好的应用效果,但是该类方法在该领域的理论研究还较少。通过分析算法特点、应用条件以及适用范围,对其在过程监控领域应用的适用性进行理论分析。同时对NPE算法的统计量构建问题展开讨论,分析了较于传统方法,局部方法的T2和SPE统计量构建的不同之处。最后对流形学习算法在过程监控领域应用存在的优势和问题进行了总结。
Timely process monitoring plays a critical role in maintaining the process safety and stability, as well as guaranteeing the production quality. In modern chemical process, numerous observations can be well collected and stored, which provide reliable basis for characterizing the process operating conditions. Multivariate statistical process monitoring (MSPM), which only depends on the process data for the feature extraction, process modeling and monitoring, has become one of the research hotspots in industrial process monitoring. MSPM-based methods typically employ dimensionality reduction to discover the underlying data properties and remove redundancy information, thus the performance of dimensionality reduction will directly influence the reliability of the monitoring performance. The conventional global based dimensionality reduction approaches, such as PCA, are mainly performed by the global data features. However, the detailed local neighborhood structure on the data manifold is failed to be discovered. From the perspective of dimensionality reduction, several effective monitoring methods to identify both spatial and temporal relationships among the process data are proposed based on the idea of local information based manifold learning method NPE. The case studies on the Tennessee Eastman process demonstrate the effectiveness of the proposed methods in fault detection.
     1. A new nonlinear dimensionality reduction method named kernel orthogonal neighborhood preserving embedding (KONPE) is proposed and applied for nonlinear fault detection, with the application of kernel-trick on the method orthogonal neighborhood preserving embedding (ONPE). As a local space structure based approach, neighborhood preserving embedding (NPE) aims at preserving the latent manifold of data hidden in the high dimensional observations. Imposing orthogonal constraints on NPE, ONPE can effectively improve its discriminating power and the ability of feature extraction. The developed KONPE explicitly considers the low-dimensional structure in data, thus the nonlinear modeling performance is well improved. Simulation results illustrate the superiority of KONPE in process monitoring in comparison with the widely used KPCA.
     2. A nonlocal space structure constrained feature extraction method named nonlocal structure constrained neighborhood preserving embedding (NSC-NPE)is developed, on the basis of the local information based manifold learning approach neighborhood preserving embedding (NPE). NPE mainly focus on preserving the local geometry structure of the process data, and does not give a constraint for the data points outside the neighborhood. As a result, the intrinsic data information may lose. Considering such deficiency, in the new method, the data relationship outside the neighbors is also given constraints. By utilizing the meaningful nonlocal variance information, NSC-NPE constructs a global information based dual-objective optimizations function for modeling the process data. The relationship among the data points in the neighborhood which represents the local structure and the relationships among the data points outside the neighbors which represents the nonlocal structure are both be considered in the objective function. As a result, the global geometrical structure of the data is totally exploited. Different from the global based model PCA, NSC-NPE deals with the global data relation by dealing with the data points in and outside the neighbors with different strategies, respectively. Thus, NSC-NPE can give more faithful representation of the data character and better monitoring performance.
     3. With the consideration of autocorrelation among data samples, a novel algorithm named time neighborhood preserving embedding (TNPE) is proposed by utilizing local information. Furthermore, by taking both the temporal and spatial information of the process data into consideration, the method named time and spatial neighborhood preserving embedding (TSNPE) is also given. In industry process, the process variables always have autocorrelation and the system has dynamic properties, such dynamic behavior varied according to specific process condition should be totally extracted. The local space geometry based algorithms may be invalid to deal with the samples with autocorrelation. From this point of view, the neighborhood space is constructed with respect to the time sequence adjacent points of each data point, and the dynamic relationship is represented as a linear combination of its nearest neighbors. The local dynamic character is preserved in the low dimensional space by keeping the reconstruction coefficients. A numerical example and the Tennessee Eastman process indicate the benefit of having process dynamic information included in modeling process. By taking the autocorrelation of the samples in the modeling process, the two methods may be easy to identify the intrinsic data geometry structure and preserve the spatial and temporal relationships effectively.
     4. Based on the local information based manifold learning algorithm, NPE, the basic theories and characteristics in applying the manifold learning on process monitoring are discussed. Research on process monitoring based on manifold learning has been well developed recent years, with much good results. However, the theoretical studies of these methods on this field is much few. Thus, the validity of manifold learning is discussed by analyzing the algorithm features, applied conditions, as well as the scope of application. Then, the discussions on the construction of the statistics upon the NPE model are given, which presents the differences between the local based method and the traditional method about the Hotelling's T2and squared prediction error (SPE) statistics. Finally, the advantages as well as the disadvantages of the application in process monitoring by manifold learning are illustrated.
引文
Aldrich C., Auret L.. Unsupervised Process Monitoring and Fault Diagnosis with Machine Learning Methods [M], Springer, London,2013.
    Angeli C. An online expert system for fault diagnosis in hydraulic systems [J]. Expert Systems,1999,16:115-120.
    Baffi G., Martin E. B., Morris A.J. Nonlinear model based Predictive control through dynamic nonlinear Partial least squares[J]. Chemical Engineering Researeh & Design,2002,80(1):75-56.
    Baffi G., Martin E. B., Morris A.J. Nonlinear projection to latent structure revisited: the quadratic PLS algorithm [J]. Computers & Chemical Engineering,1999, 23(3):395-411.
    Bakshi B.R.. Multiscale PCA with Application to multivariate statistical process monitoring [J]. AIChE Journal,1998,44(7):1596-1610.
    Bang, Y. H., Yoo C. K., Lee I. B.. Nonlinear PLS modeling with fuzzy inference system [J]. Chemometrics and intelligent laboratory systems,2002,64(2): 137-155.
    Belkin M., Niyogi P. Laplacian eigenmaps and spectral techniques for embedding and clustering [J]. Advances in neural information processing systems,2002, 585-592.
    Belkin M., Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation [J]. Neural computation,2003,15(6):1373-1396.
    Belkin M., Niyogi P., Sindhwani V. Manifold regularization:A geometric framework for learning from labeled and unlabeled examples [J]. The Journal of Machine Learning Research,2006,7:2399-2434.
    Bengio Y., Paiement J. F., Vincent P. Out-of-sample extensions for lle, isomap, mds, eigenmaps, and spectral clustering [J]. Advances in neural information processing systems,2004,16:177-184.
    Blazquez L. F., de Miguel L. J. Additive fault detection in nonlinear dynamic systems with saturation [J], ISA transactions,2005,44(4):515-538.
    Brand M., Charting a manifold [C]. Advances in neural information processing systems. Cambridge, MA,2003,961-968.
    Bregler C., Omohundro S. M.. Nonlinear manifold learning for visual speech recognition [C]. Fifth International Conference on Computer Vision, Proceedings, Cambridge, MA,1995,494-499.
    Brombacher A.. Reliability prediction and'Deepwater Horizon'; lessons learned [J], Quality and Reliability Engineering International,2010,26:397-397.
    Cai D, He X.. Manifold adaptive experimental design for text categorization [J]. IEEE Transactions on Knowledge and Data Engineering,2012,24(4): 707-719.
    Cai D., He X. F., Han J. W., Zhang H. J.. Orthogonal laplacianfaces for face recognition [J], IEEE Transactions On Image Processing,2006,15(11): 3608-3614.
    Cai D., Wang X., He X.. Probabilistic dyadic data analysis with local and global consistency [C]. Proceedings of the 26th Annual International Conference on Machine Learning, New York, USA,2009,105-112.
    Camacho J., Pico J., Ferrer A.. Self-tuning run to run optimization of fed batch Processes using unfold-PLS [J]. AIChE Journal,2007,53(7):1789-1804.
    Chapelle O., Scholkopf B., Zien A.. Semi-supervised learning [M]. Cambridge: MIT press,2006.
    Chen J. H., Liu K. C..On-line batch process monitoring using dynamic PCA and dynamic PLS models [J]. Chemical Engineering Science,2002,57(1):63-75.
    Chen J., Liu J.. Mixture principal component analysis models for process monitoring [J]. Industrial & engineering chemistry research,1999,38(4): 1478-1488.
    Chen T., Zhang J.. On-line multivariate statistical monitoring of batch processes using Gaussian mixture model [J]. Computers & chemical engineering,2010, 34:500-507.
    Chen, J.; Liu, Y.. Locally linear embedding based on local correlation [C]. Fourth International Conference on Machine Vision (ICMV 2011):Computer Vision and Image Analysis; Pattern Recognition and Basic Technologie, Hong Kong, 2011,228-232.
    Cheng M. H., Ho M. F., Huang C. L.. Gait analysis for human identification through manifold learning and HMM [J]. Pattern Recognition,2008,41(8): 2541-2553.
    Cheon Y., Kim D.. Natural facial expression recognition using differential-AAM and manifold learning [J]. Pattern Recognition,2009,42(7):1340-1350.
    Chiang L H, Braatz R D, Russell E L. Fault detection and diagnosis in industrial systems [M]. Springer,2001.
    Chiang L. H., Data-driven methods for fault detection and diagnosis in chemical processes [M], Springer,2000.
    Cho J. H., Lee J. M., Wook Choi S.. Fault identification for process monitoring using kernel principal component analysis [J]. Chemical engineering science, 2005,60(1):279-288.
    Choi S. W., Morris A. J., Lee I. B.. Nonlinear multiscale modeling for fault detection and identification [J]. Chemical Engineering Science,2008,63(8): 2252-2266.
    Choi S. W., Park J. H., Lee I. B.. Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis [J]. Computers and Chemical Engineering,2004,28(8):1377-1387.
    Choi S.W., Lee I. B.. Nonlinear dynamic process monitoring based on dynamic kernel PCA [J], Chemical Engineering Science,2004,59:5897-5908.
    Choi, J. H., Lee J. M., Wook Choi S., Lee D., Lee I. B.. Fault identification for process monitoring using kernel principal component analysis [J]. Chemical engineering science,2005,60(1):279-288.
    Chow E., Willsky A.. Analytical redundancy and the design of robust failure detection systems [J]. IEEE Transactions on Automatic Control,1984,29: 603-614.
    Clark R. N.. A simplified instrument failure detection scheme [J]. IEEE Transactions on Aerospace and Electronic Systems,1978:558-563.
    Clark R. N.. The dedicated observer approach to instrument failure detection [C]. 18th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes,1979,18:237-241.
    Das A., Maiti J., Banerjee R.. Process monitoring and fault detection strategies:a review [J]. International Journal of Quality & Reliability Management,2012, 29(7):720-752.
    DeMers D., Cottrell G.. Non-linear dimensionality reduction [J], Advances in neural information processing systems,1993,580-580.
    Dong, D., McAvoy, T. J.. Nonlinear principal component analysis-based on principal curves and neural networks [J]. Computers & Chemical Engineering, 1996,20(1):65-78.
    Donoho D. L., Grimes C Hessian eigenmaps:Locally linear embedding techniques for high-dimensional data [J]. Proceedings of the National Academy of Sciences,2003,100(10):5591-5596..
    Downs, J. J., Vogel, E. F.. A plant-wide industrial process control problem [J]. Computers and Chemical Engineering,1993,17:245-255.
    Duraisamy V., Devarajan N., Somasundareswari D., Vasanth A., Sivanandam S.. Neuro fuzzy schemes for fault detection in power transformer [J]. Applied Soft Computing,2007,7:534-539.
    Edward Jackson J.. Multivariate quality control [J]. Communications in Statistics-Theory and Methods,1985,14(11):2657-2688.
    Elgammal A., Lee C. S.. Inferring 3D body pose from silhouettes using activity manifold learning [C]. Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2004,2: Ⅱ-681-Ⅱ-688.
    Frank P. M.. Analytical and qualitative model-based fault diagnosis a survey and some new results [J]. European Journal of control,1996,2(1):6-28,.
    Frank P. M.. Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy:A survey and some new results [J]. Automatica, 1990,26:459-474.
    Fukunaga K.. Introduction to statistical pattern recognition [M]. Access Online via Elsevier,1990.
    Ganapathiraju A., Hamaker J. E., Picone J.. Applications of support vector machines to speech recognition [J]. IEEE Transactions on Signal Processing, 2004,52(8):2348-2355.
    Ge Z., Kruger U., Lamont L., Xie L., Song Z.. Fault detection in non-Gaussian vibration systems using dynamic statistical-based approaches [J]. Mechanical systems and signal Processing,2010,24:2972-2984.
    Ge Z., Song Z., Gao F.. Review of recent research on data-based process monitoring [J]. Industrial & Engineering Chemistry Research,2013,52(10): 3543-3562.
    Ge, Z. Q.; Gao, F. R.; Song, Z. H. Two-dimensional Bayesian monitoring method for nonlinear multimode processes [J]. Chem. Eng. Sci.2011,66:5173-5183.
    Ge, Z. Q.; Zhang, M. G.; Song, Z. H. Nonlinear process monitoring based on linear subspace and Bayesian inference [J]. Journal of Process Control,2010,20(5): 676-688.
    Ge, Z.; Yang, C.; Song, Z. Improved kernel PCA-based monitoring approach for nonlinear processes [J]. Chemical Engineering Science,2009,64(9): 2245-2255.
    Gertler J., Singer D.. A new structural framework for parity equation-based failure detection and isolation [J]. Automatica,1990,26(2):381-388.
    Gertler, J. Analytical redundancy methods in fault detection and isolation [C]. In Proceedings of IFAC/IAMCS symposium on safe process,1991,1:9-21.
    Guo G., Fu Y., Dyer C. R.. Image-based human age estimation by manifold learning and locally adjusted robust regression [J]. IEEE Transactions on Image Processing,2008,17(7):1178-1188.
    Hastie T., Stuetzle W.. Principal curves [J]. Journal of America Statistical Association,1989,84:502-516.
    He Q. P., Qin S. J., Wang J.. A new fault diagnosis method using fault directions in Fisher discriminant analysis [J]. AIChE journal,2005d,51(2):555-571.
    He X, Ma W Y, Zhang H J. Learning an image manifold for retrieval [C]. Proceedings of the 12th annual ACM international conference on Multimedia. ACM,2004,17-23.
    He X, Yan S, Hu Y.. Face recognition using laplacianfaces [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2005b,27(3):328-340.
    He X., Cai D., Niyogi P.. Laplacian score for feature selection [C]. Advances in neural information processing systems,2005c,507-514.
    He X., Cai D., Shao Y., Bao H., Han J.. Laplacian regularized Gaussian mixture model for data clustering [J]. IEEE Transactions on Knowledge and Data Engineering,2011a,23:1406-1418.
    He X., Cai D., Yan S., Zhang H.. Neighborhood Preserving Embedding [C]. Proceedings of the Tenth IEEE International Conference on Computer Vision, 2005a,2:1208-1213.
    He, P., Xu X., Chen L.. Manifold mapping machine [J]. Neurocomputing,2011b, 74(9):1450-1466.
    Hinton G. E., Roweis S. T.. Stochastic neighbor embedding [C]. Advances in neural information processing systems.2002:833-840.
    Hong Z. Q., Yang J. Y. Optimal discriminant plane for a small number of samples and design method of classifier on the plane [J]. Pattern Recognition,1991, 24(4):317-324.
    Hu K, Yuan J. Batch process monitoring with tensor factorization [J]. Journal of Process Control,2009,19(2):288-296.
    Hu K, Yuan J. Multivariate statistical process control based on multiway locality preserving projections [J]. Journal of Process Control,2008a, 18(7-8):797-807.
    Hu K, Yuan J. Statistical monitoring of fed-batch process using dynamic multiway neighborhood preserving embedding [J]. Chemometrics and intelligent laboratory systems,2008b,90(2):195-203.
    Huang N. E., Shen Z., Long S. R., Wu M. C., Shih H. H., Zheng Q., Yen N.C., Tung C.C., Liu H.H.. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proceedings of the Royal Society of London. Series A:Mathematical, Physical and Engineering Sciences,1998,454(1971):903-995
    Isermann R., Balle P.. Trends in the application of model-based fault detection and diagnosis of technical processes [J], Control engineering practice,1997,5(5) 709-719.
    Isermann R.. Fault diagnosis of machines via parameter estimation and knowledge processing-tutorial paper [J]. Automatica,1993,29:815-835.
    Isermann R.. Model-based fault-detection and diagnosis-status and applications [J]. Annual Reviews in control,2005,29(1):71-85.
    Isermann R.. Process fault detection based on modeling and estimation methods-a survey [J]. Automatica,1984,20(4):387-404.
    Jolliffe I. T. Principal component analysis [M]. Springer, New York,1986.
    Kampjarvi P., Sourander M. Komulainen T, Vatanski N., Nikus M., Jounela S.L. Fault detection and isolation of an on-line analyzer for an ethylene cracking process [J]. Control Engineering Practice,2008,16(1):1-13.
    Kano M., Nakagawa Y.. Data-based process monitoring, process control, and quality improvement:Recent developments and applications in steel industry [J]. Computers & Chemical Engineering,2008,32(1):12-24.
    Kesavan P., Lee J. H.. Diagnostic tools for multivariable model-based control systems [J]. Industrial & engineering chemistry research,1997,36(7): 2725-2738.
    Kim K. I., Franz M. O., Scholkopf B.. Iterative kernel principal component analysis for image modeling [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(9):1351-1366.
    Kim K. I., Jung K., Kim H. J.. Face recognition using kernel principal component analysis[J]. Signal Processing Letters, IEEE,2002,9(2):40-42.
    Kimmich F., Schwarte A., Isermann R.. Fault detection for modern Diesel engines using signal-and process model-based methods [J]. Control Engineering Practice,2005,13(2):189-203.
    Kokiopoulou, E., Saad Y.. Orthogonal neighborhood preserving projections. In Proceeding of the Fifth IEEE International Conference on Data Mining (ICDM'05),2005,1-8.
    Kramer M. A.. Nonlinear Principal Component Analysis Using Autoassociative Neural Networks [J]. AICHE Journal,1991,37(2):233-243.
    Kruger U., Zhou Y., Irwin G. W.. Improved principal component monitoring of large-scale processes [J]. Journal of process control,2004,14(8):879-888.
    Ku W., Storer R. H., Georgakis C.. Disturbance detection and isolation by dynamic principal component analysis [J]. Chemometrics and Intelligent Laboratory Systems,1995,30(1):179-196.
    Kulkarni S. G., Chaudhary A. K., Nandi S., Tambe S. S., Kulkarni B. D.. Modeling and monitoring of batch processes using principal component analysis (PCA) assisted generalized regression neural networks (GRNN) [J]. Biochemical Engineering Journal,2004,18(3):193-210.
    Lafon S., Lee A. B.. Diffusion maps and coarse-graining:A unified framework for dimensionality reduction, graph partitioning, and data set parameterization [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(9): 1393-1403.
    Laskaris N. A., Ioannides A. A.. Semantic geodesic maps:a unifying geometrical approach for studying the structure and dynamics of single trial evoked responses [J]. Clinical Neurophysiology,2002,113(8):1209-1226.
    Lee J. M., Qin S. J., Lee I. B.. Fault detection and diagnosis based on modified independent component analysis [J]. AIChE Journal,2006,52(10): 3501-3514.
    Lee J. M., Yoo C. K., Choi S. W., Vanrolleghem P. A., Lee I. B. Nonlinear process monitoring using kernel principal component analysis [J]. Chemical Engineering Science,2004a,59(1):223-234.
    Lee J. M., Yoo C. K., Lee I. B.. Statistical monitoring of dynamic processes based on dynamic independent component analysis [J]. Chemical Engineering Science,2004b,59(14):2995-3006.
    Lee J. M., Yoo C., Lee I. B.. On-line batch process monitoring using different unfolding method and independent component analysis [J]. Journal of chemical engineering of Japan,2003,36(11):1384-1396.
    Li J., Zhang Z., Li X., Chen, H.. Kernel-based learning for biomedical relation extraction [J]. Journal of the American Society for Information Science and Technology,2008,59(5):756-769.
    Li W., Yue H. H., Valle-Cervantes S., Qin, S. J.. Recursive PCA for adaptive process monitoring [J]. Journal of process control,2000,10(5):471-486.
    Lin T., Zha H.. Riemannian manifold learning [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2008,30(5):796-809.
    Lin Y. Y., Liu T. L., Chen H. T.. Semantic manifold learning for image retrieval [C]. Proceedings of the 13th annual ACM international conference on Multimedia. ACM,2005,249-258.
    Lin Y, Zhang W., Watson L.. Using eye movement parameters for evaluating human machine interface frameworks under normal control operation and fault detection situations [J]. International Journal of Human-Computer Studies,2003,59(6):837-873,.
    Lin, T., Zha H.. Riemannian manifold learning [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2008,30(5):796-809.
    Liou C. Y., Kuo Y. T.. Economic states on neuronic maps [C]. Proceedings of the 9th International Conference on Neural Information Processing (ICONIP'02), 2002,2:787-791.
    Lippmann R. P., Cunningham R. K.. Improving intrusion detection performance using keyword selection and neural networks [J]. Computer Networks,2000, 34(4):597-603.
    Liu C. B., Lin R. S., Ahuja N.. Dynamic Textures Synthesis as Nonlinear Manifold Learning and Traversing [C]. Proceedings of the British Machine Vision Conference.2006:859-868.
    Liu J., Cai D., He X.. Gaussian Mixture Model with Local Consistency [C]. In Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10),2010,512-517.
    Liu Q., Huang R., Lu H., Ma, S.. Face recognition using kernel-based fisher discriminant analysis [C]. Proceedings of Fifth IEEE International Conference on Automatic Face and Gesture Recognition,2002,197-201.
    Liu, X., Yin J., Feng Z., Dong J., Wang L.. Orthogonal neighborhood preserving embedding for face recognition [C]. IEEE International Conference on Image Processing (ICIP),2007,1:133-136.
    Liu, X.; Kruger, U.; Littler, T.; Xie, L.; Wang, S. Moving window kernel PCA for adaptive monitoring of nonlinear processes [J]. Chemometrics and Intelligent Laboratory Systems,2009,96(2),132-143.
    Lowry, C. A., Woodall W. H., Champ C. W., Rigdon S. E.. A multivariate exponentially weighted moving average control chart [J]. Technometrics, 1992,34(1):46-53.
    Lu N.Y., Yao Y., Gao F. R., Wang F. L.. Two-dimensional dynamic PCA for batch process monitoring [J]. AIChE Journal,2005,51(12):3300-3304.
    MacGregor J. F., Yu H., Garcia Munoz S., Flores-Cerrillo J.. Data-based latent variable methods for process analysis, monitoring and control [J]. Computers & chemical engineering,2005,29(6):1217-1223.
    MacGregor J., Cinar A.. Monitoring, fault diagnosis, fault-tolerant control and optimization:Data driven methods [J]. Computers & Chemical Engineering, 2012.47:111-120.
    Malthouse E. C., Tamhane A.C., Mah R. S.H.. Nonlinear Partial least squares [J]. Computers & Chemieal Engineering,1997,21(8):875-890.
    Martin E., A. Morris.. Non-parametric confidence bounds for process performance monitoring charts [J]. Journal of Process Control,1996,6(6):349-358.
    Massoumnia M. A.. A geometric approach to the synthesis of failure detection filters [J]. IEEE Transactions on Automatic Control,1986,31(9):839-846.
    Maulud A., Wang D., Romagnoli J. A.. A multi-scale orthogonal nonlinear strategy for multi-variate statistical process monitoring [J]. Journal of Process Control, 2006,16(7):671-683.
    Miao A., Ge Z., Song Z., Zhou L.. Time Neighborhood Preserving Embedding Model and Its Application for Fault Detection [J]. Industrial & Engineering Chemistry Research,2013,52(38):13717-13729.
    Miao A., Song Z., Ge Z., Zhou L. Wen Q.. Nonlinear fault detection based on locally linear embedding [J]. Journal of Control Theory and Applications, 2013,11(4):615-622.
    Morariu V. I., Camps O. I.. Modeling correspondences for multi-camera tracking using nonlinear manifold learning and target dynamics [C].2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2006,1:545-552.
    Negiz A., Cinar A.. PLS, balanced, and canonical variate realization techniques for identifying VARMA models in state space [J]. Chemometrics and intelligent laboratory systems,1997b,38(2):209-221.
    Negiz A., Cinar A.. Statistical monitoring of multivariable dynamic processes with state-space models. AIChE Journal 1997a,43(8):2002-2020.
    Nilsson J. Nonlinear dimensionality reduction of gene expression data [D]. Centre for Mathematical Sciences, Lund University,2006.
    Palade V., Bocaniala C. D.. Computational intelligence in fault diagnosis [M]. Springer Publishing Company, Incorporated,2010.
    Pignatiello J. J., Runger G. C. Comparisons of multivariate CUSUM charts [J]. Journal of Quality Technology.1990,22(3):173-186.
    Qin S. J., McAvoy T. J.. Nonlinear PLS modeling using neural networks [J]. Computers & Chemical Engineering,1992,16(4):379-391.
    Qin S. J., Statistical process monitoring:basics and beyond [J]. Journal of Chemometrics,2003,17(8-9):480-502.
    Qin S. J.. Survey on data-driven industrial process monitoring and diagnosis [J]. Annual Reviews in Control,2012,36(2):220-234.
    Rong G., Liu S., Shao J.. Fault diagnosis by Locality Preserving Discriminant Analysis and its kernel variation [J]. Computers & Chemical Engineering, 2013,49(11):105-113.
    Rong, G., Liu, S., Shao, J.. Dynamic fault diagnosis using extended matrix and tensor locality preserving discriminant analysis [J]. Chemometrics and Intelligent Laboratory Systems,2012,116:41-46.
    Roweis S. T., Saul L. K.. Nonlinear dimensionality reduction by locally linear embedding [J]. Science,2000,290(5500):2323-2326.
    Russell E. L., Chiang L. H., Braatz R. D.. Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis [J]. Chemometrics and Intelligent Laboratory Systems,2000,51(1):81-93.
    Ryo S., Hitoshi S., Shuji H.. Nonlinear principal analysis to preserve the order of principal components [J]. Neurocomputing,2004,61:57-70.
    Saegusa R, Sakano H, Hashimoto S. Nonlinear principal component analysis to preserve the order of principal components [J]. Neurocomputing,2004,61: 57-70.
    Saul L. K., Roweis S. T.. Think globally, fit locally:unsupervised learning of low dimensional manifolds [J]. The Journal of Machine Learning Research,2003, 4:119-155.
    Seung H. S., Lee D. D.. The manifold ways of perception [J]. Science,2000, 290(5500):2268-2269.
    Shao J. D., Rong G., Lee J. M. Generalized orthogonal locality preserving projections for nonlinear fault detection and diagnosis [J]. Chemometrics and intelligent laboratory systems,2009a,96(1):75-83.
    Shao J. D., Rong G., Lee J. M. Learning a data-dependent kernel function for KPCA-based nonlinear process monitoring [J]. Chemical Engineering Research and Design,2009c,87(11):1471-1480.
    Shao J. D., Rong G.. Nonlinear process monitoring based on maximum variance unfolding projections [J]. Expert Systems with Applications,2009b,36(8): 11332-11340.
    Shen X., Meyer F. G.. Nonlinear dimension reduction and activation detection for fmri dataset [C]. Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06),2006,90-90.
    Shi R., MacGregor J. F.. Modeling of dynamic systems using latent variable and subspace methods [J]. Journal of Chemometrics,2000,14:423-439.
    Silva V. D., Tenenbaum J. B.. Global versus local methods in nonlinear dimensionality reduction [C]. Advances in neural information processing systems.2002,705-712.
    Simoglou A., Martin E.B., Morris A. J.. Statistical performance monitoring of dynamic multivariate processes using state space modeling [J]. Computers & Chemical Engineering,2002,26(6):909-920.
    Sugiyama M.. Local Fisher discriminant analysis for supervised dimensionality reduction [C]. Proceedings of the 23rd international conference on Machine learning,2006,905-912.
    Sun M., Liu C., Yang J., Jin Z., Yang J.. A two-step framework for highly nonlinear data unfolding [J]. Neurocomputing,2010,73(10):1801-1807.
    Takriff, M., Mansor N., Kamarudin S.. Review:integrating optimization module into chemical process simulation [J]. Journal of Applied Sciences (Faisalabad), 2010,10(21):2493-2498.
    Tan S., Mavrovouniotis M. L.. Reducing data dimensionality through optimizing neural network inputs [J]. AIChE Journal,1995,41:1471-1480.
    Tan, S., Wang, F., Peng, J., Chang, Y, Wang, S.. Multimode process monitoring based on mode identification [J]. Industrial & Engineering Chemistry Research,2011,51(1):374-388..
    Tenenbaum J. B., De Silva V., Langford J. C. A global geometric framework for nonlinear dimensionality reduction [J]. Science,2000,290(5500):2319-2323.
    Thissen U., Swierenga H., De Weijer A. P.. Multivariate statistical process control using mixture modelling [J]. Journal of Chemometrics,2005,19(1):23-31.
    Tian Q., Fainman Y, Lee S. H.. Comparison of statistical pattern-recognition algorithms for hybrid processing. II. Eigenvector-based algorithm [J]. Journal of the Optical Society of America A:optics, image science, and vision.1988, 5(10):1670-1682.
    Tian, X., Zhang X., Deng X., Chen S.. Multiway kernel independent component analysis based on feature samples for batch process monitoring [J]. Neurocomputing,2009,72(7):1584-1596.
    Van der Maaten L. J. P., Postma E. O., Van Den Herik H. J.. Dimensionality reduction:A comparative review [J]. Journal of Machine Learning Research, 2009,10:1-41.
    Varini, C., Degenhard, A., Nattkemper, T. W.. ISOLLE:LLE with geodesic distance [J]. Neurocomputing,2006,69:1768-1771.
    Venkatasubramanian V., Rengaswamy R., Kavuri S. N., Yin K.. A review of process fault detection and diagnosis [J]. Computers & Chemical Engineering, 2003,27(3):327-346.
    Wan M., Lai Z., Jin Z.. Locally minimizing embedding and globally maximizing variance:unsupervised linear difference projection for dimensionality reduction [J]. Neural Processing Letters,2011,33(3):267-282.
    Wang H., Chai T. Y., Ding J. L., Brown M.. Data driven fault diagnosis and fault tolerant control:some advances and possible new directions [J] Acta Automatica Sinica,2009,35(6):739-747.
    Wang X. Z., McGreavy C.. Data mining and knowledge discovery for process monitoring and control [M]. Springer-Verlag,1999.
    Wang X., Kruger U., Irwin G. W.. Process monitoring approach using fast moving window PCA [J]. Industrial & Engineering Chemistry Research,2005,44(15): 5691-5702.
    Weinberger K. Q., Saul L. K.. Unsupervised learning of image manifolds by semidefinite programming [J]. International Journal of Computer Vision,2006, 70(1):77-90.
    Wold S.. Nonlinear Partial least squares modeling II:Spline inner relation [J]. Chemometries and Intelligent Laboratory Systems,1992,14(1):71-84.
    Xiang S., Nie F., Song Y.. Embedding new data points for manifold learning via coordinate propagation [J]. Knowledge and Information Systems,2009,19(2): 159-184.
    Xie L., Kruger U., Lieftucht D., Littler T., Chen Q., Wang S.Q.. Statistical monitoring of dynamic multivariate processes-partl. modeling autocorrelation and cross-correlation [J]. Industrial & Engineering Chemistry Research,2006, 45(5):1659-1676.
    Xie X., Shi H.. Multimode process monitoring based on fuzzy C-means in locality preserving projection subspace [J]. Chinese Journal of Chemical Engineering, 2012,20(6):1174-1179.
    Yang J., Zhang D., Yang J. Y., Niu B.. Globally maximizing, locally minimizing: unsupervised discriminant projection with applications to face and palm biometrics [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(4):650-664.
    Yao Y., Gao F. R.. Subspace identification for two-dimensional dynamic batch process statistical monitoring [J]. Chemical Engineering Science,2008, 63(13):3411-3418.
    Yao Y, Gao F.. A survey on multistage/multiphase statistical modeling methods for batch processes [J]. Annual Reviews in Control,2009,33(2):172-183.
    Yao Y., Gao F.. Batch process monitoring in score space of two-dimensional dynamic principal component analysis (PCA) [J]. Industrial & Engineering Chemistry Research,2007,46(24):8033-8043.
    Young P.. Parameter estimation for continuous-time models-A survey [J]. Automatica,1981,17(1):23-39.
    Yu J., Qin S. J.. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models [J].AIChE Journal,2008,54(7),1811-1829.
    Zha H., Zhang Z.. Spectral properties of the alignment matrices in manifold learning [J]. Society for Industrial and Applied Mathematics review,2009, 51(3):545-566.
    Zhang F. A mixture probabilistic pca model for multivariate processes monitoring [C]. Proceeding of the 2004 American Control Conference. Boston Massachusetts, USA,2004a,3111-3115.
    Zhang J., Li S. Z., Wang J.. Manifold learning and applications in recognition [C]. Intelligent Multimedia Processing with Soft Computing, Springer Berlin Heidelberg,2005,281-300.
    Zhang J., Li S. Z., Wang J.. Nearest manifold approach for face recognition[C]. Sixth IEEE International Conference on Automatic Face and Gesture Recognition,2004b,223-228.
    Zhang M., Ge Z., Song Z.. Global-local structure analysis model and its application for fault detection and identification [J]. Industrial & Engineering Chemistry Research,2011,50 (11):6837-6848.
    Zhang T., Yang J., Zhao D.. Linear local tangent space alignment and application to face recognition [J]. Neurocomputing,2007a,70(7):1547-1553.
    Zhang Y, Zhuang J, Wang S.. Fusion of Manifold Learning and Spectral Clustering Algorithmwith Applications to Fault Diagnosis[C].2010 Second International Conference on Machine Learning and Computing (ICMLC),2010c:155-160.
    Zhang Y. Teng Y., Zhang Y.. Complex process quality prediction using modified kernel partial least squares [J]. Chemical Engineering Science,2010a,65(6): 2153-2158.
    Zhang Y., Process monitoring, fault diagnosis and quality prediction methods based on the multivariate statistical techniques [J]. IETE Technical Review,2010d, 27(5),406-420.
    Zhang Y., Qin S. J.. Fault Detection of Nonlinear Processes Using Multiway Kernel Independent Component Analysis [J]. Industrial & Engineering Chemistry Research,2007b,46(23):7780-7787.
    Zhang Y., Zhou H., Qin S. J., Chai T.. Decentralized fault diagnosis of large-scale processes using multiblock kernel partial least squares [J]. IEEE Transactions on Industrial Informatics,2010b,6(1):3-10.
    Zhang Z., Zha H.. Nonlinear Dimension Reduction via Local Tangent Space Alignment [C]. Intelligent Data Engineering and Automated Learning,2003, 477-481.
    Zhang Z., Zha H.. Principal Manifolds and Nonlinear Dimensionality Reduction via Tangent Space Alignment [J]. Journal of Shanghai University (English Ed ition),2004c,8(1):406-424.
    Zhang, X., Yan W., Zhao X., Shao H.. Nonlinear biological batch process monitoring and fault identification based on kernel fisher discriminant analysis [J]. Process biochemistry,2007c,42(8):1200-1210.
    Zhang, Y. Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM[J]. Chemical Engineering Science,2009,64(5):801-811.
    Zhang H., Yang J., Deng W., Guo, J.. Handwritten Chinese character recognition using local discriminant projection with prior information[C].19th International Conference on Pattern Recognition,2008. IEEE,2008:1-4.
    Zhao Z. G., Liu F.. A new method for process monitoring based on mixture probabilistic principal component analysis models [C]. Advances in Neural Networks-ISNN 2006. Springer Berlin Heidelberg,2006,939-944.
    Zhu Z., Song Z.. A novel fault diagnosis system using pattern classification on kernel FDA subspace [J]. Expert Systems with Applications,2011,38(6): 6895-6905.
    Zvokelj M., Zupan S., Prebil I.. Non-linear multivariate and multiscale monitoring and signal denoising strategy using Kernel Principal Component Analysis combined with Ensemble Empirical Mode Decomposition method [J]. Mechanical Systems and Signal Processing,2011,25(7),2631-2653.
    陈省身,陈维桓.微分几何讲义[M].北京:北京大学出版社,1983.
    陈维恒.微分流形初步[M].北京:高等教育出版社,2002.
    邓晓刚,田学民.基于DMVU-OCSVM的故障诊断方法[J].化工学报,2011,62(8):2146-2151.
    杜培军,王小美,谭琨.利用流形学习进行高光谱遥感影像的降维与特征提取[J].武汉大学学报:信息科学版,2011,36(2):148-152.
    葛志强.复杂工况过程统计监控方法研究[D].[博士学位论文],杭州:浙江大学,2009.
    郭明.基于数据驱动的流程工业性能监控与故障诊断研究[D].[博士学位论文],杭州:浙江大学,2004.
    胡昭华,宋耀良.基于动态序列图像的流形学习研究[J].计算机应用研究,2009,26(3):1183-1185.
    蒋浩天.工业系统的故障检测与诊断[M].北京:机械工业出版社,2003.
    黄启宏.流形学习方法理论研究及图像中应用[D].[博士学位论文],成都:电子科技大学,2007。
    林金坤,拓扑学基础[M].北京:科学出版社,2004.
    刘景凯.BP墨西哥湾漏油事件应急处置与危机管理的启示[J].中国安全生产科学技术,2011,7:85-88.
    刘小明.数据降维及分类中的流形学习研究[D],[博士学位论文],杭州:浙江大学,2007.
    鲁珂.流形学习方法在Web图像检索中的应用研究[D].[博士学位论文],成都:电子科技大学,2006.
    陆捷荣.基于流形学习与DS证据理论的语音情感识别研究[D].[博士学位论文],南京:江苏大学,2010.
    罗四维,赵连伟.基于谱图理论的流形学习算法[J].计算机研究与发展,2006,43(7):1173-1179.
    任瑞娟.一种改进的基于LLE图像滤波的研究[D].[博士学位论文],西安:西安电子科技大学,2008.
    邵纪东.非线性过程监控中的数据降维及相关问题研究[D].[博士学位论文],杭州:浙江大学,2010.
    舒军星.输油管道泄漏监控技术及在胜利油田中的应用[J].管道技术与设备,2003,2:39-41.
    孙大为.Hamilton微分同胚群的完备化的一个注记(英文)[J].南开大学学报:自然科学版,2011,44:108-112.
    王靖.流形学习的理论与方法研究[D].[博士学位论文],杭州:浙江大学,2006.
    谢磊.间歇过程统计性能监控研究[D].[博士学位论文],杭州:浙江大学,2005.
    许馨,吴福朝,胡占义.一种基于非线性降维求正常星系红移的新方法[J].光谱学与光谱分析,2006,26(1):182-186.
    翟勇.中国环境污染应急的法制建设[J].世界环境,2012,24-25.
    张沐光,宋执环LPMVP算法及其在故障检测中的应用[J].自动化学报,2009a,6,766-772
    张沐光,宋执环.一种基于DLPP的动态过程故障检测方法[J].华中科技大学学报(自然科学版),2009b,37:62-65.
    张沐光.基于局部-全局结构分析的统计过程监控方法研究[D].[博士学位论文],杭州:浙江大学,2010.
    张妮,田学民.基于等距离映射的非线性动态故障检测方法[J].上海交通大学学报,2011,45(8):1202-1206.
    张少捷,王振雷,钱锋.基于LTSA的ICA方法及其在化工过程监控中的应用[J].化工进展,2010,29(10):1840.
    张伟,李斌,周维佳.基于切空间的局部嵌入映射近邻选择[C].第七届全国信息获取与处理学术会议论文集.2009,30:464-467.
    张曦.基于统计理论的工业过程综合性能监控,诊断及质量预测方法研究[D].[博士学位论文],上海:上海交通大学,2008.
    周东华,孙优贤.控制系统的故障检测与诊断技术[M].北京:清华大学出版社,1994.
    周福娜.基于统计特征提取的多故障诊断方法及应用研究[D].[博士学位论文],上海:上海海事大学,2009.
    周韶园.基于HMM的统计过程监控研究[D].[博士学位论文],杭州:浙江大学,2005.
    祝志博.融合聚类分析的故障检测和分类研究[D].[博士学位论文],杭州:浙江大学,2012.
    庄进发.基于模式识别的流程工业生产在线故障诊断若干问题研究[D].[博士学位论文],厦门:厦门大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700