用户名: 密码: 验证码:
薄板结构的吸振控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
实际受激振动系统多是弹性结构,如楼板、舰船甲板和飞机壁板等,这些结构的振动和辐射噪声往往给工作环境和产品性能等带来不利的影响,对其振动和噪声进行控制的研究是一项很有工程意义的课题。被动式动力吸振器结构简单,安装方便,不需耗能,是一种有效的振动控制装置,本文研究运用被动式动力吸振器控制弹性结构振动的一般性问题,以期为弹性结构吸振控制的工程实施提供理论指导和设计方法。
     文中以简支矩形薄板模拟弹性主振系,首先研究了多点简谐集中力和力偶作用下,结构附加多个动力吸振器的动力学模型,推导了系统中的传递功率流,并为了使研究结果具有一般性,将结构导纳和功率流作了无量纲化处理,在此基础上,以控制频率范围内输入主振系的净功率流最大值最小化为优化设计方法,探讨了多种情形下动力吸振器的优化设计问题,分析了各相关因素对吸振器参数和控制效果的影响,得出结论:在质量比较小时,外激励形式和主振系结构形式对吸振器参数的影响较小;通过增大质量比来提高控制效果在质量比较大时不理想;吸振器参数对板的损耗因子不敏感,实际工程中不需要知道精确的损耗因子值;吸振器的安装位置对控制效果影响较大,要尽量将吸振器安装于结构上响应较大的点。
     考虑到随机振动在工程中的普遍性,文中还研究了动力吸振器对薄板随机振动的抑制问题。运用结构导纳理论推导了系统的传递函数,将板上各点的位移响应方差在空间域内积分,得到总体位移响应的评价指标,定义为薄板总体位移方差,通过数值分析,得出将吸振器调谐到第一阶模态共振频率,合理选择阻尼参数,可以在整个宽频带内取得有效的抑制随机振动的作用。
     针对传统质量-弹簧-阻尼式动力吸振器设计和加工上的不便性,文中还提出了一种简便、有效的高阻尼均直梁式动力吸振器,通过对梁板耦合结构的功率流传递特性的研究,探讨了梁式动力吸振器的优化设计方法,数值仿真结果显示,梁式动力吸振器不但结构简单,质量比小,而且吸振频带宽,吸振效果好,并且增加梁的损耗因子,有利于抑制输入系统的总功率流峰值和输入主振系的净功率流。
The structures excited in practice are mostly elastic structures, and the vibration and noise of those structures are sometimes disadvantageous to working environment and product capability, so the study of control of vibration and noise for them is very meaningful. The passive dynamic vibration absorber is a kind of very effective device for suppressing vibration, which is simple in structure, easy to fit, and not consuming power. The Suppression of vibration of elastic structures using dynamic vibration absorbers is studied in this paper, for providing the theory basis and design method for the vibration-absorption control of elastic structures.
    A simply supported rectangular thin plate is simulated as the main vibration system in this paper. The dynamic model of the main system with multiple dynamic vibration absorbers under multiple harmonic fixed force and force-coupling is studied by means of power flow method, and in order to make the results have general meaning, the structure mobility and power flow in the system are expressed in dimensionless fashion. Based on this, regarding the maximum of the net power flow input the main vibration system over the control frequency range as the objective function, discussed is the optimal design of dynamic vibration absorbers in multiple cases. Furthermore, by analyzing the influence of interrelated factors on the structure parameters and the control effect of dynamic vibration absorbers, some conclusions are attained as follows: the influence of the exciting form and main structure form on the parameters of dynamic vibration absorbers is not apparent when the mass ratio is small; increasing the mass ratio can enhance the control effect, but it is not economical when the mass ratio is biggish; the exact loss factor of the main vibration system is not necessary in practical engineering; dynamic vibration absorbers should be fit in the positions of large response to attain good control effect.
    Because random vibration is widespread in practice, the suppression of random vibration of a plate using a dynamic vibration absorber is also studied in this paper. The system transfer function is deduced by means of the theories of structure mobility. And based on this, the displacement response variance is integrated in the space field to attain the evaluation index of total response, which is named as the total displacement response variance. The results of the numerical simulation demonstrate that the dynamic vibration absorber is effective in suppressing random vibration in the whole broadband frequency region when it is tuned to the first resonance and has appropriate damping coefficient.
    A kind of broadband uniform beam-type dynamic vibration absorber for elastic structures is brought forward for the complexity of the traditional dynamic vibration absorber. Based on the power flow characteristic of the beam-plate coupled structure,
引文
1. H. Frahm. Device for Damping Vibrations of Bodies. US Patent, No. 989958, 1909
    2. J. Ormodroyd, J. R Den Hartog. The Theory of Dynamic Vibration Absorber. Transactions of the American Society of Mechanical Engineers, Journal of Applied Mechanics, 1928, 49: A9-A22
    3. J. E. Brock. A Note on the Damped Vibration Absorber. Transactions of the American Society of Mechanical Engineers, Journal of Applied Mechanics, 1946, 68: 248
    4. J. P. Den Hartog. Mechanical Vibration. New York. Megraw-Hall. 1947
    5. G. B. Warburton, E. O. Ayorinde. Optimal Absorber Parameters for Simple Systems. Earthquake Engineering and Structural dynamics, vol. 8, 1980, 197-217
    6. S. E. Randil. Optimal Vibration Absorber for linear Damped System. ASME paper, 1978, 78-WA/DE-22
    7. A. Soom, M. lee. Optimal Design of Linear and Nonlinear Vibration Absorber for Damped Systems. ASME, 1981, 81-DET-83
    8. A. G. Thompson. Optimal Tuning and Damping of a Dynamic Vibration Absorbers Applied to a Force Excited and Damped Primary System, Journal of Sound and Vibration, vol. 77, 1981, 403-415
    9.李新兴,孙海润.动力减振器常用公式的补充.固体力学学报,1988,9(3):269-272
    10.宋孔杰.考虑振源特性影响的动力吸振器优化设计.固体力学学报,1992,13(2):141-147
    11. E. Pennestri. An Application of Chebyshev's Min-Max Criterion to the Optimal Design of a Damped Dynamic Vibration Absorber. Journal of Sound and Vibration, 1998, 217(4): 757-765
    12. Kefu Liu, Jie Liu. The Damped Dynamic Vibration Absorbers: Revisited and New Result. Journal of Sound and Vibration, 2005, 284: 1181-1189
    13. F. M. Lewis. Extended Theory of the Viscous Vibration Damper. ASME, Journal of Applied Mechanics, 1955, 22: 377-382
    14. G. B. Warburton. Optimum Absorber Parameters for Minimizing Vibration Response. Earthquake Engineering and Structural Dynamics, vol. 9, 1981, 251-262
    15. C. Ng, P. F. Cunnif. Optimization of Mechanical Vibration Isolation System with Multi-degree of Freedom. Journal of Sound and Vibration, 1974, 36(1)
    16.丁文镜.多自由度振动系统动力调谐消振理论.清华大学学报,1985,25(3):38-47
    17.梁艳春,王在申.多自由度振动系统动力吸振器优化设计.机械工程学报,1988,24(3):53-57
    18.孙忠池.多自由度振动系统动力减振器设计方法.振动与冲击,1991,3:49-55
    19.伍良生,顾仲权,张阿舟.阻尼动力吸振器减振问题的进一步研究.振动与冲击,1994,1:1-7
    20.张洪田,刘志刚,王芝秋等.多自由度系统动力吸振器参数.1996,17(2):19-24
    21. Y. M. Ram, S. Elhay. The Theory of a Multi-Degree-of-Freedom Dynamic Absorber. Journal of Sound and Vibration, 1996, 195(4): 607-615
    22. W. J. Hsueh. Vibration Transmissibility of a Unidirectional Multi-Degree-of-Freedom System with Multiple Dynamic Absorbers. Journal of Sound and Vibration, 2000, 229(4): 793-805
    23.王全娟,陈家义,李继民.基于功率流方法的多自由度系统吸振控制.声学学报,2001,27(3):277-281
    24. L. Zuo. S. A. Nayfeh. Minimax Optimization of Multi-Degree-of-Freedom Tuned-Mass Damper. Journal of Sound and Vibration, 2004, 272: 893-908
    25. D. Young. Theory of Dynamic Vibration Absorbers for Beams. Proceedings of the First U. S. National Congress of Applied Mechanics, 1952: 91: 96
    26. R. Plunkett. The Calculation of Optimal Concentrated Damping for Continuous Systems. Trans. ASME, Journal Applied Mechanics. 1958, (25): 219-224
    27. J. C. Snowdon. Vibration of a Cantilever to Which Dynamic Absorbers are Attached. Journal of the Acoustical Society of America, 1966, 39: 878-886
    28. R. G. Jacquot. Optimal Dynamic Vibration Absorbers for General Beam Systems. Journal of Sound and Vibration, 1978, 60(4): 535-542
    29. E. O. Ayorinde, G. B. Warburton. Minimizing Structural Vibration with Absorbers. Earthquake Engineers and Structural Dynamics, 1980, 8: 219-236
    30. R. G. Jacquot. Random Vibration of Damped Modified Beam Systems. Journal of Sound and Vibration, 2000, 234(4): 441-454
    31. R. G. Jacquot. Suppression of Random Vibration in Plates Using Vibration Absorbers. Journal of Sound and Vibration, 2001, 248(4): 585-596
    32. R. G. Jacquot. The Spatial Average Mean Square Motion as an Objective Function for Optimizing Damping in Damped Modified Systems. Journal of Sound and Vibration, 2003, 259(4): 955-965
    33. H. M. El-Khatib, B. R. Mace, M. J. Brennan. Suppression of Bending Waves in a Beam Using a Tuned Vibration Absorber. Journal of Sound and Vibration, 2005, 288(4-5): 1157-1175
    34.田千里.多维动力吸振器对复杂悬臂梁结构减振之应用.航空学报,1982,3(2)
    35.尹坚平,刘鸿信,倪乃琛.动力吸振器用于抑制加肋薄板振动和声辐射的研究.同济大学学报,1989;17(2):195-203
    36.孙朝晖,孙进才等,动力吸振器用于飞机壁板减振降噪的研究.西工大学报,1993,11:470-475
    37.孙朝晖,孙进才等,飞机壁板减振降噪中动力吸振器的设计及实验研究.噪声与振动控制,1995,4:10-13
    38.吴崇健,R.G.White.有限周期梁用动力消振器抑制的特性.振动与冲击,1996; 15(4):27-31
    39.金咸定,成学明.舰船的艉部振动与动力吸振器减振.上海交通大学学报,1997;31(2):38-40
    40.王敏庆,盛美萍,蓖进才.宽频带动力吸振器功率流特性研究.声学学报,2002;27(2):121-123
    41.王全娟,夏松波,黄文虎.基于功率流方法的连续参数系统动力吸振器的优化设计.声学学报,2003;28(3):267-271
    42.王彦琴,盛美萍,孙进才.变截面梁式动力吸振器的宽带吸振机理.振动工程学报,2004;17(4):473-476
    43. J. C. Snowdon. Dynamic Vibration Absorbers That Have Increased Effectiveness. Journal of engineering for industry, vol. 96, 1974, 840-845
    44. J. C. Snowdon. Vibration and Shock in Damped Mechanical Systems. New York: John Wiley. 1968
    45. J. C. Snowdon. Plate-Like Dynamic Vibration Absorber. Journal of Engineering for Industry. 1975, 97: 88-93
    46. R. G. Jacquot, J. E. Foster. Optimal Cantilever Dynamic Vibration Absorber. Journal of Engineering for Industry. 1977, 99B: 138-141
    47. T. Aida and T. Aso. Vibration Control of Beams Using a Beam-Type Dynamic Vibration Absorber. Journal of Engineering Mechanics, 1992, 118(2): 248-258
    48. T. Aida and T. Aso. Vibration Control of Plate by a Plate-Type Dynamic Vibration Absorber. Journal of Sound and Vibration, 1995, 117(2): 332-338
    49. T. Aida and T. Aso. Vibration Control of Shallow Shell Structures Using a Shell-Type Dynamic Vibration Absorber. Journal of Sound and Vibration, 1998, 218(2): 245-267
    50. B. C. Carter. British Patent, 1929, No. 337446
    51. W. Ker Wilson. Practical Solution of Torsional Vibration Problems. London: Chapman and Hall Ltd. Third Edition, Ⅳ
    52. M. Hosek, H. Elmali and N. Olgac. A Tunable Torsional Vibration Absorber: the Centrifugal Delayed Resonator. Journal of Sound and Vibration, 1997, 205(2): 151-165
    53. C.-P. Chao, C.-T. Lee, S. W. Shaw. Non-unison Dynamic of Multiple Centrifugal Pendulum Vibration Absorbers. Journal of Sound and Vibration, 1997, 204(5): 769-794
    54. A. Ertas, O. Cuvalci, S. Ekwaro-Osire. Performance of Pendulum Absorber for a Non-linear System of Varying Orientation. Journal of Sound and Vibration, 2000, 229(4): 913-933
    55. C.-P. Chao, S. W. Shaw. The Dynamic Response of Multiple Pairs of Subharmonic Torsinal Vibration Absorber. Journal of Sound and Vibration, 2000, 231(2): 411-431
    56. A. Vyas, A. K. Bajaj. Dynamics of Autoparametric Vibration Absorbers Using Multiple Pendulums. Journal of Sound and Vibration, 2001, 246(1): 115-135
    57. Y. Song, H. Sato, Y. Iwata, T. Komatsuzaki. The Response of a Dynamic Vibration Absorber System with a parametrically Excited Pendulum. Journal of Sound and Vibration. 2003, 259(4): 747-759
    58. Mustafa Yaman, Sadri Sen. The Analysis of the Orientation Elect of Non-linear Flexible Systems on Performance of the Pendulum Absorber. International Journal of Non-Linear Mechanics, 2004 (39): 741-752
    59. E. E. Ungar, L. G. Kurzweill. Preliminary Evaluation of Waveguide Vibration Absorbers. AFWAL-TR-83-3125: AFWAL, 1984
    60. E. E. Ungar, L. G. Kurzweill. Structural Damping Potential of Waveguide Absorbers. Proc. of Vibration Damping, Workshop, AFWAL-TK-89-3064: AFWAL, 1984
    61. Y. Ketema. A Viscoelastic Dynamic Vibration Absorber with Adaptable Suppression Band: A Feasibility Study. Journal of Sound and Vibration, 1998, 216(1): 133-145
    62.陈煊,傅祥志.梁类粘弹性波导吸振器的动力学分析及仿真.中国机械工程,1997(7):64-67
    63.涂修宇,傅祥志.变截面粘弹性波导吸振器阻尼耗能机理的研究.华中理工大学学报,1998,26(91):89-92
    64.冯丹凤,傅祥志.柱面波在圆盘粘弹性波导吸振器中传播和耗能.华中理工大学学报,1999,27(9):10-12
    65.曹明艺,黄其柏,廖道训.控制板壳弯曲振动波导吸振器的统计能量分析.华中理工大学学报,1999,27(2):19-21
    66.冯丹凤,傅祥志.波在圆盘粘弹性波导吸振器中传播及耗能研究.机械强度,2000,22(2):94-96
    67.冯丹凤,傅祥志,蒙运红.开槽圆盘波导吸振器耗能及其导出杆研究.华中理工大学学报,2000,28(1):8-14
    68.黄其柏,曹明艺,廖道训.粱类波导吸振器的动力特性分析.中国机械工程,2000,11(8):890-893
    69.冯丹凤,傅祥志.基于Mindin板的圆盘粘弹性波导吸振器研究.中南工学院学报,2000,14(1):1-6
    70.李威,张维衡,张小铭.一种新型波导吸振器——约束阻尼梁.噪声与振动控制,2000.2:24-27
    71. Miros Pirner. Actual Behaviour of a Ball Vibration Absorber. Journal of Wind Engineering and Industrial Aerodynamics. 2002, 90: 987-1005
    72. C. D. Hettema, Y. S. Shi. Viscoelastic Circular Plate Waveguide Absorber. Journal of Vibration and Acoustic Stess Keliab, Des, 1992, 113(3): 383-387
    73. C. C. Chang, C. T. Hsu. Control Performance of Liquid Column Vibration Absorbers. Journal of Sound and Vibration, 1997, 20(7): 580-586
    74. P. A. Hitchcock, M. J. Glanville, K. C. S. Kwok, R. D. Watkins. Damping Properties and Wind-induced Response of a Steel Frame Tower Fitted With Liquid Column Vibration Absorbers. Journal of Wind Engineering and Industrial Aerodynamics, 1999(83): 183-196
    75. R. A. Morgan, K. W. Wang. Active-passive Piezoelectric Absorbers for System under Multiple Non-stationary Harmonic Excitations. Journal of Sound and Vibration, 2002, 255(4): 685-700
    76. Corrado Maurini, Francesco dell'Isola, Dionisio Del Vescovo. Comparison of Piezoelectronic Networks Acting as Distributed Vibration Absorber. Mechanical Systems and Signal Processing. 2004(18): 1243-1271
    77. K. A. Williams, G. T.-C. Chiu, R. J. Bernhard. Passive-adaptive Vibration Absorbers Using Shape Memory Alloys. Proceedings of the SPIE[C]. 1999, 3668: 630-641
    78. J. Q. Sun, M.R. Jolly, M. A. Norris. Passive, Adaptive and Active Tuned Vibration Absorbers—a Survey. Transactions of American Society of Mechanical Engineers, 1995 (117): 234-242
    79. R. P. Ma, A. Sinha. A Neural Network Based Active Vibration Absorber with State Feedback Control. Journal of Sound and Vibration, 1996, 190(1): 121-128
    80. M. Abe, T. Igusa. Semi-active Dynamic Vibration Absorbers for Controlling Transient Response. Journal of Sound and Vibration, 1996, 198(5): 547-569
    81. N. Hirami. An Active Maximum Power Absorber for the Reduction of Noise and Vibration. Journal of Sound and Vibration, 1997, 200(3): 261-279
    82. R. A. Burdisso, J. D. Heilmann. A New Dual-reaction Mass Dynamic Vibration Absorber Actuator for Active Vibration Control. Journal of Sound and Vibration, 1998, 214(5): 817-831
    83.胡海岩,金栋平.基于分段线性吸振器的振动半主动控制。振动工程学报,1997,10(2):125-130
    84.李敏霞,刘季.非线性阻尼变刚度半主动结构振动控制.振动工程学报,1998,11(3):333-339
    85.刘季,李敏霞.变刚度半主动结构振动控制.振动工程学报,1999,12(2):166-172
    86.李幽玩,张洪田等.船舶管道振动半主动控制技术实验研究.哈尔滨工程大学学报,1999,20(3):11-15
    87. Junchuan Niu, Kongjie Song, C. W. Lim. On Active Vibration Isolation of Floating Raft System. Journal of Sound and Vibration, 2005, 285: 391-406
    88. M. Blakemore, J. Woodhouse, D. J. Hardie. Statistical Power Flow Analysis of an Imperfect Ribbed Cylinder. Journal of Sound and Vibration, 1999, 222(5): 813-832
    89. W. L. Li, M. Daniels, W. Zhou. Vibrational Power Transmission From a Machine to its Supporting Cylindrical Shell. Journal of Sound and Vibration, 2002, 257(2): 283-299
    90.李伟,仪垂杰,胡选利等.梁板结构功率流的导纳法研究.西安交通大学学报,1995:29(7):29-35
    91. Wu C J, R. G. White. Reduction of Vibrational Power in Periodically Supported Beams By Use of a Neutralizer. Journal of Sound and Vibration, 1995, 178(2): 329-338
    92. S. H. Crandall, W. D. Mark. Random Vibration in Mechanical Systems, 1963
    93. R. G. Jacquot, etc. Optimal random vibration absorbers. Journal of engineering mechanics. (proceedings of the ASCE), vol. 99, 1973, 612-616
    94. R. L. Kerlin. Predicted Attenuation of the Plate-like Dynamic Vibration Absorber when Attached to a Clamed Circular Plate at a Non-central Point of Excitation. Applied Acoustics, 1988, 23: 17-27

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700