用户名: 密码: 验证码:
注蒸汽采油流度控制剂研制与室内评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
注蒸汽是提高稠油油藏采收率的有效方法。但在注蒸汽开采中,蒸汽“超覆”和“汽窜”导致注入的蒸汽大量损失和波及系数的降低,影响开采效果。不利的流度比是造成蒸汽超覆与汽窜的重要原因之一,改善流度比是提高蒸汽波及效率的有效途径。本文围绕改善注蒸汽热采流度比开展了以下研究:
     其一,开展了耐高温发泡剂研制与室内评价。首先,研制了阴离子型表面活性剂AGS-8和PMP-1。其次,开展了发泡剂室内静态和动态实验评价,将AGS-8和PMP-1与五种商业发泡剂F240B.SuntechⅣ、ATS、AOS2024和LD-Foam进行性能对比。结果表明:F240B、AGS-8、PMP-1在耐高温、发泡体积、半衰期、抗盐以及抗油等方面,综合性能最好;F240B、AGS-8及PMP-1发泡剂产生的阻力因子较大,且随温度的升高阻力因子下降幅度较小,表明这三种发泡剂具有良好的蒸汽流度控制能力;驱替0.5pv时,F240B、AGS-8和PMP-1的驱油效率分别达到65.3%、58.9%和51.6%。最后,开展了泡沫控制蒸汽流度的敏感因素研究。结果表明:当发泡剂溶液浓度较低时,阻力因子随发泡剂浓度增大迅速增大,当发泡剂溶液浓度超过0.5%以后,随发泡剂浓度的增加,阻力因子增大的趋势减缓;当含油饱和度超过15%时,随含油饱和度的继续增加,泡沫控制蒸汽流度的能力急剧降低;渗透率增大时阻力因子增大,渗透率高于8μm2后阻力因子基本不变;气液比在0.5~1.5的范围内泡沫具有较高的阻力因子,在现场施工中应尽量将气液比控制在0.5~1.5之间。
     其二,开展了蒸汽冷凝水流度控制化学剂筛选与评价。首先,根据蒸汽驱过程中在温度前缘前后温度发生大幅度变化的特性,提出采用具有特殊性质的化学剂来控制冷凝水相的流度。其原理是化学剂通过在地层中暂时和选择性地在水流通道中结晶,部分堵塞冷凝水流动通道降低冷凝水相的渗透率,从而控制其流度。其次,对化学剂控制水相流度进行了理论分析,论证了化学剂可以到达蒸汽前缘,分析了加入化学剂对蒸汽驱流度比、驱替效率的影响。再次,根据流度控制剂的性能要求,通过筛选,确定MCA可用于蒸汽驱中控制水相流度的化学剂。最后,开展了冷凝水流度控制室内模拟实验。结果表明,当MCA饱和度为1%pv时,岩心渗透率可减小到初值的20%左右;随着岩心中的MCA逐渐被溶解驱出,饱和度逐渐减小,岩心渗透率可恢复到初始渗透率的93%以上,表明由MCA结晶导致的岩心渗透率减小具有暂时性和可逆性。驱替2pv左右时,未添加MCA的驱油实验的平均驱油效率为53.24%,添加MCA的驱油实验的平均驱油效率为61.25%,使用MCA可使线性驱替实验的驱替效率平均增加原始地质储量的8%左右。
     其三,开展了稠油就地裂解催化体系研制与评价。首先,考察了辽河稠油水热裂解降粘与强化的可行性。结果表明:辽河稠油在240℃条件下经过24小时的水热裂解反应,粘度降低7.26%,其饱和烃、芳香烃含量增加,胶质和沥青质含量有所降低;反应体系中油砂的加入可使反应后的稠油降粘率增加了1倍左右;0.3%的硫酸亚铁与油砂共同作用可使稠油粘度降低55.02%,四氢化萘与矿物共同作用下,稠油降粘率可提高到40%左右,表明辽河稠油具有水热裂解反应性,催化剂与供氢剂能够强化辽河稠油水热裂解降粘。其次,以含镍和钴的矿物为原料制备了稠油就地裂解反应催化剂主剂,性能评价表明所研制的催化剂热稳定性良好、与地层水配伍、与油藏矿物具有协同性;筛选甲苯或混苯作为稠油催化裂解反应的供氢剂;选择石油磺酸盐作为助剂进一步提高稠油就地降粘效果。本文研制的稠油裂解降粘催化体系为:油酸钴/油酸镍催化剂加量0.2%、供氢剂甲苯加量1.0%、助剂石油磺酸盐加量0.3%。最后,稠油就地裂解催化体系室内评价结果表明,稠油在催化体系作用下进行水热裂解反应后,稠油品质得到提高,其饱和烃、芳香烃含量明显增大,胶质、沥青质含量明显降低,反应后稠油中C原子含量降低,H原子含量增加,硫元素含量明显下降,粘度不可逆地降低,降粘率可达90%左右,提高了稠油的流度。
     最后,进行了流度控制剂现场实施方案初步设计。关于流度控制剂的具体注入量、注入时机以及注入方式等需要根据油田实际情况进行后续计算、设计与完善。
Thermal recovery by steam injection is an effective EOR method for heavy oil reservoir. But in the process of steam injection, "steam overlying" and "steam channeling" will cause adverse consequences of steam loss and sweep efficiency decrease, influencing the recovery effect. Unfavorable mobility ratio is one of the essential reasons causing steam overlying and channeling. It is an efficient way to promote the sweep efficiency of steam flooding through mobility ratio controlling. In order to improve the mobility ratio in steam injection process, the following work was carried out in this dissertation.
     Firstly, high-temperature foaming agents were prepared and evaluated in laboratory. First of all, anionic surfactant AGS-8 and PMP-1 were prepared. Next, the static and dynamic experimental evaluations were carried out to compare the properties of foaming agents AGS-8, PMP-1, F240B, SuntechⅣ, ATS, AOS2024 and LD-Foam. The results showed that in terms of temperature resistance, foam volume, foam half-life, salt tolerance, oil resistance, the agents of F240B, AGS-8 and PMP-1 have the best performance. F240B, AGS-8 and PMP-1 can generate large resistance factors, which decrease a little as temperature increasing, indicating that F240B, AGS-8 and PMP-1 can achieve good effect in steam mobility control. When flooded by 0.5pv, the displacement efficiencies of F240B, AGS-8 and PMP-1 are 65.3%,58.9% and 51.6% respectively. Finally, the sensitivity factors of steam mobility control by foam were studied. The results showed that for low concentration of foaming agent, the resistance factor of foam increased rapidly as the concentration increase, while for the foaming solution with concentration over 0.5%, the increasing tendency of resistance factor becomes weaker. The mobility control ability of foam decreased dramatically as the oil saturation increases to above 15%. The resistant factor increased as the increase of permeability, and after the permeability was higher than 8μm2, the resistant factor remained basically unchanged. The resistant factor was high as the gas-liquid ratio is in the range of 0.5~1.5.
     Secondly, chemical agent for controlling the mobility of steam condensation water was selected and evaluated. At First, in view of the characteristic of temperature change at the temperature front during the process of steam injection, the method to control mobility of water phase by chemical agent with special properties was put forward. The principle is to decrease the permeability of the condensation water through partially blocking the water flow channel by the temporary and selective crystallization of special chemical agent. Next, the mechnism of water phase mobility control by chemical agent was analyzed theoretically, the possibility of chemical agent to reach the steam front was demonstrated, and the influences of chemical agent on mobility ratio and displacement efficiency of steam flooding were analyzed. Then, according to the quality demand of mobility control agent, MCA was selected to be used as the agent to control the mobility of water phase in the process of steam flooding. Finally, laboratory simulated experiments on condensation water mobility control were carried out. The results showed that, when the core was saturated by MCA with a saturation of 1%pv, the permeability of the core was decreased to about 20% of the initial value; with the MCA was gradually dissolved and swept out of the core, the saturation decreased and the permeability recovered gradually, the permeability can return to above 93% of the initial value, showing that the permeability reduction caused by the crystallization of MCA is temporary and invertible. When displaced by about 2pv, the average efficiency of the displacements without addition of MCA was 53.24%, while the average efficiency of MCA added displacements was 61.25%, the application of MCA can increase the efficiency of the linear displacement experiments with a value about 8% of the OOIP averagely.
     Thirdly, catalysis system for heavy oil in-situ upgrading was prepared and evaluated. First of all, the possibility and reinforcement of viscosity reduction by aquathermolysis of Liaohe heavy oil were investigated. The results showed that after aquathermolysis for 24 hours at 240℃, the viscosity reduced 7.26%, and the content of saturated hydrocarbon and aromatic hydrocarbon increased, while the content of resin and asphaltene decreased a little; oil sands can increase the viscosity reduction of the reacted heavy oil about 1 time; 0.3% ferrous sulphate together with oil sands can decrease the heavy oil viscosity by 55.02%, and after the aquathermolysis under the action of tetralin and oil sands, the viscosity reduction of heavy oil can increase about 40%, showing the Liaohe heavy oil can occur aquathermolysis, and the catalyst and hydrogen donor can reinforce the viscosity reduction by aquathermolysis. Next, the main agent of in-situ upgrading catalysis system was developed with nickel and cobalt contained minerals. The performance evaluation showed that the thermal stability of the developed catalyst is good, it is compatible with formation water, and has coordination with reservoir minerals; methylbenzene or mixed benzene was selected as the hydrogen donor for the catalytic aquathermolysis; sulfonic acid anionic surfactant was selected as the auxiliary agent to gain further improvement on the in-sity viscosity reduction. The formula of catalysis system developed is 0.2% cobalt/nickel oleate mixture,1.0% mehtylbenzene,0.3% mahogany sulfonate. Finally, the results of laboratory evaluation on the catalysis system developed showed that after aquathermolysis with the action of catalysis system, the quality of heavy oil is upgraded, the content of saturated hydrocarbon and aromatic hydrocarbon increased, while the content of resin and asphaltene decreased obviously, the content of carbon in heavy oil decreased, while the content of hydrogen increased, and the content of sulphur decreased markedly, the viscosity decreased inconvertibly with a viscosity reduction ratio of about 90%, as a result, the mobility of the heavy oil was improved.
     At last, the implementation program for field application of mobility control agents was preliminary designed. More work should be done in the future to optimize the injection volume, injection time and injection pattern and so on.
引文
[1]于连东.世界稠油资源的分布及其开采技术的现状与展望[J].特种油气藏,2001,8(2):98-103.
    [2]阳鑫军.稠油开采技术[J].海洋石油,2003,23(2):55-60.
    [3]王大为,周耐强,牟凯.稠油热采技术现状及发展趋势[J].西部探矿工程,2008,12:129-131.
    [4]帕拉茨.热力采油[M].北京:石油工业出版社,1989,13-16.
    [5]王弥康.热力采油与提高原油采收率[J].油气采收率技术,1994,1(1):6-11.
    [6]刘慧卿,陈月明.蒸汽驱开发指标预测的解析模型[J].石油大学学报,1993,17(1):47-52.
    [7]陈月明.油藏工程研究进展[M].北京:石油大学出版社,2000,129-132.
    [8]许心伟,张锐.稠油油藏蒸汽驱合理井网密度研究[J].石油勘探与开发,1998,25(4):45-48.
    [9]博贝格.热力采油工程方[M].北京:石油工业出版社,1980,5-8.
    [10]张朝琛.稠油蒸汽驱1(热采工程)[M].北京:石油工业部科学技术情报研究所,1987,1-15.
    [11]刘文章.热采稠油油藏开发模式[M].北京:石油工业出版社,1998,169-186.
    [12]张红玲,刘慧卿,王晗,王书林,包术成.蒸汽吞吐汽窜调剖参数优化设计研究[J].石油学报,2007,28(2):105-108.
    [13]刘尚奇,王晓春,杨立强,等.蒸汽超覆对块状超稠油油藏剩余油分布影响研究[J].特种油气藏,2005,12(1):29-32.
    [14]Van Lookeren J. Calculation methods for linear and radial steam flow in oil reservoirs [C]. SPE6788.
    [15]高永荣,闫存章,刘尚奇,等.利用蒸汽超覆作用提高注蒸汽开发效果[J].石油学报,2007,28(4):91-94.
    [16]罗杰巴特勒.重油和沥青的热力开采工艺[M].石油工业出版社,1994,112-113.
    [17]霍进,贾永禄,余佳.考虑重力超覆的稠油热采试井分析模型研究[J].西南石油学院学报,2006,28(2):52-55.
    [18]凌建军,宋振宇,王压,艾敬旭.蒸汽吞吐阶段的“汽窜”现象实质研究[J].江汉石油学院学报,1996,18(1):58-61.
    [19]鄢旭.曙一区杜84兴隆台油层汽窜研究及实施效果[J].西部探矿工程,2005,11:132-134.
    [20]张豆娟,郭海敏,戴家才,汪中浩.稠油油藏蒸汽驱阶段汽窜的研究[J].中国测试技术,2004,30(3):45-46.
    [21]张勇,孙玉环,孙旭东.杜84断块超稠油蒸汽吞吐汽窜机理分析及防窜措施初探[J].特种油气藏,2002,9(6):31-33.
    [22]陈凤君,黄春兰,张彪.改善稠油热采高周期吞吐开发效果技术对策[J].石油天然气学报,2009,31(3):277-278.
    [23]廖广志,王克亮,闫文华.流度比对化学驱驱油效果影响实验研究[J].大庆石油地质与开发,2001,20(2):14-16.
    [24]何更生.油层物理[M].石油工业出版社2007,258-259.
    [25]S.Thomas et al用化学方法提高稠油采收率[J].国外油田工程,2002,18(4):7-10.
    [26]Mridul Kumar, Viet Hoang, Cengiz Satik, et al. High Mobility Ratio Waterflood Performance Prediction:Challenges and New Insights[C]. SPE97671.
    [27]A.W.Fisher, R.W.S Fouiser, et al. Mathermatical Modeling of Foam Flooding[C]. SPE 20915.
    [28]V.M. Ziegler. Laboratory Investigation of High-Temperature Surfactant Flooding[C]. SPE13071.
    [29]M. Robin. Laboratory Evaluation of Foaming Additives Used To Improve Steam Efficiency[C]. SPE 16729.
    [30]J.E. Hanssen. A New Method for Testing of Gas-Blocking Foams[C]. SPE 17362.
    [31]G.S. Kular, K. Lowe, D. Cmmbe. Foam Application in an Oil Sands Steamflood Process[C]. SPE 19690.
    [32]F.M, Hamida, B.M.R. Demiral, D.C. Shallcross,L.M. Castanier,W.E. Brigham. Further Characterization of Surfactants as Steamflood Additives[C]. SPE 20065.
    [33]P.R. Sander et al. Steam-Foam Diversion Process Developed To Overcome Steam Override in Athabasca[C]. SPE 22630.
    [34]E. Delamaide et al. A Technical and Economical Evaluation of Steam Foam Injection Based on a Critical Analysis of Field Applications[C]. SPE 35692.
    [35]Shen Chen. Profile Control Technology of Thermal Recovery in Shengli OilfieldfC]. SPE 50120.
    [36]Cesar A. Valera et al. Use of Surfactants in Cyclic Steam Injection in Bachaquero-01 Reservoir[C]. SPE 54020.
    [37]Fried, A.N. The Foam-Drive Process for Increasing the Recovery of Oil. Usbm5866, 1961.
    [38]Bernard. G.g., Holm, L.W, and Harvey, C.P. Soc Petrol Engrs Petrol Eng.1980. 281-292.
    [39]Ali Habib Al-Khafaji, Pin-Ton Fred Wang, Louis M. Castanier, William E.Bringham. Steam Surfactant Systems at Reservoir Conditions[C]. SPE 10777.
    [40]Isaacs.E.E., McCarthy, F.C., Maunder.J.D.. Investigation of Foam Ssability in Porous Media at Elevated Temperatures[C]. SPE15647.
    [41]Wang, G.C. A Laboratory Study of CO2 Foam Properties and Displacement Mechanism[C]. SPE12645.
    [42]Borchard, J.K. Bright, D.B., Dickson, M.K., Wellington, S.L.. Surfactants for CO2 Foam Flooding[C]. SPE14394.
    [43]Q.P.Nguyen, P.L.J.Zitah, P.k.Currie. CT Study of Liquid Diversion With Foam[C]. SPE 93949.
    [44]Fiedmann.F. and Jensen.J.A.. Some Parameters Influencing the Formation and Propagation of Foams in Pourous Media[C]. SPE 15087.
    [45]Y.Liu, R.B. Grigg and R.k.Svec. CO2 Foam Behavior:Influence of Temperature, Pressure, and Concentration of Surfactant[C]. SPE 94307.
    [46]Chou, S.I. Vasicek, S.L. Pisio, D.L. Jasek, D.E. and Goodgame, J.A. CO2 Foam Field Trial at North Ward-Estes[C]. SPE 24643.
    [47]李治龙,钱武鼎.我国油田泡沫流体应用综述[J].石油钻采工艺,1993,15(6):88-94.
    [48]曹嫣嫔,刘冬青,唐培忠,等.泡沫体系改善草20区块多轮次吞吐热采开发效果技术研究[J].石油钻探技术,2006,34(2):65-68.
    [49]绳德强.蒸汽/泡沫提高稠油采收率技术的试验研究[J].钻采工艺,1996,19(4):29-33.
    [50]高树生,熊伟.多孔介质中蒸汽泡沫渗流影响因素分析[J].特种油气藏,2004,11(3):82-91.
    [51]谢尚贤,颜五和,韩培慧.泡沫对二氧化碳驱的流度控制[J].油田化学,1990,7(3):289-294.
    [52]郭东红,辛浩川,崔晓东,等.稠油热采高温防窜剂的性能研究[J].精细石油化工进展,2006,7(10):1-3.
    [53]曹正权,马辉,姜娜,等.氮气泡沫调剖技术在孤岛油田热采井中的应用[J].油气地质与采收率,2006,13(5):75-77.
    [54]袁土义,刘尚奇,张义堂,等.热水添加氮气泡沫驱提高稠油采收率研究[J].石油学报,2004,25(1):57-61.
    [55]程林松,肖双爱.稠油油藏蒸汽-泡沫驱油数值模拟方法[J].计算物理,2003,20(5):463-466.
    [56]韩修廷,刘春天,万新德,等.聚能等流度高效驱油新方法研究[J].石油学报,2008,29(3):418-422.
    [57]孟令伟,康万利,王志伟,等.聚驱后等流度提高采收率室内驱油实验研究[J].中国科技论文在线,2009,4(6):436-440.
    [58]吴赞校,石志成,侯晓梅,等.应用阻力系数优化聚合物驱参数[J].油气地质与采收率,2006,13(1):92-94.
    [59]叶仲斌,贾天泽,施雷庭,等.疏水缔合聚合物的流度控制能力研究[J].西南石油大学学报,2007,29(5):100-104.
    [60]孙琳,蒲万芬,赵金洲,等.污水配制碱-聚合物体系的黏度稳定方法[J].石油学报,2009,30(4):613-616.
    [61]娄清香,帕提古丽,聂小斌,等.驱油用常规聚合物与抗盐聚合物性能全面评价[J].油田化学,2007,24(2):146-149.
    [62]夏燕敏,陈安猛,宋晓芳.三次采油用耐温抗盐聚合物的研究进展[J].广东化工 2009,36(6):92-94.
    [63]孙琳,蒲万芬,辛军,等.碱/聚合物复合驱体系粘度影响因素分析[J].精细石油化工进展,2007,8(4):11-13.
    [64]王晓宇,宋天民.稠油降粘方法研究现状[J].河北化工,2009,32(11):27-29.
    [65]尉小明,刘喜林,王卫东,等.稠油降粘方法概述[J].精细石油化工,2002,5:45-48.
    [66]柳荣伟,陈侠玲,周宁.稠油降粘技术及降粘机理研究进展[J].精细石油化工进展,2008,9(4):20-25.
    [67]王桂勋.胜坨油田稠油催化降粘技术研究[J].精细石油化工进展,2010,11(1):14-16.
    [68]Clark PD, Hyne JB. Steam-Oil Chemical Reactions:Mechanism for the Aquathermolysis of Heavy Oils[J].AOSTRA Journal of Research,1984, 1(1):15-20.
    [69]Clark PD, Hyne JB. Studies on the chemical reactions of heavy oils under steam stimulation condition[J]. AOSTRA Journal of Research,1990,6(1):29-39.
    [70]Monin JC, Audlbert A. Thermal cracking of heavy-oil/mineral matrix systems[J]. SPE Reservoir Engineering,1988,3(4):1243-1250.
    [71]Martin A.A. Schoonen, Yong Xu, Daniel R. Strongin. An introduction to geocatalysis[J]. Journal of Geochemical Exploration,1998,62:201-215.
    [72]刘永建,胡绍彬,闻守斌,赵法军,张文明.地质催化稠油水热裂解反应可行性研究[J].特种油气藏,2007,14(5):84-87.
    [73]Patel KM, Murthy AK, et al. Catalytic process for production of light hydrocarbons by treatment of heavy hydrocarbons with water[P], US 4743357,1988.
    [74]Johnson HS, Bright A. Upgrading of heavy hydrocarbonaceous oil using CO2 and steam[P]. Canada 1195639,1985.
    [75]赵法军,刘永建,闻守斌,赵玉建.稠油水热裂解催化剂研究进展[J].油田化学,2006,23(3):277-283.
    [76]BiancoA D, Panariti N, Sabatino Di, Thermocatalytic hydroconversion of heavy petroleum cuts with dispersed catalyst[J]. Applied Catalysis A:General,1993,94(1): 1-16.
    [77]Galiasso, Roberto, Salazar. Method of preparing acatalyst for the hydroconversion of asphaltene containing hydrocarbonaceous charge stocks [P]. US 4954473,1990.
    [78]Dadyburjor D B, Stewart W R, Stiller A H, et al. Disproportional ferric sulfide catalysts for coal liquefaction[J]. Energy & Fuels,1994,8(1):19-24.
    [79]Matsumura A, Sato S, Kondo T, et al.. Hydrocracking Marlim vacuum residue with natural limonite. Part 2:experimental cracking in a slurry-type continuous reactor[J]. Fuel, 2005,84(4):417-421.
    [80]Duangchan A. Residue upgrading using dispersed catalysts prepared in reverse micelles [M]. Columbia:University of British Columbia,1998.
    [81]Hyne JB, Tyrer JD. Use of hydrogen-free carbon monoxide with steam in recovery of heavy oil at low temperatures[P]. US 4487264,1984.
    [82]Richard PD, William CM, Murray RG. Thermal cracking of Athabasca bitumen: influence of steam on reaction chemistry[J]. Energy Fuels,2000,14(3):671-676.
    [83]Ware CH, Rose LC, Allen JC. Recovery of oil by in situ hydrogenation [P]. US 4597441, 1986.
    [84]Bricker JC, et al. Hydride Donating Properties of [HRu3(CO)11]- in the Presence of CO; Chemistry of Ruthenium Carbonyl Anions Relevant to the Catalysis of the Water Gas Shift Reaction[J]. J.Am.Chem.SOC.,1985,107:377-384.
    [85]Patel KM, Bekker AY, et al. Process for production of hydrogenated light hydrocarbons by treatment of heavy hydrocarbons with water and carbon monoxide[P]. US 4675097, 1987.
    [86]李伟,朱建华.注汽热采条件下稠油井下催化改质的研究进展[J].现代化工,2005,25(10):25-29.
    [87]Ovalles C, Filgueiras E, et al. Use of a dispersed iron catalyst for upgrading extra heavy crude oil using methane as source of hydrogen[J]. Fuel,2003,8(82):887-892.
    [88]李庶峰,沐宝权,刘晨光.用甲烷作氢源改质重质油的探索[J].石油与天然气化工,2002,31(3):138-139.
    [89]Bianco AD, Garuti G, Pirovano C, et al. Thermal cracking of petroleum residues: 3.Technical and economic aspects of hydrogen donor visbreaking[J]. Fuel,1995,74 (5): 756-760.
    [90]Ovalles C. Extra-heavy crude oil downhole upgrading process using hydrogen donor under steam injection conditions [J]. SPE,69692,2001.
    [91]李博.辽河油田催化供氢稠油改质的实验[J].大庆石油学院学报,2004,28(4):24-26.
    [92]樊泽霞,赵福麟,王杰祥.超稠油供氢水热裂解改质降黏研究[J].燃料化学学报,2006,34(3):315-318.
    [93]王志伟,张毅,魏淋生.孔隙介质中泡沫形成机理研究进展[J].石油地质与工程,2008,22(3):8-11.
    [94]赵正龙,李建国,杨朝辉,等.CO2泡沫压裂工艺技术在中原油田的实践[J].钻采工艺,2006,29(2):54-56.
    [95]廖广志,李立众,孔繁华,等.常规泡沫驱油技术[M].北京:石油工业出版社,1999:14-16.
    [96]王其伟,宋新旺,周国华,等.聚合物驱后泡沫驱提高采收率技术试验研究[J].江汉石油学院学报,2004,26(1):105-107.
    [97]马宝歧,詹少淮,等.泡沫特性研究[J].油田化学,1990,17(3):22-24.
    [98]Tanzil D, Hirasaki G J, Miller C A.Conditions for Foam Generation in Homogeneous Porous Media[C]. SPE 75176.
    [99]周静.稳定泡沫流体的机理研究[J].钻采工艺,1999,22(6):75-78,81.
    [100]郭万奎,廖广志,邵振波,等.注气提高采收率技术[M].北京:石油工业出版社,2003.110.
    [101]赵晓东.泡沫稳定性综述[J].钻井液与完井液,1992,9(1):7-14.
    [102]M.Evren Ozbayoglu, Ergun Kuru, Stefan Miska, et al. A Comparative Study of Hydraulic Models for Foam Drilling[C]. SPE 65489.
    [103]廖广志,李立众,孔繁华,等.常规泡沫驱油技术[M].北京:石油工业出版社,1999:14-16.
    [104]叶仲斌,罗平亚.用微泡沫/聚合特驱油体系大幅度提高近海油田采收率[C].我国近海油气勘探开发高技术发展研讨会文集,164-171.
    [105]刘中春,侯吉瑞,岳湘安等.泡沫复合驱微观驱油特性分析[J].石油大学学报,2007,27(1):49-53.
    [106]Shin Hsien Chang, Martin F.D. and Grigg R.B. Effect of Pressure on CO2 Foam Displacements:A Micromodel Visualizaton Study[C]. SPE 27784.
    [107]韩冬,沈平平.表面活性剂驱油原理及应用[M].北京:石油工业出版社,2001.12.
    [108]杨承志.化学驱油理论与实践[M].北京.石油工业出版社,1996年.
    [109]Hanssen J E, Dalland M. Foams for Effective Gas Blockage in the Presence of Crude Oil[C]. SPE 20193.
    [110]Elson, T.D.,& Marsden, S.S., Jr. The Effectiveness of Foaming Agents at Elevated Temperature over Extended Periods of Time[C]. SPE 7116.
    [111]Chiang, J.C., Sawyal, K. Castanier, L.M., Brigham, W.E.& Sufi. A. Foam as a Mobility Control Agent in Steam-Injection Processes[C]. SPE 8912.
    [112]Dilgren, R.E. Deemer, A.R.& Owens, K.B. The Laboratory Development and Field Testing of Steam/Non-Condensable Gas Foams for Mobility Control in Heavy Oil[C]. SPE 10774.
    [113]Duerksen, J.H. Laboratory Study of Foaming Surfactants as Steam-Diverting Additives[C]. SPE 12785.
    [114]M. Kasraie, S.M. Farouq Ali. Role of Foam, Non-Newtonian Flow, and Thermal Upgrading in Steam Injection[C]. SPE 18784.
    [115]J,E, Hanssen. A New Method for Testing of Gas-Blocking Foams[C]. SPE/DOE 17362.
    [116]W.T. Osterioh, M.J. Jante Jr.. Evaluation of Tall Clil Fatty Acid Salt as a Steam/Foam Surfactant[C]. SPE/DOE 27776.
    [117]Shen Chen. Profile Control Technology of Thermal Recovery in Shengli Oilfield[C]. SPE 50120.
    [118]H.M, Muijs, P.P.M. Keijzer, R,J. Wiersma. Surfactants for Mobility Control in High-Temperature Steam-Foam Applications[C]. SPE/DOE 17361.
    [119]张继芬,张明国,刘中春等.提高石油采收率基础[M].北京:石油工业出版社,1997,21-22.
    [120]蔡平雄,徐志刚,张成芳.三聚氰胺生产技术和市场展望[J].化肥设计,2000,38(6):8-11.
    [121]王国祥.三聚氰胺生产工艺综合比较[J].化肥工业,2003,31(4):18-22.
    [122]李艳红,王升宝,常丽萍.饱和蒸汽压测定方法的评述[J].煤化学,2006,126:44-47.
    [123]赵兴民.由正常沸点估算烃类物质的蒸汽压[J].天津大学学报,1993,6:131-135.
    [124]韩金玉,肖剑,王华等.紫杉醇溶解度的测定与关联[J].化工学报,2001,52(1):64-67.
    [125]Chapman R P, Averell P R, Harris R R. Solubility of Melamine in Water[J]. Industrial and Engineering Chemistry,1943,35(2):137-138.
    [126]李俊山,孙军,张大龙.估算橡胶助剂溶解度参数用基团贡献值的研究[J].橡胶工业,1 995,42(7):393-395.
    [127]李俊山,孙军,张大龙.橡胶助剂的溶解度参数[J].橡胶工业,1995,42(8):455-465.
    [128]汪家铭.我国三聚氰胺发展概况及市场前景[J].化工设计通讯,2008,34(2):15-22.
    [129]Hyne JB. Aquathermolysis-A synopsis work on the chemical reaction between water(steam) and heavy oil sands during simulated stimulation. Synopsis Report No.50, 1986,AOSTRA.
    [130]Clark PD, Hyne JB. Steam-Oil Chemical Reactions:Mechanism for the Aquathermolysis of Heavy Oils[J]. AOSTRA Journal of Research,1984, 1(1):15-20.
    [131]Clark PD, Hyne JB. Studies on the chemical reactions of heavy oils under steam stimulation condition[J]. AOSTRA Journal of Research,1990,6(1):29-39.
    [132]Chakma A, Dawson W. Heavy oil upgrading using halide catalysts in a bubbling microautoclave[C]. In:195th ACS Natl Meet (3rd Chem Cong.) 1988:5-6.
    [133]Cesar Ovalles, Jorge Martinis, Alfredoperez-perez et al. Physical and numerical simulation of an extra-heavy crude oil downhole upgrading process use hydrogen donors under cyclic steam injection conditions[J]. SPE69561.
    [134]Cesar 0. Extra-heavy crude oil downhole upgrading process using hydrogen donor under steam injection conditions[J]. SPE 69692.
    [135]Carlos V. Downhole Upgrading of extra-heavy crude oil using hydrogen donor and methane under steam injection condition [J]. Preprints,2000,45(4):591-594.
    [136]Yongjian Liu and Hongfu Fan. The effect of hydrogen donor additive on the viscosity of heavy oil during steam stimulation[J]. Energy & Fuel 2001,15(6),1475-1479.
    [137]王惠等.碳源甲基苯热裂解机理的密度泛函动力学研究[J].化学学报,2001,59(1):17-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700