用户名: 密码: 验证码:
弱吸收镉大白菜品种的筛选及施肥对镉吸收累积的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大白菜是我国尤其是我国北方人喜爱的叶菜类蔬菜之一,在长期的自然选择和人工培育过程中,积累了丰富的品种资源。但是人为因素造成的城郊区农田、菜地镉污染日益严重,对人类的健康构成了潜在威胁。因此筛选低累积镉的大白菜品种,能为蔬菜的安全生产提供保障。研究证实,植物对镉的吸收、累积量与环境中镉的有效性相关,因此可以结合农艺措施降低镉在大白菜体内的含量。本论文利用温室水培模式,研究不同基因型大白菜对镉的耐性差异,筛选低累积镉的大白菜品种。然后采用温室盆栽试验,初步研究了不同施肥措施在降低低累积品种大白菜体内镉含量的效应。论文取得的主要结果如下:
     1.在含镉营养液培养条件下,筛选出了超累积镉的大白菜品种6。在0.6mg/L和1.0mg/L的镉浓度下,其地上部生物量分别为10.12g/plant和9.55g/plant,对应的耐性指数分别为115%和103%。在0.6mg/L和1.0mg/L的镉浓度下,其地上部和地下部的总镉累积量分别为3337.16μg/plant和4285.27μg/plant。这些参数都显著高于其他品种,所以品种6可作为超累积镉品种用于修复镉污染土壤
     2.筛选出了镉耐性较强且低累积镉的大白菜品种16和21,其地上部的镉含量,在0.6mg/L的镉浓度下分别为171.52mg/kg和173.53mg/kg,在1.0mg/L的镉浓度下分别为219.95mg/kg和285.73mg/kg,都显著低于其他品种。而且这两个品种的生物量相对较高,体内镉转运效率又处于较低水平,所以是比较理想的弱吸收镉大白菜品种,适合用于低中度镉污染土壤,结合合理施肥措施来保证蔬菜食品的安全。
     3.两个镉水平处理下,不同品种的大白菜地上部和地下部微量营养元素的含量表现出不同程度的变化。在1.0mg/kg镉浓度下,超累积镉品种6地上部对Fe、Mn、Cu和Zn四种营养元素的吸收受到了不同程度的抑制,其他品种表现不一。镉处理能降低大白菜地上部对Mn的吸收,促进所有品种地下部和大部分品种地上部对Cu的吸收,以及促进除品种6外所有品种对地上部Zn的吸收。可见镉处理对大白菜地上部Mn的吸收有拮抗作用,对地下部Cu的吸收和地上部Zn的吸收有协同作用。
     4.盆栽试验结果表明,单施有机肥能显著促进大白菜的生长,主要表现在提高大白菜地上部生物量上:在二级和三级镉污染土壤上,单施有机肥使品种16的鲜重分别提高了9倍和5倍,且有机肥的这种提升作用要明显优于钙镁磷肥。单施有机肥和钙镁磷肥能显著抑制土壤镉向大白菜地上部的转移,降低大白菜可食部分的镉含量:在二级和三级镉污染土壤中,单施有机肥和钙镁磷肥可分别降低大白菜地上部镉含量的65%和42%左右。有机肥和钙镁磷肥均能有效降低土壤有效态镉,与对照相比,钙镁磷肥和有机肥最高可分别降低37%和26%的土壤有效镉含量。
Chinese cabbage (Brassica campestris L. ssp. Pekinensis) is one of favorite leafy vegetables in China, especially Northern China. There were abundant genotypes available after long-term natural selection and artificial breeding process. However, the pollution of suburb farmland and vegetable field was becoming more and more serious by human’s activities. Vegetable plantation on these contaminated soils would significantly threat to human health. Therefore, the selection of Chinese cabbage cultivars with low cadmium(Cd) accumulation in their edible part would be effective approaches to food security. It has been confirmed that the effectiveness of Cd in environment may influence Cd absorption and accumulation in plants. It would thus be beneficial to reduce Cd uptake and accumulation in Chinese cabbage by agronomic practices. In this study, cultivation experiments were carried out to study the Cd tolerance of 21 kinds of Chinese cabbage cultivars. Cultivars with lower uptake and accumulation of Cd would be recommended for the farmers. Meanwhile, greenhouse pot experiment was also conducted to investigate the effect of various fertilization practices on reducing the Cd uptake of the low accumulation Chinese cabbage cultivars. The major results were summarized as follows:
     1. The results showed that No.6 of the Chinese cabbage cultivar had the highest accumulation potential of Cd under nutrient solution culture. At 0.6mg/kg and 1.0mg/kg Cd levels, the above-ground biomass (dry base) of No.6 was 10.12g/plant and 9.55g/plant, respectively. The corresponding tolerant index was 115% and 103%, respectively. The total amount of accumulated Cd in plants, including the above and under-ground biomass were 3337.16μg/plant for the 0.6 mg/L Cd-treated and 4285.27μg/plant for the 1.0 mg/L Cd treated. All of its indices were the highest of all cultivars. It suggested that No.6 cultivar had great restoration potential for heavy mentals contiminations.
     2. No.16 and No.21 Chinese cabbage cultivars with low Cd accumulation and high Cd tolerance index were selected out from 21 varieties of Chinese cabbage. The results showed that Cd contents in above-ground shoots of No.16 and No.21 were 171.52mg/kg and 173.53mg/kg respectively at 0.6mg/kg Cd level, whereas it were 219.95mg/kg and 285.73mg/kg respectively at 1.0mg/kg Cd level. All these indices were significantly lower than that of others. Above-ground biomass and the Cd tolerance index of No.16 and No.21 were higher than that of most other varieties, while Cd transportation efficiency was at a low level. Therefore, these two cultivars could be recommended to farmers as low Cd accumulation Chinese cabbage varieties. Combined with rational agronomic measures, No.16 and No.21 could be cultivated in the contaminated soil with a low and middle Cd levels to meet the national food security standards.
     3. Contents of micro-nutrient-element in shoots and roots of different Chinese cabbage cultivars changed at 0.6mg/kg and 1.0mg/kg Cd concentration. However, the tendency differed between cultivars. For Cd hyperaccumulator No.6, Fe, Mn, Cu and Zn absorptions of above-ground part were inhibited in varying degrees at 1.0mg/kg Cd concentration. However, this kind of response varied among the other cultivars. Cd treatment could restrained Mn absorption of shoots, and promoted Cu absorption of all cultivars’roots and most cultivars’shoots, and also promoted Zn absorption of all cultivars’shoots, except for No.6. These results suggested that there was an antagonistic action between Cd and Mn in shoots, and a synergistic action between Cd and Cu, Cd and Zn in shoots of Chinese cabbage.
     4. Pot experiment showed that fresh biomass of No.16 increased by 9 and 5 times after the application of manure on the second and third class soils of Cd contamination compared with control treatment. The increasing effect of manure was better than that of calcium magnesium phosphate. Applications of manure and calcium magnesium phosphate could significantly reduce the Cd uptake and reduce Cd content in edible shoots of Chinese cabbage. Compared with the control, manure application reduced Cd contents in shoots by as much as 65% and 42% on the second and third class soils of Cd contamination. The reason was that both manure and calcium magnesium phosphate reduced soil available Cd. Compared with the control, soil available Cd was significantly reduced by 37% with calcium magnesium phosphate application, and 26% with manure application.
引文
[1]徐明岗,梁国庆,张夫道,等.中国土壤肥力演变[M].北京:中国农业科学技术出版社, 2006: 1-2.
    [2]陈怀满.土壤—植物系统中的重金属污染[M].北京:科学出版社, 1996: 71-125.
    [3]牛一乐,刘云国,路培,等.中国矿山生态破坏现状及治理技术研究进展[J].环境科学与管理, 2005, 30(5): 59-61.
    [4]中国农业持续发展和综合生产力研究组.中国农业持续发展和综合生产力研究[M].济南:山东科技出版社, 1995. 306-307.
    [5]沈振荣,汪林,于福亮,等.节水新新概念[M].北京:中国水利水电出版社, 2000: 56-63
    [6]茹淑华,孙世友,王凌,等.蔬菜重金属污染现状、污染来源及防治措施[J].河北农业科学, 2006, 10(3): 88-91.
    [7]唐书源,李传义,张鹏程,等.重庆蔬菜的重金属污染调查[J].安全与环境学报, 2003, 3(6): 74-75.
    [8]李其林,刘光德,黄昀,等.蔬菜中重金属特征研究[J].有机农业与食品科学, 2004, 20(3): 40-44.
    [9]周根娣,汪雅谷,卢善玲.上海市农畜产品有害物质残留调查[J].上海农学报, 1994, 10(2): 45-48.
    [10]周艺敏,张金盛,任顺荣.天津市农田土壤和几种蔬菜中重金属含量状况的调查研究[J].农业环境保护, 1990, 9(6): 30-34.
    [11]陈桂芬,黄武杰,张丽明,等.南宁市菜地土壤及蔬菜重金属污染状况调查与评价[J].广西农业科学, 2004, 35(5): 389-392.
    [12]李秀兰,胡雪峰.上海郊区蔬菜重金属污染现状及累积规律研究[J].化学工程师, 2005, 116(5): 36-38, 59.
    [13]李英能.我国节水灌溉的现状与发展[J].水利水电科技进展, 1998, 18(1): 2-7.
    [14]杨肖娥,杨明杰.镉从农业土壤向人类食物链的迁移[J].广东微量元素科学, 1996, 3(7): 1-13.
    [15] Kobayashi J. Pollution by cadmium and the itai-itai disease in Japan[J]. In Toxicity of Heavy Metals in the Environment, Eds, Oehme F. W. , New York: Marcel Dekker, 1978: 199-260.
    [16]刘兆荣,陈忠明,赵广英,等.环境化学教程[M].化学工业出版社, 2003: 216.
    [17]崔玉静,黄益宗,朱永官.镉对人类健康的危害及其影响因子的研究进展[J].卫生研究, 2006, 35(5): 656-659.
    [18]任继平,李德发,张丽英.镉毒性研究进展[J].动物营养学报, 2003, 15(1): 1-6.
    [19]祖艳群,李元.土壤重金属污染的植物修复技术[J].云南环境科学, 2003, 22(增刊): 58-61.
    [20]张青,李菊梅,徐明岗,等.改良剂对复合污染红壤中镉锌有效性的影响及机理[J].农业环境科学学报2006, 25(4): 861-865.
    [21]苏年华,张金彪.福建省土壤重金属污染及其评价[J].福建农业大学学报(自然科学版), 1994, 23(4): 434-439.
    [22]王松良.芸苔属蔬菜重金属累积特性及抗Cd基因的差异表达与克隆[D].福州:福建农林大学, 2004.
    [23] Facchinelli A, Sacchi E, Mallen L. Multivariate statistical and GISbased approach to identify heavy metal sources in soils [J]. Environmental Pollution. 2001, 114.
    [24]沈明珠,孔再德.北京地区烟尘污染对蔬菜的影响[J].农业环境保护, 1987, 6(4): 1-6.
    [25]张金彪,柯玉琴,黄维南. Cd胁迫对草莓叶片膜脂质过氧化和脱落酸含量的影响[J].亚热带农业研究, 2009, 5(4): 242-246.
    [26] Ivonin VM, Shumakova GE. Effect of industrial pollution on the condition of roaside sheherbelts [J]. Izvestiya Vysshikh Uchebnykh Zavedenii, 1991, (6): 12-17.
    [27] Williams CH, David DJ. The effect of superphosphate on the cadmium content of soils and plants[J]. Australian Journal of Soil Research, 1973, 11: 43-56.
    [28]梁家妮,马友华,周静.土壤重金属污染现状与修复技术研究[J].农业环境与发展, 2009, 28(4): 45-49.
    [29]佟洪金,涂仕华,赵秀兰.土壤重金属污染的治理措施[J].西南农业学报, 2003, 16(增刊): 33-37.
    [30]王宏康.日本公害发源地的今天[J].农业环境保护, 1999(6): 268-271.
    [31] Hanson A, David T, Sabatin A. Transport and remediation of subsurface contaminants[M]. Washington D C: American Chemical Society, 1992. 108-120.
    [32]夏星辉.土壤重金属污染治理方法研究进展[J].环境科学, 1997, (3): 72-76
    [33] Sav H, Christopher J. Intergrated in situ soil remediation technology: The Lasagna Process[J]. Environmental Science & Technology, 1995, 29: 2528-2534.
    [34]罗强,任永波,郑传刚.土壤重金属污染及防治措施[J].世界科技研究与发展, 2004, 26(2): 42-46.
    [35] Calyvez LA. Science technologie de france[J]. Numero Special Environment, 1994, (1): 30.
    [36] Wang xiaojing, et al. Simultaneous complexation of organitical Compounds and Heavy Metals by a Modified Cyclodextrin [J]. Environmental Science & Technology, 1995,29(2): 632-635.
    [37] Rose Michael V, eta1. Mercury Clean up: the Commerical Application of a new Mercury Removal[J]. Remediation Summer, 1995(3): 89-101.
    [38]宋静,朱荫湄.土壤重金属污染修复技术[J].农业环境保护, 1998, 17(6): 271-273.
    [39] Parker Susan. Moving is not solving: Surey says sandfilling is still number one[J]. Soils, 1993, Mar: 41.
    [40] Buelt James L, Parnsworth Richard K. In situ vitrification of soils containing various metals[J]. Nuclear Technology, 1992: Nov: 178.
    [41] Manahan Stanley E. Environmental Chemistry. 5th ed. 1991: 472-478.
    [42]顾红,李建东,赵煊赫.土壤重金属污染防治技术研究进展[J].中国农学通报, 2005, 21(8): 397-408.
    [43]吴藉玉,陈诗,事书鼎.张士灌区铺圬染综合防浩技术的研究[J].中国环境科学, 1985, 5(3): 1-7.
    [44]李永涛,吴启堂.土壤污染治理方法研究[J].农业环境保护, 1997, 16(8): 118-122.
    [45]高粱.土壤污染及其防治措施[J].农业环境保护, 1992, (11): 272-273.
    [46]杨超光,豆虎,梁永超,等.硅对土壤外源镉活性和玉米吸收镉的影响[J].中国农业科学, 2005, 38 (1): 116-121.
    [47]刘哲民.宝鸡土壤重金属污染及其防治[J].干旱区资源与环境, 2005, 19(2): 101-104.
    [48]华珞,陈世宝,白玲玉,等.有机肥对镉锌污染土壤的改良效应[J].农业环境保护, 1998, 17(2): 55-59, 62.
    [49]熊礼明.施肥与植物的重金属吸收[J].农业环境保护, 1993, l2(5): 217-222.
    [50]张茜,徐明岗,张文菊,等.磷酸盐和石灰对污染红壤与黄泥土中重金属铜锌的钝化作用[J].生态环境, 2008, 17(3): 1037-1041.
    [51]陈苗苗,张桂银,徐明岗,等.不同磷酸盐下红壤对镉离子的吸附-解吸特征[J].农业环境科学学报, 2009, 28(8): 1578-l584.
    [52]周世伟,徐明岗.磷酸盐修复重金属物污染土壤的研究进展[J].生态学报, 2007, 27(7): 3043-3050.
    [53]陈晓婷,王果,梁志超,等.钙镁磷肥和硅肥对Cd、Pb、Zn污染土壤上小白菜生长和元素吸收的影响[J].福建农林太学学报(自然科学版)2002, 31(1): 109-112.
    [54]俄胜哲,杨思存,崔云玲,等.我国土壤重金属污染现状及生物修复技术研究进展[J]. Journal of Anhui Agri. Sci. 2009, 37(19): 9104-9106.
    [55]牛晓君.重金属污染土壤的生物修复研究[J].环境科学与技术. 2009, 32(6C): 150-153.
    [56]唐世荣.污染环境植物修复的原理与方法[M].北京:科学出版社, 2006: 40-60, 174.
    [57]沈振国,刘友良.超累积重金属植物研究进展[J].植物生理学通讯, 1998, 34(2):133-139.
    [58] Moffat AS. Plant proving their worth in toxic metal cleanup[J]. Science, 1995, 269: 302-303.
    [59]骆永明.金属污染土壤的植物修复[J].土壤, 1999, 31(5): 261-265.
    [60]董悦,刘晓群,李翠兰,等.土壤重金属污染研究进展[J].现代农业科技, 2009, (4): 143-145.
    [61]韦朝阳,陈同斌.重金属超富积植物及植物修复技术研究进展[J].生态学报, 2001, 21(7): 1197-1203.
    [62] Nolman T, Gary B. Phytoremediation of contaminated. Soil and water. Lwis Publishers, 2002, 87. pp.
    [63] Baker AJM, Brooks RR, Pease AJ, et a1. Studies on copper and cobalt tolerance in three closely related taxa within the genus Silence L. (Caryophyllaceae) from Zaire[J]. Plant and Soil, 1983, 73(3): 377-385.
    [64] Baker AJM, Brooks RR. Terrestrial higher plants which hyperaccumulate metallic elements-A review of their distribution, ecology and phytochemistry[J]. Biorecovery, 1989, 1: 81-126.
    [65] Flathman PE, Lanza GR. Phytoremediation: current views on an emerging green technology[J]. Joumal of Soil Contamination, 1998, (7): 415-432.
    [66]庞玉建,宗浩.重金属超累积植物的研究进展[J].四川环境, 2008, 27(2): 79-84.
    [67] Cunningham SDOwDW. Promises and prospects of phytoremediation[J]. Plant physiology, 1996, (110): 715-716.
    [68]陈同斌,韦朝阳,黄泽春,等.华南的一些砷超集累植物种类[A].国际会议中关于土壤修复的研究进展[C].杭州:杭州出版社, 2000, 194-195.
    [69]杨肖娥,龙新宪,倪吾钟,等.东南景天——一种新的锌超富集植物[J].科学通报, 2002, 47(13): 1003-1007.
    [70]韦朝阳,陈同斌,黄泽春,等.大叶井口边草——一种新发现的富集砷的植物[J].生态学报, 2002, 22(5): 777-778.
    [71]薛生国,陈英旭,林琦,等.中国首次发现的锰超累积植物——商陆[J].生态学报, 2003, 23(5): 935-937.
    [72]刘威,束文圣,蓝崇钰.宝山堇菜(Viola baoshanensis)——一种新的镉超富集植物[J].科学通报, 2003, 48(19): 2046-2049.
    [73]魏树和,周启星,王新,等.一种新发现的镉超累积植物龙葵(Solanum nigrum L)[J].科学通报, 2004, 49(24): 2568-2573.
    [74]王激清,茹淑华,苏德纯.氮肥形态和螯合剂对印度芥菜和高累积镉油菜吸收镉的影响[J].农业环境科学学报, 2004, 23(4): 625-629.
    [75]王激清,张宝悦,苏德纯.修复镉污染土壤的油菜品种的筛选及吸收累积特征研究—高累积镉油菜品种的筛选(I) [J].河北北方学院学报, 2005, 21(1): 58-61.
    [76]王松良,郑金贵.芸苔属蔬菜的Cd富集特性及其修复土壤Cd污染的潜力[J].福建农林大学学报(自然科学版), 2004, 33(1): 94-99.
    [77]范洪黎.览菜超累积镐的生理机制研究[D].北京:中国农业科学院, 2007.
    [78]华珞,白铃玉,韦东普,等.有机肥-镉-锌交互作用对土壤镉锌形态和小麦生长的影响[J].中国环境科学, 2002, 22(4): 346~350.
    [79]贾学萍.土壤重金属污染的来源及改良措施[J].现代农业科技, 2007, 9: 197-199.
    [80]张贵龙,任天志,郝桂娟,等.生物修复重金属污染土壤的研究进展[J].化工环保, 2007, 27(4): 328-333.
    [81]张福锁,等.植物营养生态生理学和遗传学.北京:中国科学技术出版社. 1993.
    [82] Wagner GJ. Cadmium in crops and effects on human health. Advances in Agronomy, 1993, 51: 173-212.
    [83]刘志华,伊晓云,王火焰,等.不同品种大白菜苗期吸收累积镉的差异研究.土壤学报, 2008, 45(5): 987-993.
    [84]李德明.白菜镉累积及生理的研究[D].杭州:浙江大学, 2004.
    [85]井彩巧.不同基因型大白菜镉和铅含量差异研究[J].园艺学报, 2006, 33(2): 402-404.
    [86]纳明亮,张建新,徐明岗,等.石灰对土壤中Cu、Zn污染的钝化及对蔬菜安全性的影响[J].监测分析,农业环境与发展, 2008, (2): 105-108.
    [87]李坤权,刘建国,陆小龙,等.水稻不同品种对镉吸收及分配的差异[J].农业环境科学学报, 2003, 22(5): 529-532.
    [88] CuiYJ, ZhuYG, ZhaiRH, et al. Transfer of metals from soilto vegetables in an area near a smelter in Nanning, China[J]. Environmental International, 2004, 30: 785-791.
    [89]陈玉成,赵中金,孙彭寿,等.重庆市土壤蔬菜系统中重金属的分布特征及其化学调控研宄[J].农业环境科学学报, 2003, 22(1): 44-47.
    [90]薛艳,沈振国,周东美.蔬菜对土壤重金属吸收的差异与机理[J].土壤, 2005, 37(1): 32-36.
    [91]苏德纯,黄焕忠,张福锁.印度芥菜对土壤中难溶态Cd的吸收及活化[J].中国环境科学, 2002, 22(4): 342-345.
    [92] Baker AJM, MeGrath SP, Reeves RD, et al. Metal hyperaccumulator plants: A review of the ecoloy and physiology of a biochemical resource for phytoremediation of metal-polluted soils. In: Terry N, Banuelos G, eds. Phytoremediation of Contaminated soil and water. Florida: Lewis publishers, 2000, 85-107.
    [93]刘士哲.现代实用无土栽培技术[M].北京:中国农业出版社, 2001: 33.
    [94]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社, 2000: 156-243.
    [95] Metwally A, Safronova VI, Belimov AA, et a1. Genotypic variation of the response to cadmium toxicity in Pisum sativum L[J]. Journal of Experimental Botany, 2005, 56: 167 -178.
    [96]方晓航,曾晓雯,于方明,等. Cd胁迫对白菜生理特征及元素吸收的影响研究[J].农业环境科学学报, 2006, 25(1): 25-29.
    [97]孙光闻,朱祝军,方学智.不同镉水平对白菜生长及抗氧化酶活性的影响[J].园艺学报, 2004, 31(3): 378-380.
    [98]张金彪,陈玉森,黄维南,等. Cd污染对草莓生长的影响[J].福建农业大学学报, 2001, 30(4): 528—531.
    [99]刘志华,伊晓云,曾其龙,等.低浓度镉对大白菜苗期生长及营养元素吸收累积的影响研究[J].土壤(Soils), 2008, 40(4): 630-634.
    [100] Verma S, Dubey RS. Efiect of cadmium on soluble sugars and enzymes of their metabolismin rice[J]. Biologia Plantarum, 2001, 44: 117-123.
    [101] Gussarson M, Asp H, Adalateeinsson S, et a1. Enhancement of cadmium effects on growth and nutrient composition of birch((Betula pendula) by buthionine sulphoximine(BSO). Journal of Experimental Botany, 1996, 47: 211-215.
    [102] Zhang GP, Fukami M, Sekimoto H. Influence of cadmium on mineral concentrations and yield components in wheat genotypes differing in Cd tolerance at seedling stage[J]. Field Crop Research, 2002, 77: 93-98.
    [103] Liu JG, Liang JS, LKQ, et al. Correlation between cadmium and mineral nutrients in absorption and accumulation in various genotypes of rice under cadmium stress[J]. Chemosphere, 2003, 52: l 467-1 473.
    [104]李景梅,葛建镕,冯耀勇,等.不同镉水平对菠菜生长及营养元素含量的影响[J].长春理工大学学报(自然科学版), 2007, 30(4): 72-75.
    [105]郭智,原海燕,奥岩松.镉胁迫对龙葵幼苗光和特性和营养元素吸收的影响[J].生态环境学报, 2009, 18(3): 824-829.
    [106]张金彪,黄维南,陈玉森,等.福建省耕地土壤重金属含量和可浸提性研究[J].应用生态学报, 2003, 14(2): 273-276.
    [107] Bolan NS, Adriano DC, et a1. Effects of organic amendments on the reduction and phytoavailability of chromate in mineral soil[J]. Journal of Environmental Quality, 2003, 32(1): 120-128.
    [108]徐明岗,张青,曾希柏.改良剂对黄泥土镉锌复合污染修复效应与机理研究[J].环境科学, 2007, 28(6): 1361-1366.
    [109]李瑞美,方玲,王果,等.重金属污染土壤的有机-中性化修复技术试验[J].福建农业学报, 2004, 19(1): 50-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700