用户名: 密码: 验证码:
柔性互穿聚合物网络黏合剂的研制及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
涂料印染因其工艺流程简单、低碳和环保等优点而得到了广泛的应用,但是涂料印染还存在着印染织物手感和摩擦牢度的矛盾。涂料印染黏合剂的性能是决定涂料印染质量的主要因素。互穿聚合物网络是由两种或两种以上的共混聚合物,分子链相互贯穿,并至少有一种聚合物分子链以化学键的方式交联而形成的网络结构。由于互穿聚合物网络形态结构的特点和两相之间贯穿,其力学性能也存在一些独特之处,利用互穿聚合物网络技术改善涂料印花黏合剂的性能也具有重要的意义。
     论文首先制备具有第一网络结构的聚丙烯酸酯乳液,该乳液能在低温固化成膜,应用于织物涂料印染,手感柔软;其次选择线性大分子聚乙烯醇(PVA)和交联单体乙二醛(Glyoxal)为形成第二网络的组分;最后把具有第一网络结构的聚丙烯酸酯乳液和PVA、乙二醛混合,在一定条件下PVA、乙二醛交联并与第一网络随机互穿,形成互穿网络聚合物膜。
     (1)以丙烯酸正丁酯(n-BA)、甲基丙烯酸甲酯(MMA)、丙烯酸异辛酯(2-AEH)、苯乙烯(St)为共聚单体,双官能团的单体为交联单体,十二烷基硫酸钠(SDS)、辛基酚聚氧乙烯醚(TX-30)为复合乳化剂,a-甲基丙烯酸(MAA)为助乳化剂,过硫酸铵(APS)为引发剂,微乳液聚合制备了具有第一网络结构的聚丙烯酸酯乳液。用表面张力仪和Zetasizer Nano粒度仪进行了表征,研究了复合乳化剂的量与质量比、助乳化剂的量和反应温度对微乳液粒径、Zeta电位、转化率和稳定性的影响。结果表明,SDS与TX-30复配质量比为1:2,且量为体系总质量的3.0-3.5wt%;MAA的用量为单体总质量的5wt%,反应温度为75-80℃,制得的微乳液单体转化率达96%,聚合物乳液较稳定。
     (2)制备具有第一网络结构的聚丙烯酸酯乳液,在基本配方中改变交联单体在共聚单体中的比例。研究了交联单体种类及交联单体在共聚单体中的含量对聚合物膜的外观、力学性能、Tg和表面形貌的影响。用强力仪、DSC和扫描探针显微镜进行了表征。研究结果表明:
     (a)不加交联单体和加入较多交联单体,乳液的成膜性能均不好,交联单体在共聚单体中质量比为2wt%左右时,成膜性能最好。
     (b)交联单体在共聚单体中含有相同比例时,选择分子链相对较长的交联单体A,在应力-应变曲线上,聚合物膜在应变250%之前,能保持较小的应力不变;而选择分子链相对较短的交联单体B,应力随应变一直在线性增加。根据实验设计要求,实验选择交联单体A。
     (c)共聚单体中加入交联单体A的比例在1-5wt%之间逐渐增加时,聚合物膜的Tg也升高。当共聚单体中A含量超过5wt%后,聚合物膜的Tg却几乎不变。
     (d)扫描分子探针对聚合物胶膜表面形貌及粗糙度的观测表明,交联单体在共聚单体中比例增加,其聚合物膜的表面粗糙度也增加。
     (3)以制备的具有第一网络结构的聚丙烯酸酯乳液为组分Ⅰ(AⅠ),聚乙烯醇-乙二醛体系为组分Ⅱ(AⅡ),制备互穿聚合物网络膜。研究了AⅠ中交联单体的比例、AⅠ和AⅡ的比例以及膜的焙烘温度等对互穿网络聚合物膜的力学性能、吸水率、溶失率和Tg的影响。用红外光谱仪、强力仪和DSC等进行了表征。研究结果表明:
     (a)在AⅠ中,加入适量交联单体,能使第一网络膜在应变250%之前,应力基本保持不变,应变250%之后,应力急剧上升。说明,第一网络膜柔软,但强度不够。形成的第一网络交联密度小,网格大,才能有利于第二网络互穿。
     (b)形成互穿聚合物网络膜后,在应变约250%之前,应力随应变基本保持不变,应变在250%之后,应力也快速升高,但比之第一网络膜应变250%后的应力变化要小。说明,互穿聚合物网络膜既保持了第一网络膜的柔软,同时也增加了膜的“韧性”。
     (c)形成互穿聚合物网络膜后,膜的吸水率、溶失率降低。
     (d)AⅠ中交联单体含量为2%,AⅡ组分中m(PVA):m(Glyoxal)为1:0.2-1:0.4,m (AⅡ)/m(AⅠ)为1-3wt%,互穿网络聚合物膜的综合性能最佳。
     (4)以AⅠ和AⅡ为涂料印染黏合剂,按照涂料印染配方制备印染涂料。研究了AⅠ组分中交联单体含量、AⅡ组分中PVA、乙二醛的质量比、AⅠ和AⅡ组分之间比例、焙烘温度等条件对织物印染性能的影响。研究结果表明:AⅠ组分中交联单体含量为2-3wt%,AⅡ组分中m(PVA):m(Glyoxal)为1:0.2,m (AⅡ)/m(A1)为2wt%,m(AⅠ+AⅡ)为印花色浆的15wt%,于120℃焙烘3min,织物涂料印染的综合性能最好。
     (5)以苯乙烯、丙烯酸正丁酯和a-甲基丙烯酸为单体,二乙烯基苯为交联单体,辛基酚聚氧乙烯醚(TX-30)和十二烷基磺酸钠为复合乳化剂,过硫酸铵(APS)为引发剂,通过乳液聚合制备了聚丙烯酸酯反应性微凝胶。把微凝胶加入到涂料印染黏合剂中,研究了微凝胶对黏合剂的流变性能、流平性、力学性能和涂料印染性能的影响。用红外光谱仪表征了微凝胶的结构,透射电镜表征了微凝胶的粒子形态,流变仪表征了涂料印染黏合剂的流变性,摩擦色牢度测试仪表征了涂料印花的色牢度,强力仪表征了黏合剂胶膜的力学性能。研究结果表明:微凝胶加入涂料印染黏合剂中能改善黏合剂的触变性、流平性和力学性能,提高涂料印染的质量。
With its low-carbon, environmental-friendly and simple process, coating printing has been widely used in dyeing of cotton. However, rubbing fastness of dyeing fabric is dissatisfied, and the hand feeling of dyeing fabric is hard. The main factor which determines the coating quality is the performance of coating dyeing adhesive. Interpenetrating polymer network is composed of two or more kinds of polymer blends, the molecular chain interconnected, and at least one polymer chain formed cross-linked network structure with chemical bonds. Because of interpenetrating polymer network structure characteristics and interconnected phases, it also has some unique mechanical properties. Therefore, using interpenetrating polymer network technology has important significance to improve performance of adhesive.
     According to the requirements of the adhesive coating printing, polyacrylate microemulsion latex with the first network structure was first prepared. This emulsion can cure to film at low temperature, which can be applied to fabric printing and dyeing. As a result, the soft fabric was obtained. To solve the first network film's problem of low friction fastness, adding linear macromolecules of PVA and glyoxal cross-linking monomer composition of the second component was designed. PVA and glyoxal cross-link between each other, and interpenetrate with the first network, therefore, interpenetrating polymer network membranes was formed.
     (1) Polyacrylate emulsion with first network structure was prepared by the way of micro-emulsion polymerization using n-butyl acrylatestyrene (n-BA), methyl methacrylate (MMA), iso-octyl acrylate (2-AEH), styrene (St) as comonomer, bifunctional monomer as crosslinking monomer. Sodium dodecyl sulfate (SDS), polyoxyethylene octylphenol ether (TX-30) as emulsifier, a-methacrylic acid (MAA) as the emulsifier and ammonium persulfate (APS) as initiator. The amount of emulsifier, the mass ratio of monomers, the amount of assistant emulsifier and reaction temperature impacted on the micro-emulsion particle size, Zeta potential, conversion rate and stability were studied by surface tension meter and Zetasizer Nano particle size analyzer. The results showed that when the mass ratio of SDS to TX-30was1:2(the amount was3.0-3.5wt%for the total latex system), the amount of MAA monomer was5wt%for the total monomer mass, the reaction temperature was75-80℃, the monomer conversion of microgel emulsion could reach96%, and the prepared polymer latex was stable.
     (2)Series of polyacrylate emulsion with the first network structure which changed proportion of cross-linking monomer in the comonomer were prepared. The effect of cross-linking monomer type and content in copolymer monomer on the appearance, mechanical properties, Tg and surface morphologies of the prepared polymer films were studied by using strength tester, DSC and scanning probe microscope. The results as below,
     (a) Adding more cross-linking monomer or nothing, the film-forming properties of the prepared films were poor. When the mass ratio of cross-linking monomer in the comonomer was about2wt%, the film-forming properties of the prepared films were the best.
     (b) When proportion of cross-linking monomer was the same in the comonomer, chosen cross-linking monomer A which has relatively long molecular chains. In the stress-strain curve, before strain reached250%, it could maintain the less stress and not changed. However, when chosen cross-linking monomer B with relatively short molecular chains. Stress raised in the uniform linear with strain. According to the experimental design, the cross-linking monomer A was chosen in the experiments
     (c) As the content of cross-linking monomer A increased form1to5wt%in the co-monomers, the Tg of the prepared polymer membrane was also increased, however, when the content of cross-linking monomer A was added above5wt%, the Tg of the polymer film was not increased.
     (d) The observation of the polymer film surface morphology and roughness with scanning molecules probe indicated that, as the content of cross-linking monomer in the comonomer increased, the roughness of the polymer membrane also increased.
     (3)The interpenetrating polymer network membranes were prepared by polyacrylate emulsion with the first network structure as component Ⅰ (AⅠ) and polyvinyl alcohol-glyoxal system as component Ⅱ (AⅡ). The effects of the content of cross-linking monomer in AⅠ, the ratio of AⅠ to AⅡ, curing temperature of membranes, etceteras on the mechanical properties, water absorption, dissolution-loss rate and Tg of the IPNs film were studied and characterized by infrared spectrometer, strength tester and DSC. The results showed that:
     (a) Adding appropriate cross-linking monomer into A I made the stress of the film remaining basically unchanged before strain250%and the stress increasing dramatically after250%, the results shows that the first network membrane was flexible, but strength was not enough. In addition, the small density and large grid of first network membrane could be conducive to the second network interpenetrating.
     (b) After interpenetrating polymer network membrane being formed, stress evenly increased with strain before the strain reached250%, the stress rapidly increased after strain reached250%, but was smaller than changes of the first network film after the strain250%, which showed that interpenetrating polymer network membranes maintained softness of the first network membrane, and also increased the "toughness" of the membrane.
     (c) After interpenetrating polymer network membrane being formed, the water absorption and dissolution-loss rate reduced, but Tg increased.
     (d) When the cross-linking monomer content was2%in AI, the ratio of m (PVA) and m (Glyoxal) was from1:0.2to1:0.4, the ratio of m (AⅡ) and m (AⅠ) was from1%to3%in A I, IPNs polymer film achieved the highest overall performance.
     (4)The paint dyeing coating was prepared according to coat-dyeing formulations with pigment printing binder AⅠand AⅡ. The effects of cross-linking monomer content in component AI, the mass ratio of polyvinyl alcohol and glyoxal in component AⅡ, the proportion of component AI and component AⅡ as well as the curing temperature on the dyeing properties of cotton fabrics were studied. The results show that:when the cross-linking monomer content in the component AI was2-3wt%, m(PVA)/m(Glyoxal) was1:0.2, m (AⅡ)/m(AⅠ)was2:100, the weight percent of total amount of component AⅠand AⅡ was15%for total amount of printing paste, as well as curing temperature and time was120℃and3min, The coating dyeing fabric could reach the optimum performance.
     (5) Polyacrylate reactive microgel was prepared by a emulsion polymerization method using styrene, a-n-butyl acrylate and methyl methacrylate as monomer, polyoxyethylene octylphenol ether (TX-30) and sodium dodecyl sulfate(SDS) as emulsifier, divinyl benzene and ammonium persulfate (APS) as cross-linking monomer and initiator, respectively. Microgels were put into coating dyeing adhesive. The effects of microgels on the rheological properties, leveling, mechanical properties and pigment printing performance of the prepared adhesives were studied. The microgel structure, particle morphology of microgel emusion and rheology of pigment printing binder were characterized respectively by infrared spectroscopy, TEM and rheometer. The color fastness of pigment printing and mechanical properties of adhesive film were characterized by friction color fastness test instruments and strength tester. The results showed that: the thixotropy, leveling and mechanical properties of adhesive printing binder as well as quality of pigment printing were improved when the microgel was added.
引文
[1]王菊生.染整工艺原理[M].北京:中国纺织出版社,1984:1-10.
    [2]余一鹗.涂料印染技术[M].北京:中国纺织出版社,2003:1-5.
    [3]黄茂福.涂料印花的创新与发展动向[J].印染助剂,2010,27(4):1-7.
    [4]刘永庆.新型涂料印花技术[J].丝网印刷,2003,(6):30-32.
    [5]章杰.涂料印花技术的突出问题[J].纺织信息周刊,2005,12(1):14.
    [6]黄茂福.聚氨酯/聚丙烯酸酯互穿网络涂料印花黏合剂的制备与应用[C].国际涂料应用和特种印花学术交流会论文集,2004,17(3).
    [7]余一鹗.织物印花若干问题的分析及解决方法[J].印染,2005,31(5):23-24,43.
    [8]朱虹,杨振.环保型改性丙烯酸酯类涂料印花黏合剂的分析与表征[J].涂料工业,2009,39(11):33-36.
    [9]陈宝国.环保型高性能自交联涂料印花黏合剂FL的制备[J].印染助剂,2007,24(4):34-36.
    [10]萧继华,俞宏,宋心远.环保型低温自交联涂料印花黏合剂SK的合成与应用[J].印染助剂,2001,18(6):23-25.
    [11]雷生山.常温干燥环保型涂料印花黏合剂的研究[J].中国胶粘剂,2008,17(11):30-34.
    [12]Jung Y C, Sahoo N G, Cho J W.Polymeric nanocomposites of polyurethane bloke copolymers and functionalized multi walled carbon nanotubes as crosslinkers [J]. Macromolecular Rapid Communications,2006,27(2):126-131.
    [13]Kukanja D, Golob J, Zupancic valant A, etal. The structure and properties of acrylic polyurethane hybrid emulsions and comparison with physical blends[J]. Journal of Applied Polymer Science,2000,78(1):67-80.
    [14]杨斌,林汉昭,叶家灿.合成水性涂料印花黏合剂的新材料和新工艺[J].材料研究与应用2008,2(4):258-260,268.
    [15]萧继华,俞宏,宋心远.环保型低温自交联涂料印花黏合剂SK的合成与应用[J].印染助剂,2001,18(6):23-25.
    [16]高宇,房宽峻,张霞,核壳型超级柔软印花黏合剂的制备与应用[J].纺织学报,2006,27(5):10-12.
    [17]许琦,连缓,邢宏龙.核壳结构涂料印花黏合剂及其研究进展[J].山西化工,2007(1):33-35.
    [18]ARKENS C T. EGOLF S L. Formaldehyde-free, accelerated cure, aqueous composition for bonding glass fiber heay-resistant noflwoven:US,59772321[P].1999-11-12.
    [19]Chen Liang, BULLOCK K M. Polycarboxylic acid based co-binder:US,6699945[P]. 2004-03-02.
    [20]BORND R, ECKEHARDT W. Fomaldehyde-free binder for moldings:US,6099773[P]. 2000-08-08.
    [21]薛宗耀,黄玉华,蒲实甘.一种纳米级无甲醛涂料印花黏合剂及其制备方法与应用:中国,200610081238.7[P].2008-04-07.
    [22]沈翠慧,杨成龙,朱光林,等.环保型低温涂料印花黏合剂的研制和应用[J].中国胶粘剂,2008,17(3):18-23.
    [23]王小娟.新型涂料印花黏合剂的研究[J].印染助剂,2009,26(8):27-30.
    [24]高凯,唐丽.无醛自交联丙烯酸酯印花黏合剂合成研究[J].染整技术,2006,28(10):30-31.
    [25]杨斌,林汉昭,叶家灿.合成水性涂料印花黏合剂的新材料和新工艺[J].材料研究与应用,2008,2(4):258-261.
    [26]萧继华,宋心远.丙烯酸缩水甘油酯的合成及其黏合剂产品—一类新型环保型涂料印花黏合剂的研制[J].染整技术,2001,23(3):29-31,43.
    [27]AUVERGNE R, SAIINT'-LOUP R, JOLY-DAHEMEL C. UV curing of anovel resin derived from poly(ethyleneterephthalate) [J]. J. Polym. Sci., Part A, Polym. Chem.,2007, 45(1):124-127.
    [28]ABDOUA L A W, HAKEIM 0 A. Pigment color printing on cotton and polyester fabrics with electron beam;radiation curable formulations[J]. J.App1. Polym. Sci.,2008, 111(4):1895-1899.
    [29]张留成,刘玉龙.互传网络聚合物[M].北京:烃加工出版社,1997.
    [30]Millar J R.Interpenetrating polymer networks styrene-divi-nyl-benzene copolymers with two and three interpenetrating networks, and their sulphonatee[J]. J Chem Soc,1960,236:1311-1317.
    [31]Sperling L H. Interpenetrating polymer networks and related materials[M].New York:Plenum Press,1981.
    [32]Speding L H, Friedman D W. Synthesis and mechanical behavior of interpenetrating polymer networks poly(ethyl acrylate)and polystyrene[J].J Polym Sci, Part B:Polym Phys,1969,7:425-427.
    [33]Speding L H.Interpenetrating polymer networks:An overview, in interpenetratingpolymer networks[M]. Washington,DC:American Chemical Society,1994:3-38.
    [34]Stelian Vlad,Angelica Vlad, Stefan Oprea.Interpenetrating polymer networks based on polyurethane and polysiloxane[J]. European Polymer Journal,2002,38 (20):829-835.
    [35]杨开吉,苏文强,沈静.互穿聚合物网络型化学品在造纸工业中的潜在应用[J].黑龙江造纸,2006,(30):36-38.
    [36]荣洲,张凌.互穿聚合物网络研究进展[J].粘结,2004,25:36-40.
    [37]武达机.互穿聚合物网络的理论与应用[J].染料与染色,2008,45(4):58-60.
    [38]Krishnan S M.Studies on corrosion resistant properties of sacrificial primed IPNs coating systems in comparison with epoxy-PU systems[J]. Progress in Organic Coatings,2006,57(4):383-391.
    [39]Lee C H, Wang Y Z.Synthesis and characterization of epoxy-based semi-interpenetrating polymer networks sulfonsted polyimides proton-exchange membranes for direct methanol fuel cell applications[J]. J Polym Sci Part A: Polym Chem,2008,46(6):2262.
    [40]Shailesh K D, Palraj S,Maruthan K, etal.Preparation and characterization of heat-resistant interpenetrating polymer network[J]. Prog Org Coat.2007,59(1-2):21.
    [41]Fu R Q, Woo J J, Seo S J, etal. Covalent organic/inorganic hybrid proton-conductive membrane with semi-interpenetrating polymer network Preparation and characterizations[J].J Power Sources,2008,179(2):458.
    [42]Hunchinscn F C. Shaped polymeric articles:US,3886229[P].1975,27(5).
    [43]Fischer W K.Thermoplastic blend of copolymer robber and polyolefin plastic:US,3835201 [P].1974,10 (9).
    [44]Tang Dongyan, Qin Chuanli,Cai Weimin, etal. Preparation, morphology, and mechanical properties ofmodified-PU/UPR graft-IPNs nanocomposites with BaTiO3fiber[J]. Materials Chemistry and Physics,2003,82(1):73-77.
    [45]Fu R Q, Woo J J, Seo S J, etal. Covalent organic/inorganichybrid proton-conductive membrane with semi-interpenet rating polymer network:Preparation and characterizations[J].J Power Sources,2008,179(2):458.
    [46]Ekici S, Saraydin D. Interpenet rating polymeric network hydrogels for potential gast rointestinal drug release [J]. PolymInt,2007,56(11):1371.
    [47]秦川丽,蔡俊,唐冬雁,等.PU/VER IPNs材料阻尼性能的研究[J].材料工程,2003(7):36-40.
    [48]Patti M,etal. Sequential interpenetrating polymer network based on styrene butadiene rubber and polyalkyl methacryhtes[J]. J Appl Polym Sci,2007,103(2):1120.
    [49]Eren T, Colak S, Kusefoglu S H. Simultaneous interpene-trating polymer networks based on bromoacrylated castor oil polyurethane[J]. J Appl Polym Sci,2006,100(4):2947.
    [50]Stelian V.Angelica V,Stefan Q. Interpenetrating polymer networks based on polyurethane and polysiloxane[J]. Eur Polym J,2002,38(20):829.
    [51]Byung K K, etal. Modification of waterborue polyurethane by forming latex interpenetrating polymer networks with acrylate rubber[J]. Colloid Polym Sci,2002,42(280):716.
    [52]Grigoryeva 0,Slisenko 0, etal.Effect of blending on thestructure of thermoplastic interpenetrating polymer networks[J].J Macromol Sci Part B:Phys,2007,46(1):55.
    [53]钟发春,傅依备,高学敏.三元互穿聚合物网络弹性体的合成与性能[J].热固性树脂,2001,(16):39-11.
    [54]吴培熙,张留城.聚合物共混改性[M].北京:中国轻工业出版社,1996.
    [55]Fiedlerova S M,Pompe G A, et al. IPNs-Like Systems Based n Polyethylene and Mathacrylate:2. Polyethylene-butyl ethacrylate Copolymer IPNs Polymer[J].J. Polymer Sci,1998,39:1289-1297.
    [56]Walsh D J,Allell G, Ballard G. Preparation and moduli of model polymer networks, Polymer,1974,15(6):366-372.
    [57]荣洲,张凌.互穿聚合物网络研究进展[J].粘结,2004,25:36-40.
    [58]武达机.互穿聚合物网络的理论与应用[J].染料与染色,2008,45(4):58-60.
    [59]Kanapitsas A,Lebedev E, Slisenko 0, etal.Thermo-plastic apparent interpenetrating polymer networks of po-lyurethane and styrene/acrylic acid block copolymer:Structure property relationships [J].J Appl Polym Sci,2006,101(2):1021.
    [60]KRISHNAN S M. Studies on corrosion resistant properties of sacrificial primed IPNs coating systems in comparison with epoxy-PU systems[J]. Progress in Organic Coatings,2006,57(4):383-391.
    [61]彭勇刚,纪俊玲,周世香.有机硅改性丙烯酸酯涂料印花黏合剂的合成与应用[J].中国胶粘剂,2009,18(5):28-31.
    [62]杨振,朱建华,王亚东,等.有机硅改性聚丙烯酸酯涂料印花黏合剂的制备[J].印染助剂,2011,28(2):29-32.
    [63]高字,房宽峻,张霞.核壳型超级柔软印花黏合剂的制备及应用[J].纺织学报,2006,27(5):10-12.
    [64]Ermilova O I,T yulkina I S, Kolesova V V,etal. Aqueous dispersion acrylic adhesives [J].Polymer Science Series C,2007,49(1):1-5.
    [65]邢宏龙,连媛.水性预交联聚丙烯酸酯涂料印花黏合剂的合成研究[J].安徽工程科技学院学报(自然科学版),2005,20(4):8-11.
    [66]胥正安,陆建辉,徐小飞,等.互穿网络型印花黏合剂的制备及应用[J].印染,2008,34(14):15-18.
    [67]wu Yumin,Duan Hongdong, Yu Yaoqin, etal. Preparation and performance in paper coating of silicon modified styrene-butyl acrylate copolymer latex[J]. Journal of Applied Polymer science,2000,79(2):333-336.
    [68]Kim S C,Sperling Eds L H. Interpenetrxting polymer networks, aronnd the world[J].Saicnac & Engineering(PM SE),1999, (79):31-36.
    [69]权衡,易有彬,朱建华PU/PA互穿网络聚合物[J].印染,2006,16:48-53.
    [70]吴帅,朱金华,文庆珍.聚氨酯基互穿网络聚合物的研究进展[J].材料开发与应用,2011,26(2):92-95.
    [71]刘梅,贺江平,雷键.水性聚氨酯涂料印花黏合剂的合成与应用[J].印染助剂,2009,26(9):45-47.
    [72]黄茂福,PU/PA互穿网络涂料印花黏合剂的研究[J].印染,2004,(24):1-5.
    [73]顾东民,吴春明,蔡明训.新型环保印花黏合剂的合成及IPNs结构在涂料印花中初探[J].印染助剂,2003,20(3):42-44.
    [74]Jung Y C, Sahoo N G,Cho J W. Polymeric nanocomposites of polyurethane bloke copolymers and functionalized multi walled carbon nanotubes as crosslinkers[J]. Macromolecular Rapid Communications,2006,27(2):126-131.
    [75]吴婷,文秀芳,皮丕辉,等.互穿网络聚合物的研究进展及应用[J].材料导报(综述篇),2009,23(5):53-56.
    [1]Sperling L H. Interpenetrating polymer networks and related materials[M]. New York:Plenum Press,1981.
    [2]吴婷,文秀芳,皮丕辉,等.互穿网络聚合物的研究进展及应用[J].材料导报,2009,23(5):53-56.
    [3]段景,宽江,文斌,等.互穿网络聚合物研究及其应用进展[J].工程塑料应用,2010,38(7):40-44.
    [4]杨群,赵振河,屈一斌.聚合物类自交联型黏合剂的合成与应用[J].西安工程科技学院学报,2006,20(6):702-705.
    [5]王振东,金晓红,郭名霞,等.低温自交联印花黏合剂的合成与应用[J].武汉科技学院学报,2002,15(1):58-60.
    [6]Weihua Ming, Frank N.Jones, Shoukuan Fu. Synthesis of nanosize poly(methyl methacrylate) microlatexes with high polymer content by a modified microemulsion polymerization[J]. Polymer Bulletin,1998, (40):749.
    [7]韩怀芬,单海峰PS/PBA胶乳型互穿网络聚合反应表观动力学的研究[J].浙江工业大学学报,1998,26(1):67-72.
    [8]何曼君,陈维孝,董西侠.高分子物理[M].上海:复旦大学出版社,1990:253-254.
    [9]张洪涛,黄锦霞.乳液聚合新技术及应用[M].北京:化学工业出版社,2007:190-i92.
    [10]徐天柱,徐军,施光义.高固含量丙烯酸酯微乳液的研究[J].中国胶粘剂,2010,19(3):24-27.
    [11]石岩,王小妹.微乳液聚合及其影响因素[J].中国涂料,2006,21(2):41-43.
    [12]Victor M.Ovando-Medina, Rene D. Peralta,Eduardo Mendizabal et al. Microemulsion copolymerization of vinyl acetateand butyl acrylate using a mixture of anionic and non-ionic surfactants[J].Polym. Bull,2011, (66):133-146.
    [13]王晶,樊慧娟,张惠.微乳液聚合体系的发展现状[J].化学与黏合,2010,32(3):57-60.
    [14]张丹年,唐宏科.微乳液聚合的研究进展[J].日用化学品科学,2007,30(6):12-17.
    [15]吴跃焕,赵建青.高固含量丙烯酸酯的微乳液聚合[J].应用化学,2008,25(2):218-223.
    [16]王海迎.核壳乳液合成及成膜性能研究[D].北京:北京化工大学,2009.
    [17]钟强锋,梁亮,庄伟洲,等.高性能热固型核壳丙烯酸酯乳液的合成及性能研究[J].化学与黏合,2007,29(5):341-345.
    [18]武鹏,冯小平,齐暑华,等.保护膜用压敏胶剥离强度增幅研究[J].中国胶粘剂,2010,19(6):46-49.
    [19]王继英,仇满德,张荣珍,等.水性丙烯酸酯胶粘剂的合成及性能研究[J].中国胶粘剂,2005,14(3):8-10.
    [20]刘亚平,李树虎,张永侠,等.苯乙烯和丙烯酸丁酯微乳液聚合动力学的研究[J].胶体与聚合物,2005,23(2):1-3.
    [21]高振忠,廖峰,王晓波.VAc/BA/AA共聚乳液胶粘剂的制备与性能研究[J].中国胶粘剂,2009,18(4):5-8.
    [22]李秋.核壳结构有机硅-丙烯酸酯乳液的合成及性能研究[D].重庆:重庆大学,2006.
    [23]牛松,赵振河,张小丽,等.新型聚丙烯酸酯黏合剂在涂料印花中的应用[J].印染助剂,2009,26(12):39-41.
    [1]Winnik M A.Latex film formation[J].Current Opinion in Colloid & Interface Science,1997,2(2):192-199.
    [2]Visschers M,Laven J,German A L.Current Understanding of the Deformation of Latex聚合物rticles During Film Formation[J].Prog.Org.Coat,1997(30):39-49.
    [3]Wang Y,Kats A,Juhue D,etal.Freeze-fracture Studies of Latex Films Formed in the Absence and Presence of Surfactant Langmuir,1982(8):1435-1442.
    [4]P.R.Sperry, B.Synder, et al. Role of water in聚合物rticle deformation and com聚合物ction in latex formation. Langmuir,1994,10:2619-2628
    [5]C.S.Kan Role of聚合物rticle siaze on latex deformation during film formation. Journal of Coatings Technology,1999,71(896):89-97
    [6]S,T,Eckersley, B.J.Helmer J. of Coat. Techno.1997,69(864):97-107
    [7]金日光,毕幼卿.高分子物理[M].北京:化学工业出版社,2000:108.
    [8]马德柱,何平笙,徐种德等.高聚物的结构与性能[M].北京:科学出版社,2003:192.
    [9]何曼君,陈维孝,董西侠.高分子物理[M].上海:复旦大学出版社,1990:244.
    [10]付一政,刘亚青,兰艳花.聚丙烯玻璃化转变温度的分子动力学模拟[J].高分子材料科学与工程,2009,25(10):53-56.
    [11]卓蓉晖,胡言,陈文怡.用不同方法测定材料的玻璃化转变温度[J].现代仪器,2004,10(4):25-27.
    [12]徐颖,张勇.测量玻璃化转变温度的几种热分析技术[J].分析仪器,2010(3):57-60.
    [1]吴婷,文秀芳,皮丕辉等.互穿网络聚合物的研究进展及应用[1].材料导报,2009,23(5):53-56.
    [2]武达机.互穿聚合物网络的理论与应用[J].染料与染色,2008,45(4):58-60.
    [3]权衡,易有彬,朱建华.PU/聚合物互穿网络聚合物[J].印染,2006,(16):48-49.
    [4]雷生山.常温干燥环保型涂料印花黏合剂的研究[J].中国胶黏剂,2008,11(11):30.
    [5]刘方方,黄文杰.新型涂料印花黏合剂的合成与表征[J].印染助剂,2005,22(10):15-17.
    [6]杨斌,林汉昭,叶家灿.合成水性涂料印花黏合剂的新材料和新工艺[J].材料研究与应用,2008,2(4):259.
    [7]丁一晋.缩醛交联、增塑改性以及丙烯酰氯接枝改性聚乙烯醇的制备及其性能研究[D]北京:北京化工大学,2009.
    [8]王孝华,王洪.聚乙烯醇/海藻酸钙制备的研究及优化[J].化学工业与工程,2009,26(3):216-219.
    [9]杨海燕,邹平,陈宗道.枣甜菜羧甲基纤维素与聚乙烯醇复合膜阻隔特性影响因素的研究[J].食品科学,2008,29(10):203-206.
    [10]崔霞,张捍民,叶茂盛,等.新型动态膜预涂剂交联聚乙烯醇微球的制备及表征
    [11]董建朋,吴明华,戚栋明.可聚合乳化剂在涂料印花黏合剂制备中的应用[J].纺织学报,2010,31(6):100-105.
    [12]高洋,冯屏,田晓慧,等.以柠檬酸作交联剂改善丝胶/聚乙烯醇热固化膜的性能[J].蚕业科学,2010,36(1):91-96.
    [13]吕晶.低温水性聚丙烯酸酯胶乳的研制及其在纺织上的应用[D].上海:东华大学纺织化学与染整工程,2003.
    [14]马德柱,何平笙,徐种德等.高聚物的结构与性能[M].北京:科学出版社,2003,192.
    [15]何曼君,张红东,陈维孝等.高分子物理(第三版)[M].上海:复旦大学出版社,2007,224.
    [16]邬润德,朱林华,童筱莉.蓖麻油型聚氨酯/PS同步IPNs的协同效应研究[J].聚氨酯工业,2005,20(5):13-16.
    [17]武达机.互穿聚合物网络的理论与应用[J].染料与染色,2008,45(4):58-60.
    [18]曹同玉,刘庆普,胡金生.聚合物乳液合成原理性能及应用[M].北京:化学工业出版社,1997.
    [19]郭宝春,邱清华,贾德民.互穿聚合物网络(IPNs)技术在功能高分子中的应用[J]功能材料,2000,31(1):29-32.
    [1]Millar J R.Interpenetrating polymer networks:styrene-divinylbenzene copolymers with two and three interpenetrating networks and their sulfonates[J].J Chem Soc,1960,(263):1311.
    [2]Stelian V,Angelica V,Stefan Q.Interpenetrating polymer networks based on polyurethane and polysiloxane[J].Eur Polym J,2002,38(20):829.
    [3]胡军,吴战鹏,洪挺,等.丙烯酸类LIPNs溶胶的稳定性与力学性能[J].高分子材料科学与工程,2006,22(1):142-145.
    [4]段景宽,江文斌,邵双喜,等.互穿网络聚合物研究及其应用进展[J].工程塑料应用,2010,7(38):40-44.
    [5]钟发春,傅依备,高学敏.三元互穿聚合物网络弹性体的合成与性能[J].热固性树脂,2001,(16):39-11.
    [6]菅晓霞,肖乐勤,周伟良,等PMMA/PEG-TPE半互穿网络聚合物的力学性能[J].固体火箭技术,2008,31(4):377-380.
    [7]朱虹,杨振.环保型改性丙烯酸酯类涂料印花黏合剂的分析与表征[J].涂料工业,2009,39(11):32.
    [8]俞冬晴,贺江平,刘梅.改性水性聚氨酯乳液的合成及在涂料印花黏合剂中的应用[J].聚氨酯,2010,(11):67.
    [9]刘立新,谭小红.交联剂在涂料中的应用[J].精细石油化工进展,2008,9(7):34-35.
    [10]杨建军,吴庆云,张建安,等.环保型印花黏合剂的辐射聚合及其性能研究[J].染整技术,2006,28(7):30.
    [11]何曼君,张红东,陈维孝,等.高分子物理(第三版)[M].上海:复旦大学出版社,2007.119.
    [1]曹同玉,刘庆谱,胡金生.聚合物乳液合成原理性能应用[M].北京:化学工业出版社,1997
    [2]MARRAY M J,SNOWDEN M J.The pre 聚合物 ration and applications of colloidal micrngels[J].Adv Colloid Interlace Sei,1995(54):3-91
    [3]刘国杰.微凝胶在涂料中的应用前景[J].中国涂料,1996(5):5-38
    [4]周袖,周儒领,严晓虎.高分子单链微凝胶的合成与性质研究[J].河南大学学报,2001,31(4):47-50
    [5]袁才登,王艳君,张彤,等.反应性聚合物微凝胶的合成及应用[J].高分子通报,1999(3):66-71
    [6]徐小军,胡建华,杨武利,等.丙烯酸酯类微凝胶的制备反其表征[J].复旦学报,1998,37(3):265-270
    [7]杨成,马宗斌,骆惠,等.高浓度丙烯酸酯类微凝胶分散液的制备及性质[J].化学研究与应用.2006,19(7):85-787
    [8]ZHOU N,YAN X H.Synthesis and solution properties of singlechain microgels form poly(N-iso-Propylacrylamide)eopolymer[J].JAppli:PolymSei.2003.89:2179-2183
    [9]张静,涂伟萍,胡剑青.核壳型丙烯酸酯类反应性微凝胶胶粒的粒径及分布[J].华南理工大学学报,2006,34(3):72-76
    [10]陈均,乔军,尹万云,张千峰.高固含量微乳液聚合的研究进展[J].高分子通报,2011,(5):63-66.
    [11]洪啸吟,冯汉保.涂料化学[M].北京:科学出版社,2001:167-174
    [12]石岩,王小妹.微乳液聚合及其影响因素[J].中国涂料,2006,21(2):41-43
    [13]Caber, Hirsh, Wittman, Candau. Kinetic of microemulsion polymerization[J]. PhysChem,1989,93:4867
    [14]Gran L M, Chew C H and Lye.Effect of water-soluble cosurfactants on microemulsion polymerization of styrene[J].Polymer,1993,34:3860
    [15]李小瑞,艳春.乳液聚合制备增稠剂及其性能研究.热固性树脂[J].2005,20(6):11-13
    [16]申迎华,张向英,李晓琴,等.反相微乳液聚合法制备聚(丙烯酰胺-co-丙烯酸)pH敏感微凝胶及其性能[J].高分子学报,2009,(9):917-921.
    [17]Pelton R. Temperature-sensitive aqueous microgels[J].Advances in Colloid and Interface Science,2000,85,85(1):1-33.
    [18]程传杰,申亮,付全磊,龚珊珊.活性/可控自由基无皂乳液聚合[J].化学进展,2011,23(04):791-799.
    [19]赵冬梅,张贞浴,杜宇虹,赵红.聚苯乙烯单分散交联纳米微球的制备和表征[J].化学与粘合,2008,30(3):27-30.
    [20]PEREZ-CARRILLO L A,PUCA M,RABELERO M. Effect of聚合物rticle size on the mechanical properties of polystyrene and poly (butyl-acrylate)cow/shell polymers[J].Polymer,2007,48:1212-1 218
    [21]JONSSON J-E. KARLSSON O J, HASSANDER H, et al.Semicontinuous emulsion polymerization of styrene in the presence of poly (methylmethacrylate)seem聚合物rticles[J].European Polym J,2007,43:l 322-1332
    [22]PENG M,WANG H,CHEN Y.Encapsulation of miemgels with polystyrene(PS):A novel method for the pre聚合物ration of hollow PS聚合物rticles[J].Mater Lett,2008,62:1535-1538
    [23]XIAO D H.XUE W G. The pre聚合物ration of composite microsphere with hollow core/porous shell structure by self-assembling of latex聚合物rticles at emulsion droplet interface[J].Colloid interface Sei,2006,299:791-796
    [24]曹同玉,刘庆普,胡金生.聚合物乳液合成原理性能及应用[M].北京:化学工业出版社.1997:539-595
    [25]邱德梅,季永新,刘玉鹏.造纸涂料用遮盖性空心球乳液的合成[J].化工时刊,2005,19(1):7-10
    [26]邓雪萍,李德强,熊国宣.核壳型可遮盖聚合物乳液的研制[J].中国粘胶剂,2006,15(12):29-31.
    [27]Mohammad T. Islam, Nair Rodriguez-Hornedo, Susan Ciotti, Chrisita Ackermann.Rheological Characterization of Topical Carbomer Gels Neutralized to Different pH[J]. Pharmaceutical Research,2004, (7):1192-1199.
    [28]Dietrich Saatweber, Bettina Vogt-Birnbrich.Microgels in organic coatings [J]. Progress in Organic Coatings,1996,28:33-41

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700