用户名: 密码: 验证码:
混合量子优化算法理论及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
20世纪90年代迅速发展起来的以量子计算机为基础的量子计算方法以其在理论上证实具有超强的计算速度、指数级的存储容量、更好的稳定性和有效性等特征,被誉为未来计算科学发展的方向之一。量子计算的研究充分利用量子相干性的独特性质(量子叠加、量子纠缠和量子测量),探索以全新的方式进行计算、编码和信息传输的可能性,是一种探索突破芯片极限的新途径。
     量子优化方法是借鉴量子理论的思想来解决某些特定问题的一种新方法。以量子计算理论为基础的量子优化算法,可以在一定程度上提高计算效率和克服陷入局部极值。本文提出的混合量子优化方法将量子计算方法与神经网络、进化算法、蚁群算法相融合,以期达到改进算法性能、拓宽算法应用领域、完善算法体系的目的。
     本文对量子优化算法的相关问题进行研究,主要工作如下:
     研究了量子进化算法原理及改进策略,首先概述了进化算法的研究概况,分析了传统进化算法存在的缺陷,然后提出将量子优化方法与进化方法融合起来形成量子进化算法,并提出量子进化算法改进策略。
     研究了基于改进量子进化方法的BP神经网络权值优化模型,提出了一种将改进量子进化算法(IQEA)与BP算法相融合共同完成反向传播神经网络训练的方法,即IQEA-BP算法。首先对传统量子进化算法进行改进,然后采用改进量子进化算法对网络权值进行整体寻优,克服BP算法容易陷入局部最优的不足;再以找到的较优权值为初值,采用BP算法做进一步的寻优,以提高网络的训练和预报精度。本文将IQEA-BP神经网络应用于高炉铁水硅含量预测问题中,并与BP神经网络和QEA-BP神经网络的预测结果进行了比较,结果验证了该算法的有效性得到了较高的预测精度。
     针对蚁群算法在求解连续空间优化问题时易于陷入局部最优和收敛速度慢的问题,本文提出了一种新的基于量子进化的蚁群优化算法。该算法采用量子比特的概率幅表示蚂蚁当前位置信息;设计了一种新的量子旋转门更新蚂蚁位置,完成蚂蚁的移动;最后采用量子非门实现蚂蚁所在位置的变异,增加位置的多样性。本文不仅从理论上证明了所提出量子蚁群算法的收敛性,而且从时间复杂性的角度分析了QACO具有较快的运行速度,仿真实验表明该算法可使搜索空间加倍,比传统的蚁群算法具有更好的种群多样性,更快的收敛速度和全局寻优能力。在此基础上讨论了量子进化蚁群优化算法的应用,主要研究了基于量子蚁群优化算法的板形识别。在分析研究板形信号识别的数学模型的基础上,将板形识别问题归结为板形应力误差函数寻优问题。进而在前面研究的量子蚁群优化算法的基础上探讨算法在应用于板形识别问题中的若干具体问题,仿真实验结果与参考文献中给出的其它板形识别方法的对比表明,该方法比文献中的方法识别精度高,具有具有一定的工程应用价值。
     针对高炉冶炼行程炉况故障分类边界的模糊性和故障模式之间存在交叉数据的诊断不确定性问题,提出应用量子神经网络识别高炉炉况故障。本文将量子理论与神经网络融合形成量子神经网络,其隐含层神经元采用量子化的多级阶梯形传输函数,通过量子神经网络的量子间隔和权值学习算法,能够根据所提供的样本信息建立起分级的神经网络内部结构。量子神经网络借鉴量子叠加态测量坍缩原理,对不确定的输入向量给出一个近似的分类和类属概率,成功地解决了前馈神经网络模糊分类的局限性问题。为进一步提高炉况识别精度,针对高炉冶炼行程中样本数据非线性、大噪声的特点,提出了基于独立分量分析方法的特征提取算法。即采用独立分量分析方法,对原始样本进行分析处理,分离高炉炉况故障时的状态信号以提取其状态特征向量,产生新的维数降低、分量间相关性小的最能反映系统本质的特征样本空间;最后将这些特征向量作为输入向量通过量子神经网络对高炉故障进行识别,实验结果表明,基于独立分量分析的量子神经网络算法可以有效、准确地识别高炉炉况的故障模式,同时也为高炉炉况诊断提供了一种新型的方法。
Quantum computation method, developed rapidly in 1990s, is known as one of the developing trends of computing science in the future, which is based on quantum computer and proved theoretically to have prominent computing speed, storage capability with exponential level, and more stabile and effective characteristics. The studies of quantum computation make full use of unique properties of quantum Coherence state, such as the superposition of quantum state and the entanglement of qubit, and explore probabilities of a new method to compute, code and transmit the information, which is a new approach to grope for breaking through the limit of CMOS chip.
     Quantum optimization algorithm is a new methods created by borrowing fundamental conception and principles from quantum theory to resolve certain problems. Quantum optimization algorithms, based on quantum computation theoey, can improve computing efficiency and prevent from dropping into a local optimum in a certain extent. In this dissertation, the proposed hybrid quantum optimization algorithms combine quantum computation with neural network, evolutionary algorithm and ant colony optimization algorithm to improve the performance of the algorithms, extend the application area of the algorithms and perfect the system of the algorithms.
     This dissertation makes some researches on the problems concerned in quantum optimization algorithms, the main tasks are stated as follow.
     The principle and improved measures of quantum evolutionary algorithm are researched. Firstly, this dissertation summarize the general situation survey of evolutionary algorithm and analyse the defects existed in evolutionary algorithm; and then combined it with quantum optimization algorithms and propose a quantum evolutionary algorithm. Meanwhile, several improved measures are also proposed.
     A model of BP neural network, based on improved quantum evolutionary (IQEA) algorithms, is researched, and then a new neural network (NN) training algorithm, IQEA-BP algorithm, is proposed. Firstly, the traditional QEA is improved; Secondly, the improved QEA is adopted to search the optimal combinations of weights in the solution space to conquer the defect that BP neural network is easy to fall into local optimal, then regards the finded quite optimal weight as the first value, and uses BP algorithm to obtain the accurate optimal solutions quickly, which can increase the training and prediction precision of the network.This dissertation applied IQEA-BP algorithm to predict the silicon content in hot metal of blast furnace, The test results show that IQEA-BP can obtain better forecasting results, compared with BP and QEA-BP model.
     Aiming at the shortcoming of optimization problems in continuous space based on ant colony optimization which is easy to fall into local optimums and has a slow convergence rate, a novel ant colony optimization algorithm based on quantum evolutionary is presented. In this algorithm, each ant position is represented by a group of quantum bits; a new quantum rotation gates are designed to update the position of the ant so as to enable the ant to move. Finally, some quantum bits are mutated by quantum non-gate so as to increase the variety of ant positions. It not only proves the convergence of the proposed algorithms through theoretical analysis, but also shows that QACO possess the more quickly speed from the angle of the time complexity. simulation experiments demonstrate that QACO can double searching space, gain better population diversity and accelerate the convergence speed and global optimal search ability, compared with the classical ant colony algorithm. Then this dissertation discusses the application based on the QACO. It mainly discussed QACO applied in the cold-rolled strip flatness recognition. On the basis of analysising the mathematical model of strip flatness signal, the flatness recognition can be attributed to a problem that the function search for the optimum. Fourthmore, this dissertation discusses some problems about QACO applied in the flatness recognition. Simulink tests demonstrate that the flatness recognition method based on QACO possesses greater accuracy, compared with the method in literature.It has some certain engineering merit.
     Focusing on the fuzziness problem of fault classification borders, and on the diagnostic uncertainty of overlapping data, a fault diagnosis method for furnace state based on quantum neural network(QNN) was presented. This dissertation combines quantum theory with neural network and forms into a new model namely quantum neural network.Its hidden layer nerve cell adopts multi-level transition function.By use of the learning algorithms of quantum interval and weights, it can build grade inside structure of neural network according to the sample information.Quantum neural network can give an approximate class or category probability for uncertain input. In order to improve the recognition accuracy of abnormal blast furnace fourthmore, an independent component analyze method is proposed to extract their state features focused on the nonlinear and big yawp in the process of blast furnace.namely, by use of the ICA, original data is analyzed , disposaled, and separate the state signals of fault blast furnace and extract their state eigenvector. and then generate some new low dimension and few correlations among production parameters, which can reflect the essence of the system mostly. Finally, these state eigenvectors are regarded as input vector of QNN, the experimental results demonstrate that the ICA-QNN algorithms can recognize the fault pattern of furnace state effectively and accurately.meanwhile,it also provides a new method with fault diagnosis for blast furnace state.
引文
[1] Benioff P. Quantum mechanical Hamiltonian models of turing machines[J]. Journal of Statistical Physics, 1982, 29(3): 23-29.
    [2] Feynman P. Simulating physics with computers[J]. International Journal of Theoretical Physics, 1982, 21(6&7): 467-488.
    [3] Deutsch D. Quantum theory, the Church-Turing principle and the universal quantum computer[J]. Proceedings of the Royal Society of London, 1985, SerA(A400): 97-117.
    [4] D D. Quantum computational networks[J]. Proceedings of the RoyalSociety of London SerA, 1989, SerA(A425): 73-90.
    [5] C Y A. Quantum circuit complexity: Proc of the 34th Annual Symposium on Foundations of Computer Science[C]. Los Alamitos: IEEE Computer Society, 1993,5(1): 352-361.
    [6] E B, U V. Quantum complexity theory: Proc of the 25th ACM Symposium on the Theory of Computation[C]. New York: BERNSTEIN E,VAZIRANI U.Quantum ACM Press, 1993(3): 11-20.
    [7] W S P. Algorithms for quantum computation: Proc of the 35th Annual Symp on Foundations of Computer Scienc[C]. New Mexic: IEEE Computer Society Press, 1994(3): 124-134.
    [8] W S P. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer[J]. SIAM Journal on Computing, 1997, 26(5): 1484-1509.
    [9] R J. Quantum algorithms and the Fourier transform [J]. Poceedings of the Royal Society of London, 1998, Ser A(A454): 323-338.
    [10] T H. Quantum computing and phase transitions in combinatorial search[J]. Journal ofrtificial Intelligence Research, 1996, 4(1): 91-128.
    [11] T H. A framework for structured quantum search[J]. Physica D, 1998, 120(1): 102-116.
    [12] T H. Highly structured searches with quantum computers[J]. Physical Review Letters, 1998, 80(11): 2473-2476.
    [13] T H, M Y. Local search methods for quantum computers [R]. Xerox PARC, 1998.
    [14] T H. Solving highly constrained search problems with quantum computers[J]. Journal of Artificial Intelligence Research, 1999, 10(1): 39-66.
    [15] K G L. A fast quantum mechanical algorithm for database search: Proc of the 28th Annual ACM Symposium on the Theory of Computing.New York[C]. New York: ACM Press, 1996(3): 212-219.
    [16] GROVER L K. A fast quantum mechanical algorithm for estimating the median,quant-ph/9607024[R].MurrayHil,l N J: Bell Labs, 1996.
    [17] K G L. Quantum telecomputation[R]. Murray Hill N J: Bell Labs, 1997.
    [18] Pw S. Scheme for reducing decoherence in quantum computer memory[J]. Physical Review A, 1995, 52(4): 2493-2500.
    [19] W S P. Tolerant quantum computation[J]. IEEE Computer Society Press, 1996, 10(1): 56-65.
    [20] Benioff P. The computer as a Physical System: A Microscopic Quantum Mechanical Hamiltonian Model of Computers as Represented by Turing machines[J]. Statist. Phys, 1980, 22(1): 563-571.
    [21] Deutsch D. Quantum theory:The Church-Turing Principle and the Universal Quantum Computer: Proc, Roy. Soc. [C]. London: 1985(3):97-117.
    [22] Shor P W. Algorithms for Quantum Computation: Discrete Logarithms and Factoring: In Proc, 35th Annual Symposium on Foundations of Computer Science[C]. Los Alamitos,CA, IEEE Press, 1994:124-134.
    [23] Shor P W. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on Quantum Computer[J]. SIAM, J. COMPUT, 1997: 1484-1590.
    [24] Grover L K. A Fast Quantum Mechanical Algorithms for Database Search: In proc, 28th Annual Symposium on the Theory of Computer Science[C]. 1996: 212-219.
    [25] Grover L K. Quantum mechanical Searching: In Proc.1999 Congress on Evolutionary Computation[C]. Piscataway, NJ: IEEE Press, 1999: 2255-2261.
    [26] Schumacher B. Quantum Doding[J]. Phys. Rev, 1995, A51: 2738-2742.
    [27] M N, I C. Quantum computation and quantum information[M]. London: Cambridge University Press, 2000.
    [28] S W. Conjugate coding[J]. Sigact News, 1983, 15(1): 78-88.
    [29] Moore M P, Narayanan A. Quantum-Inspired Computing[R]. Department of Computer Science, University of Exeter, Exter EX4 4 P T,UK, 1995.
    [30] Shor P W. Algorithms for Quantum Computation: Discrete logarithms and Factoring: Proceeding of the 35th IEEE Symposium on Foundations of Computer Science[C]. Santa Fe, New Mexico: IEEE Computer Society Press, 1994: 124-134.
    [31] Han K H, Kim J H. Genetic Quantum Algorithm and its Application to Combinatorial Optimization Problem[C]. 2000(1):1354-1360.
    [32] Han K H, Park K H, Lee C H. Parallel Quantum-inspired Genetic Algorithm for Combinatorial Optimization Problem: Proceeding of the 2001 IEEE Congress on Evolutionary Computation[C]. 2001: 1429-1442.
    [33] Rylande B. Computational Complexity and the Genetic Algorithm[D]. University of Idaho,2001.
    [34] Han K H, Kim J H. Introduction of Quantum-inspired Evolutionary Algorithm: FIRA Robot Congress[C]. Seoul, Korea: 2002.
    [35] Han K H, Kim J H. Quantum-Inspired Evolutionary Algorithm for a Class of Combinatorial Optimization: Proceeding of the 2002 IEEE Congress on Evolutionary Computation[C]. 2002(2): 580-593.
    [36]杨淑媛,刘芳,焦李成.量子进化策略[J].电子学报. 2001, 29(12): 1873-1877.
    [37] Rylander B, Soule T, Foster J. Quantum evolutionary programming: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001)[C]. Morgna Kaufmann Publishers , 2001.
    [38] Narayanan A, Moore M. Quantum-Inspired Genetic Algorithms: Proceedings of the 1996 IEEE International Conference on Evolutionary Computation (ICEC96)[C]. Nogaya, Japan: IEEE Press, 1996: 41-46.
    [39] Han K H, Kim J H. Genetic Quantum Algorithm and its Application to Combinatoria Optimization Problem: IEEE Proceedings Of the 2000 Congress on Evolutionary Computation[C]. San Diego, USA, Piscataway: IEEE Press, 2000: 1354-1360.
    [40] Han K H, Park K H, Lee C H. Parallel Quantum-Inspired Genetic Algorithm for Combinatoriall optimization Problems: In Proc. of the IEEE Congress on Evolutionary Computation[C]. Piscataway: IEEE Press, 2001(2): 1429-1442.
    [41]娄素华,李研,吴耀武等.多目标电网无功优化的量子遗传算法[J].高电压技术, 2005, 31(9): 69-71.
    [42]娄素华,吴耀武,彭磊等.量子进化算法在电力系统无功优化中的应用[J].继电器, 2005, 33(18): 3035.
    [43]伍亚萍,陈海众,李大鹏等.基于量子进化算法的配电网开关优化配置研究[J].现代电力, 2006, 23(3): 21-25.
    [44]侯云鹤,鲁丽娟,熊信良等.量子进化算法在输电网扩展规划中的应用[J].电网技术, 2004, 28(17): 19-23.
    [45]郭剑,孙力娟.基于量子遗传算法的路由选择[J].计算机技术与发展, 2006, 16(1): 87-89.
    [46]孙力娟,郭剑,陆凯等.基于量子遗传算法的传感器网络拓扑结构控制[J].通信学报, 2006, 27(12): 1-5.
    [47]陈年生,李腊元,董武世.基于量子遗传算法的QoS路由算法[J].计算机工程与设计, 2005, 26(9): 2265-2267.
    [48]周露芳,古乐野.基于量子遗传算法的二维最大熵图像分割[J].计算机应用, 2005, 25(8): 1805-1807.
    [49]邵桂芳,李祖枢,刘恒等,基于遗传量子的自适应图像分割算法[J],计算机工程, 2005, 31(22): 189-191.
    [50]李映,焦李成.一种有效的基于并行量子进化算法的图像边缘检测方法[J].信号处理, 2003, 19(1): 69-74.
    [51]杨俊安,解光军,庄镇泉等.量子遗传算法及其在图像盲分离中的应用研究[J].计算机辅助设计与图形学学报, 2003, 15(7): 847-852.
    [52]杨俊安,李斌,庄镇泉等.基于量子遗传算法的盲源分离算法研究[J].小型微型计算机系统, 2003, 24(8): 1518-1523.
    [53]张葛样,金炜东,胡来招.基于量子遗传算法的特征选择算法[J].控制理论与应用, 2005, 22(5): 810-813.
    [54]吕俊怀,王波,刘检云等. QEA加密算法的研究与设计[J].计算机工程与科学, 2005, 27(1): 46-47.
    [55]邹谊,庄镇泉,李斌.基于量子遗传算法的嵌入式系统软硬件划分算法[J].电路与系统学报, 2004, 9(5): 1-7.
    [56]袁书卿,张葛祥.一种改进的遗传量子算法及其应用[J].计算机应用与软件, 2003, 20(10): 1-4.
    [57]袁书卿,张葛详.基于改进遗传量子算法的FIR数字滤波器设计[J].电讯技术, 2003, 5: 41-46.
    [58]张葛祥,李娜,金炜东等.一种新量子遗传算法及其应用[J].电子学报, 2004, 32(3): 476-479.
    [59]陈辉,张家树,张超.实数编码混沌量子遗传算法[J].控制与决策, 2005, 20(11): 1300-1303.
    [60]郭海燕.基于混沌优化的量子遗传算法[J].电子测量技术, 2006, 29(2): 14-15.
    [61]李映,张艳宁,赵荣椿等.免疫量子进化算法[J].西北工业大学学报, 2005, 23(4): 543-547.
    [62] Li Y, Zhang Y N, Zhao R C. The Immune Quantum-inspired Evolutionary Algorithm[C]. 2004: 3301-3305.
    [63]刘芳,李阳阳.量子克隆进化算法[J].电子学报, 2003, 31(12): 2066-2070.
    [64]熊焰,陈欢欢,苗付友等.一种解决组合优化问题的量子遗传算法QGA[J].电子学报, 2004, 32(11): 1855-1858.
    [65]张葛祥,金炜东.量子遗传算法的改进及其应用[J].西南交通大学学报, 2003, 38(6): 717-722.
    [66]袁书卿,张葛祥.一种改进的遗传量子算法及其应用[J].计算机应用与软件, 2003, 20(10): 1-2.
    [67]马淑霞.基于下降搜索的量子进化算法[J].西南交通大学学报, 2004, 39(3): 390-393.
    [68]张伟丰,王朝辉,郑建国.量子进化和模拟退火的混合优化算法[J].湖北汽车工业学院学报, 2006, 20(2): 34-37.
    [69]周殊,潘炜,罗斌等.一种基于粒子群优化方法的改进量子遗传算法及应用[J].电子学报, 2006, 34(5): 897-901.
    [70]王凌,吴昊,唐芳等.混合量子遗传算法及其性能分析[J].控制与决策, 2005, 20(2): 156-159.
    [71] Kak S C. On quantum neural computing[J]. Information Sciences, 1995, 83(3-4): 143-160.
    [72] Chrisley R. Quantum learning: Proceedings of the international symposium on Finnish Association of Artificial Intelligence[C]. Saariselka, Lapland, Finland, Helsinki,1995: 77-89.
    [73] Narayanan A, Moore M. Quantum-inspired genetic algorithms[R]. Univ. of Exeter, UK, 1995.
    [74] Menneer T, Narayanan A. Quantum-inspired Neural Networks[R]. Univ. of Exeter, UK, 1995.
    [75] Moore M, Narayanan A. Quantum-inspired Computing[R]. Univ.of Exeter, UK, 1995.
    [76] Menneer T. Quantum Artificial Neural Networks[D]. UK: University of Exeter, 1998.
    [77] Behrman E C, Niemel J, Skinner S R. A quantum dot neural networ: Proceedings of the 4th Workshop on Physics of Computation[C]. Boston: 1996: 22-24.
    [78] Ventura D, Martinet T R. An Artificial Neuron with Quantum Mechanical Properties: Proceedings of the International Conference on Artificial Neural networks and Genetic Algorithms[C]. 1991: 482-485.
    [79] Ventura D, Martinez T R. Quantum Associative Memory with Exponential Capacity: Proceedings of the IEEE International Joint Conference on Neural networks[C].1998: 609-613.
    [80] Fentura D, Martinez T. Quantum associative memory[J]. Information Sciences, 2000, 124: 273-296.
    [81] Ventura D, Martinez T. A quantum associative memory based on Grower's algorithm: Proc. of the Int. Conf. on Artificial Neural Networks and Genetics Algorithms[C]. 1999: 22-27.
    [82] Ventura D. Quantum Computational Intelligence Answers and Questions[J]. IEEE Intelligent Systems, 1999, 9: 14-16.
    [83] Ezhov A, Ventura D. Quantum neural networks[J]. Future Directions for Intelligent Systems and Information Science, 2000.
    [84] Ventura D. Learning Quantum Operator: Proceedings of the Joint Conference on Information Sciences[C]. 2000: 750-752.
    [85] Ventura D. On tine Utility of Entanglement in Quantum Neural Computing: Proceedings ofthe International Joint Conference on Neurul Networks[C]. 2001: 1565-1570.
    [86] Toronto N, Ventura D. Learning Quantum Operators From Quantum State Pair: IEEE world Congress on Computational lntelligence[C]. 2006,26(2):2607-2612.
    [87]解光军,庄镇泉.量子神经网络[J].计算机科学, 2001, 28(7): 1-6.
    [88]解光军.量子神经计算[J].合肥工业大学学报, 2002, 25(3): 359-375.
    [89]郑宝玉,赵生妹,李飞.信息理论的新进展——量子信息论与量子神经计算[J].南京邮电学院学报, 2002, 22(3): 6-14.
    [90]解光军,庄镇泉.量子神经计算模型研究[J].电路与系统, 2002, 7(2): 83-88.
    [91]李飞,赵生妹,郑宝玉.量子神经元特性研究[J].电路与系统学报, 2004, 9(4): 76-80.
    [92]钟艳花,余永权,余晓敏.量子神经动力学分析[J].量子电子学报, 2005,22(2): 192-195.
    [93]朱大奇,陈尔奎.旋转机械故障诊断的量子神经网络算法[J].中国电机工程学报, 2006, 26(1): 132-136.
    [94]朱大奇,桑庆兵.光电雷达电子部件的量子神经网络故障诊断算法[J].电子学报, 2006, 34(3): 573-576.
    [95]熊和金,桂启发.量子神经网络动力学及其在信息安全中的应用[J].浙江万里学院学报, 2003, 16(2): 10-13.
    [96] Penrose R. The Emperor' s New Mind: Concerning Computers, Minds, and The Laws of Physic s[M]. Oxford: Oxford University Press, 1989.
    [97] Perus M. Neuro-Quantum Parallelism in Brain mind and computer Science[J]. Informatica, 1996, 20: 173-183.
    [98] Martonak R, Santoro G E, Tosatti E. Quantum annealing of the Traveling Salesman Problem[J]. 2004.
    [99] Finnila A B, Gomez M A, Sebenik C. Quantum annealing a new method for minimizing multidimensional functions[J]. Chemical Physics Letters, 1994, 219: 343-348.
    [100] Tsallis C, Stariolo D A. Generalized Simulated Annealing[J]. Physics A, 1996, 233: 395-408.
    [101] Tadashi K, Hidetoshi N. Quantum annealing in the transverse Ising model[J]. Phys. Rev. E, 1998, 58: 5355-5363.
    [102] Kadowaki T. Study of Optimization Problems by Quantum Annealing[D]. Japan: Department of Physics, Tokyo Institute of Technology, 2002.
    [103] Brooke J, Bitko D, Rosenbaum T F. Quantum Annealing of a Disordered Magnet[J]. Science, 1999, 284: 779-781.
    [104] Huntsman S. Quantum simulated annealing[C]. 2001.
    [105] Santoro G E, Martonak R, Tosatti E. Theory of Quantum Annealing of an Ising Spin Glass[J]. Science, 2002, 295: 2427-2430.
    [106] Trugenberger C A. Quantum optimization for combinatorial searches[J]. New Journal of Physics, 2002, 4(26): 1-7.
    [107] Stella L. Studies of Classical and Quantum Annealing[D]. International School of Advanced Studies (SISSA) of Trieste (Italy), 2005.
    [108] Morita S, Nishimori H. Convergence theorems for quantum annealing[J]. Phys. A, 2006, 39: 13903-13920.
    [109] Suzuki S, Nishimori H, Masuo S. Quantum annealing of the random-field Ising model by transverse ferromagnetic interactions[C]. 2007.
    [110]魏超,朱培民,王家映.量子退火反演的原理和实现[J].地球物理学报, 2006, 49(2): 577-583.
    [111]魏超.量子退火及其在地震波阻抗反演中的应用研究[D].武汉:中国地质大学, 2005.
    [112]张伟丰,王朝辉,郑建国.量子进化和模拟退火的混合优化算法[J].湖北汽车工业学院学报, 2006(02).
    [113]陈科美.基于模拟退火的量子进化算法[J].西华大学学报(自然科学版), 2008(06).
    [114]喀兴林.高等量子力学(第二版)[M].北京:高等教育出版社, 2001.
    [115]赵千川译.量子计算和量子信息(一):量子计算部分[M].北京:清华大学出版社, 2004.
    [116]戴葵,宋辉,刘芸等.量子信息技术引论[M].长沙:国防科技大学出版社, 2001.
    [117] Gruska J. Quantum Computing[M]. McGraw-Hill, 1999.
    [118] Divincenzo D. Two-Bit Gates are Universal for Quantum Computation[J]. Phys.Rev.A. 1995, 51: 1015-1022.
    [119] Deutsch D. Universality in Quantum Computation[J]. Proceedings of the Royal Society of London, 1995, 32: 449-669.
    [120] Barenco A, Bennet C, Cleve R, et al. Elementayr gates for quantum computation[J]. Phys .Rev. A, 1995, 52: 34-57.
    [121] Barenco A, Deutsch D, Eketr A. Conditional Quantum Dynamics and Logic Gates[J]. Phys.Rev.Let, 1995, 74: 4083-4086.
    [122] Deutsch D. Quantum computational networks[J]. Proc.of the Roy.Soc.of Lon.A, 1989, 425: 73-90.
    [123]李承祖等.量子通信与量子计算[M].长沙:国防科技大学出版社, 2000.
    [124] Jordan A N. Topics In Quantum Chaos[D]. Santa Barbara: University Of California Santa Barbara, 2002.
    [125] Han K H, Kim J H. Quantum-inspired evolutionary algorithm with a new termination criterion,Hε-gate and two-phase scheme[J]. IEEE Trans on Evolutionary Computation, 2004, 8(2): 156-169.
    [126] Chen H, Zhang J, Zhang C. Chaos updating rotated gates quantum-inspired genetic algorithm: Int Conf on Communications, Circuits and Systems[C]. Chengdu: 2004: 1108-1112.
    [127] Li Y, Zhang Y, Zhao R. The immune quantum- inspired evolutionary algorithm: IEEE Int Conf on Systems,Man and Cybernetics[C]. Hague: 2004: 3301-3305.
    [128] Wang L, Wu H, Tang F. A hybrid quantum-inspired genetic algorithm for flow shop scheduling[J]. Lecture Notes in Computer Science, 2005, 3645(1): 636-644.
    [129] Wang L, Tang F, Wu H. Hybrid genetic algorithm based on quantum computing for numerical optimization and parameter estimation[J]. Applied Mathematics and Computation, 2005, 171(2): 1143-1158.
    [130] Talbi H, Draa A, Batouche M. A new quantum-inspired genetic algorithm for solving the traveling salesman problem: IEEE Int Conf on Industrial Technology[C]. Tunisia: 2004, 26(9):1192-1197.
    [131] Talbi H, Draa A, Batouche M. A genetic quantum algorithm for image registration: Int Conf on Information and Communication Technologies[C]. Cairo: 2004, 24(1): 395-396.
    [132] Han K H P K, Lee C H. Parallel quantum-inspired genetic algorithm for combinatorial optimization problem: IEEE Congress on Evolutionary Computation[C]. Seoul: 2001,15(1): 1422-1429.
    [133] Zhang G, Jin W, Hu L. A novel parallel quantum genetic algorithm: Int Conf on Parallel and Distributed Computing, Applications and Technologies[C]. Piscataway: 2003: 693-697.
    [134] Li Y, Jiao L C. An effective method of image edge detection based on parallel quantum evolutionary algorithm[J]. Signal Processing, 2003, 19(1): 69-74.
    [135] Li B, Zhuang Z. Genetic algorithm based-on the quantum probability representation: Proc of Intelligent Data Engineering and Automated Learning[C]. Manchester: 2002: 500-505.
    [136] Yang S, Wang M, Jiao L. A novel quantum evolutionary algorithm and its application: IEEE Congress on Evolutionary Computation[C]. Vancouver: 2004: 820-826.
    [137]杨俊安,庄镇泉,史亮.多宇宙并行量子遗传算法[J].电子学报, 2004, 32(06): 923-928.
    [138]王凌,吴昊,唐芳等.混合量子遗传算法及其性能分析[J].控制与决策, 2005, 20(02): 156-160.
    [139] B H M, Sadeghi A. A BP-neural network predictor model for plastic injection molding process[J]. Journal of Materials Processing Technology, 2000, 103(3): 411-416.
    [140] Y L, W L, Y Z. Inspection of defects in optical fibers based on back-propagation neural networks[J]. Optics Communications, 2001, 198: 369-378.
    [141] M.e H, K V S. ANN back-propagation prediction model for fracture toughness inmicroalloy steel[J]. International Journal of Fatigue, 2002, 24(9): 1003-1010.
    [142] T.c C, R.j C. Application of back-propagation in debris flow prediction[J]. Engineering Geology, 2006, 85: 270-280.
    [143] L X, J X, S W. Optimization of heat treatment technique of high-vanadium high-speed steel based on back-propagation neural networks[J]. Materials and Design, 2007, 28(5): 1425-1432.
    [144]魏海坤.神经网络结构设计的理论与方法[M].国防工业出版社, 2005.
    [145]李彤红,罗四维.一种训练神经网络的新型遗传算法明[J].北方交通大学学报, 1995, 19(4): 528-532.
    [146] Vittorio M. Genetic evolution of the topology and weight distribution of Neural Networks[J]. IEEE Transactions on Neural Networks, 1994, 5: 39-53.
    [147] Bruce A W, Timothy D C. Evolving space-filling curves to distribute radial basis functions over an input space[J]. IEEE Transactions on Neural Networks, 1994, 5: 15-23.
    [148] Yao X. A reviews of evolutionary artificial neural networks[J]. International Journal of Intelligent Systems, 1993, 8: 539-567.
    [149] Bornholdt S, Graudenz D. General asymmetric neural networks and structure design by genetic algorithms[J]. Neural Networks, 1992, 5: 327-334.
    [150] Harp S A, Samad T, Guha A. Towards the genetic synthesis of neural networks: In Proceedings of the Third International Conference on Genetic Algorithms[C]. 1989.
    [151] Yang J M, Kao C Y. A robust evolutionary algorithm for training neural networks[J]. Neural Computing and Application, 2001, 10(3): 214-230.
    [152] Yang J, Li B, Zhuang Z. Research of quantum genetic algorithm and its application in blind source separation[J]. Journal of Electronics, 2003, 20(1): 62-68.
    [153]王小平,曹立明.遗传算法——理论、应用与软件实现[M].西安:西安交通大学出版社, 2001.
    [154] D. E R, G. E H, R.j W. Learning Representations by Backpropagating Errors[J]. Nature, 1986, 323: 533-536.
    [155] G C. Approximation by superposition of sigmoidal functions[J]. Mathematics of Control, Singals and Systems. 1989, 2: 303-314.
    [156] K.m H, M S, H W. Multilayer feedforward networks are universal approximators[J]. Neural Networks. 1989, 2(2): 359-366.
    [157] N.e C. The stone-weierstrass theorem and its application to neural networks[J]. IEEE Transaction on Neural Networks, 1990, 1: 290-295.
    [158]刘祥官,刘芳.高炉炼铁过程优化与智能控制系统[M].北京:冶金工业出版社, 2003.
    [159]周传典,徐矩良,刘云彩等.推荐高炉操作的第三代技术[J].中国冶金报, 1999, 8(8).
    [160]周传典,徐矩良,刘云彩等.高炉操作的第三代技术[J].炼铁, 1999(5): 201-204.
    [161]周明,秦民生.高炉铁水含硅量预报数学模型[J].钢铁, 1986, 21(5): 7-11.
    [162] Van Langen J M. Blast Fmace Teehnology[M]. NewYork: 1972.
    [163]姬田冒孝,西尾通卓,西川洁.高炉炉热制御[J].统计制御理论, 1980.
    [164] Pandit S M, Clum J A, Wu S M. Modeling,Prediction and Control of Blast Fumace Operation From Observed Data By Multivariate Time Series[J]. IronmaldngProceedings, Metallurgical soeietyof AIME,IronandSteel Division. 1975, 34: 403-410.
    [165] Matias W, Henrik S. Application of Nolinear Time Series Analysis to the Predietion of Silicon Content of Pig iron[J]. ISIJ International, 2002, 42(3): 316-318.
    [166] Ralf O, Ksaxen H. Theory and Methodology Vannax一modelling Of blast furnaee Proeess varibles[J]. European Joumal Of Operational Reaearch. 1996, 90: 85-101.
    [167] Uusi H H. Prediction of hot metal silicon in blast fumace by multivariate time serial modeling[J]. Technical Report 88-90-A,Proeess Design Lab.
    [168]龚淑华,刘祥官.模糊贝叶斯网络应用于预测高炉铁水含硅量变化趋势.[J].冶金自动化, 2005(1): 38.
    [169]刘学艺.基于贝叶斯网络的高炉炉温[Si]预测控制模型研究[D].杭州:浙江大学, 2004.
    [170]高小强,郑忠,黄庆周.高炉铁水含硅量和含硫量动力学预报研究[J].钢铁, 1995, 30(4): 10-13.
    [171]郜传厚,周志敏,邵之江.高炉冶炼过程的混沌性解析[J].物理学报, 2005, 54(4):1631-1635.
    [172]郜传厚,周志敏,邵之江.高炉铁水含硅量的混沌局部线性预测[J].金属学报, 2005, 4: 433-436.
    [173] Colorni A, Dorigo M, Maniezzo V. Distributed optimization by ant colonies: Proc Europ Conf Artif Life[C]. Paris: Elsevier Publishing, 1991,10(2):134-142.
    [174] Dorigo M, Gambardella L M. Ant Colony system: A cooperative learning approach to traveling salesman problem[J]. IEEE Trans Evolution Computation, 1997, 1(1): 53-56.
    [175] Colorni A, Dorigo M, Maniezo V. Ant system for job-shop scheduling[J]. Belgian J Oper Res Stat Comb Sci, 1994, 34: 39-53.
    [176] Maniezzo V, Colorni A. Ant system applied to the quadratic assignment problem[J]. IEEE Trans Knowl Data Eng, 1999, 1(5): 769-778.
    [177] Bilchev G, Parmee I C. The ant colony metaphor for searching continuous design spaces[J]. Lecture Notes in Computer Science, 1995, 99(3): 25-39.
    [178]杨勇,宋晓峰.蚁群算法求解连续空间优化问题[J].控制与决策, 2003, 18(5): 573-576.
    [179] Wang L, Wu Q. Linear system parameters identification based on ant system algorithm: Proceedings of the 2001 IEEE International Conference On Control Applications[C]. Mexico City: 2001:401-406.
    [180] Jun L Y, Jun W T. An adaptive ant colony system algorithm for continuous space optimization problems[J]. Journal of Zhejiang University Science, 2003, 4(1): 40-46.
    [181] Ling C, Jie S, Ling Q, et al. A method for solving optimization problems in continuous space using ant colony algorithm[J]. Lecture Notes in Computer Science, 2002, 2463: 288-289.
    [182]陈峻,沈洁,秦玲.蚁群算法求解连续空间优化问题的一种方法[J].软件学报, 2002, 13(12): 2317-2323.
    [183]汪镭,吴启迪.蚁群算法在系统辨识中的应用[J].自动化学报, 2003, 29(1): 102-109.
    [184]汪镭,吴启迪.蚁群算法在连续空间寻优问题求解中的应用[J].控制与决策, 2003, 18(1): 45-48.
    [185]李艳君,吴铁军.求解混杂生产调度问题的嵌套混合蚁群算法[J].自动化学报, 2003, 29(1): 95-101.
    [186]李艳君,吴铁军.连续空间优化问题的自适应蚁群系统算法[J].模式识别与人工智能, 2001, 14(4): 423-427.
    [187] Dréo J, Patrick S. A new ant colony algorithm using the heterarchical concept aimed at optimization of multiminima continuous functions: Proc of the 3rd Int Workshop on Ant Algorithms ANTS'2002[C]. Brussels: 2002,5(1)216-221.
    [188] Dréo J, Siarry P. Continuous interacting ant colony algorithm based on dense hierarchy[J]. Future Generation Computer Systems, 2004, 20(5): 841-856.
    [189] Bilchev G, Parmee I C. The ant colony metaphor for searching continuous desinn spaces [J]. Lecture Notes in Computer Science, 1995, 993: 25-39.
    [190] MonmarchéN, Venturini G, Slimane M. On how Pochycondyla apicalis ants suggest a new search algorithm[J]. Future Generation Computer systems, 2000, 16: 937-946.
    [191] Han K H K J. Quantum-inspired evolutionary algorithms with a new termination criterion gate, and two-phase scheme[J]. IEEE Transaction on Evolutionary computation, 2004,3(2) 1108-1112.
    [192]杨俊安,庄镇泉,史亮.多宇宙并行量子遗传算法[J].电子学报, 2004, 32(6): 923-928.
    [193]段海滨,马冠军,王道波.一种求解连续空间优化问题的改进蚁群算法[J].系统仿真学报, 2007, 19(5): 974-977.
    [194] Hyun K, Kim J H. Quantum-inspired evolutionary algorithm for a class of combinational optimization[J]. IEEE Transactions on Evolutionary Computing, 2002, 6(6): 580-593.
    [195]金兹伯格著,马东清等译.板带轧制工艺学[M].北京:冶金工业出版社, 2003.
    [196]王国栋,刘相华,王军生.冷连轧板形自动控制[J].轧钢, 2003, 20(4): 38-42.
    [197]孙一康,童朝南,彭开香.冷轧生产自动化技术[M].北京:冶金工业出版社, 2006.
    [198]王益样,尹国芳,孙旭光.板形信号模式识别方法的研究[J].机械工程学报, 2003, 39(8): 91-94.
    [199] Carlstedt A G, Keijser O. Modern approach To flatness measuremet and control in cold roiling[J]. Iron cool Steel Engineer, 1991, 68(1): 34-39.
    [200]乔俊飞,郭戈,柴天佑.板形模式识别的一种模糊识别方法[J].钢铁, 1998, 33(6): 36-41.
    [201] Peng Y, Liu H M. A neural network recognition method of shape pattern[J]. Journal of Iron and Steel Research, 2001, 8(1): 16-20.
    [202]张秀玲,刘宏民.板形模式识别的GA-BP模型和改进的最小二乘法[J].钢铁, 2003, 38(10): 29-34.
    [203]刘祥官,刘芳.高炉炼铁过程优化与智能控制系统[M].北京:冶金工业出版社, 2003.
    [204] Lvon R H. Machinery Noise and Diagnostics[M]. Boston: Butterworths, 1987.
    [205] Li L L, Zhou D H. Fast and robust fault diagnosis for a class of nonlinear system[J]. Computers and Chemical Engineering, 2004, 18(2): 2635-2646.
    [206] Common P. Independent component analysis—a new concept[J]. Signal Processing, 1994, 36: 287-314.
    [207] Kak S C. On quantum neural computing[J]. Information Sciences, 1995, 13(2): 143-160.
    [208] Karayiannis N B, Purushothaman G. Fuzzy pattern classfication using feedforward neural networks with multilevel hidden neural networks[J]. IEEE Transactions on Neural Neworks, 1994, 5(2): 127-132.
    [209] Poos A, Decker A. Heat balances and coke-consumption in the blast furnace[J]. Revue Universelle des Mines, 1959(15): 19-32.
    [210] Servin R, Poos A, Decker A. The application of a digital computer to the caculation of material and heat balances in the blast furnace[J]. Journal of the Iron crud Steel Institarte, 1962(200): 1261-1269.
    [211] Ridgion J M. Blast furnace heat balance in stages: development of a computer program[J]. Journal of the Iron and Steel Institute, 1962(200): 389-394.
    [212] Muchi I. Mathematical model of the blast furnace[J]. Transactions of the Iron and Steellnstitue of Japcrn, 1967, 7(7): 223-237.
    [213] Fielden C J, Wood B I. A dynamic digital simulation of the blast furnace[J]. Journal of the Iron and Steel Institute, 1968(206): 650-658.
    [214] Pekka I, Antti K, Matti S. Computer systems for controlling blast furnace operations at Rautaruukki[J]. Iron and Steel Engineer, 1995, 72(8): 44-52.
    [215] Druckenthaner H. Blast furnace automation for maximizing economy[J]. Steel Tines International, 1997, 21(1): 16-26.
    [216]刘云彩,张宗民,庄玉茹等.首钢2号高炉冶炼专家系统的开发与应用[J].炼铁, 1995, 14(6): 31-35.
    [217]安云沛,车玉满,刘方等.鞍钢4号高炉热状态专家系统的开发与应用[J].鞍钢技术, 1997(8): 6-9.
    [218]王荣贵.马钢2500m3高炉自动化控制系统设计与调试要点[J].钢铁设计, 1994, 4: 6-8.
    [219]刘祥官,刘芳,刘元和等.莱钢1号750m3高炉智能控制专家系统[J].钢铁, 2002, 37(8): 18-22.
    [220]宋建成.高炉炼铁理论与操作[M].北京:冶金工业出版社, 2005.
    [221] Gopathy P, Nicolaos B, Karayiannis N B. Quantum neural networks:Inherently fuzzy feedforward neural networks[J]. IEEE Transactionson Neural networks, 1997, 8(3): 679-693.
    [222] Jutten C, Herault J. ndependent component analysis versus PCA: European Signal Processing conference[C]. 1988: 287-413.
    [223] Narayanan A, Menneer T. Quantum artificial neural network architectures and components[J]. Information Scences, 2000, 28(3): 231-250.
    [224] Hyvarinen A, Oja E. Independent component analysis:algorithms and application[J]. Neural Networks, 1999, 13(4-5): 411-430.
    [225] Hyvarinen A. Fast and Robust fixed-point algorithms for independent component analysis[J]. IEEE Transactions of Neural Networks, 1999, 10(3): 626-634.
    [226]李芳.高炉异常炉况预报专家系统研究[D].重庆:重庆大学, 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700