用户名: 密码: 验证码:
伤寒与甲型副伤寒沙门菌的全菌蛋白质组学比较分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伤寒是第三世界国家威胁人们健康的重要问题,每年导致近60万人死亡。近年来,甲型副伤寒迅速流行,在一些省份超过伤寒成为优势菌型。伤寒和甲型副伤寒都是以人为唯一宿主的疾病,二者临床症状难于区分。共有基因芯片杂交的结果发现伤寒沙门菌和甲型副伤寒沙门菌的亲缘关系比其他血清型的沙门菌近得多。本文进行了伤寒沙门菌CT18和甲型副伤寒沙门菌ATCC9150基因组的生物信息学比对,分别得到413和489个特有蛋白编码基因。而在本文分析所使用的培养条件下,CT18与9150的二维蛋白电泳图谱比对分别得到74和154个各自特异蛋白点。CT18菌株的特有蛋白编码基因只有STY3673在CT18全谱蛋白点中发现表达。9150菌株的特有蛋白编码基因只有SPA1555和SPA0985在9150全谱蛋白点中发现表达。说明两株菌蛋白谱比较得到的特异点主要是由两者的共有基因编码,而不是主要由特异基因编码。菌株CT18特异的蛋白点中,6个蛋白编码基因在9150基因组中不存在或者是假基因,10个未在9150全蛋白谱中找到,但其编码基因在9150基因组中存在,47个蛋白在9150全蛋白谱中亦有表达,只是处于不同的修饰状态;菌株9150的特异蛋白点中,3个蛋白编码基因在CT18中不存在或者是假基因,81个蛋白编码基因没有在CT18全蛋白谱中找到,但其编码基因在CT18基因组中存在,77个蛋白在CT18中有表达,只是处于不同的修饰状态。提示,两者的蛋白组学差异,主要是由共有基因产物的不同修饰造成,提示了蛋白表达、发挥功能遵循了经济的原则,同样的基因编码产物可能发挥不同的功能。两株菌的特异蛋白点中,部分蛋白编码基因在对方是假基因,这些假基因造成了某些酶的功能的失活,导致一些合成或分解代谢通路的差异,比如本文中发现的由于假基因造成两株菌0-抗原成分双脱氧己糖的差异,组氨酸分解代谢的差异,和维生素C代谢的差异。进一步证实这两株不同血清型的菌株某些功能或者代谢通路的差异是由两者共有基因部分失去功能造成,而不是基因组特有基因引起,基因组的使用很节约。
     为了了解伤寒和甲型副伤寒沙门菌流行株之间的蛋白组学差异和进化关系,我们比较了四株伤寒之间和四株甲型副伤寒沙门菌之间的全菌蛋白二维电泳图谱。伤寒沙门菌CT18和国内三株分离于不同年代和地区的流行株的比较结果分别为,CT18与XJ19相比,各得到19和64个特异蛋白,CT18与906005相比,各得到28和54个特异蛋白,CT18与1321相比各得到27和36个特异蛋白。将菌株CT18的特异蛋白编码基因设计引物分别以其他三株流行菌株DNA为模板扩增结果发现,一个可能的DNA结合蛋白编码基因,在三株国内流行株扩增均为阴性,它位于CT18所包含的一个多耐药质粒PHCM1。提示这个质粒在这三个流行菌株可能不存在。四株伤寒沙门菌的比较发现,广西菌株1321与CT18的谱型相近,与XJ19和906005差距较大,由于广西和越南毗邻,二者在遗传上可能存在亲缘关系。
     对于甲型副伤寒沙门菌,9150与98-53相比各得到15和17个差异蛋白,和YN77相比各得到26和11个差异蛋白,和9A05036相比各得到13和10个差异蛋白。将9150中的特异蛋白编码基因为靶标,以国内菌株DNA为模板进行PCR扩增,结果只有9A05036的501,663蛋白点编码基因扩增阴性,此外,国内菌株中都有表达、而9150中没有表达的蛋白yeaG,其编码基因在9150基因组中不存在。综合四株菌各自的特异蛋白发现,在一些与渗透压有关的摄取系统蛋白,可能的毒力因子,与转录有关的蛋白表达上,国内三株流行株很接近,与菌株9150存在明显差异。
     另外,为筛选诊断用的伤寒和甲型副伤寒的外膜蛋白的特异抗原,将两者外膜蛋白进行了比较,谱型差异较大,但特异蛋白点的蛋白序列和基因序列比较发现这些特异蛋白点很少是由独有基因编码,大多由共有基因编码,虽然这亦有力证实基因组发挥功能遵循经济原则,但作为诊断用抗原,并不是最好选择。本文筛选到三株伤寒沙门菌都有表达、而在三株甲型副伤寒沙门菌均未见表达的一个脂蛋白,核酸和蛋白序列的blast比较发现它为伤寒沙门菌独有。对53株伤寒沙门菌和49株甲型副伤寒沙门菌的DNA进行该蛋白编码基因的PCR检测发现,伤寒沙门菌都扩增出目的条带,而甲型副伤寒沙门菌的扩增均为阴性。Western blot的结果显示它与伤寒病人的血清IgG显示了良好的反应,而与甲型副伤寒病人的血清反应微弱。提示它作为一个诊断用抗原是有希望的。
Typhoid fever was a major issue for public health in developing countries and caused about 600,000 people dead every year.Recently,paratyphoid fever became more severe than typhoid fever in some provinces in China and it is difficult to distinguish paratyphoid fever from typhoid fever only according to the symptoms caused by them.Micoarray data on shared genes indicated that S.paratyphi A and S.typhi are closely related.413 and 489 specific genes encoding different proteins were found respectively through the comparison of the genomes of S.typhi CT18 with S.paratyphi A ATCC9150.74 and 154 specific protein spots were identified with the comparison of their proteomics displayed on 2-D gels.Among the specific genes identified by genome analysis,only STY3673 gene was found expressing in proteomic spectrum of strain CT18,and SPA1555,SPA0985 expressed in strain ATCC 9150,suggesting that different protein expressing spectrum was mainly produced by modification of proteins but not specific genes contained in each genome.Within CT18 specific protein coding genes,6 genes were psuedogenes or absent in the genome of ATCC 9150,10 proteins did not express in ATCC 9150 strain but their ORFs were found present in the chromosome of ATCC 9150,47 proteins expressed in both strains were differently modified.For ATCC 9150 specific protein spots,3 were psedogenes or absent in CT18,81 proteins did not express in CT18 but their ORFs located in the chromosome DNA,77 proteins expressed both in CT18 and ATCC 9150 strains were differently modified.It is suggested that the proteomics difference between CT18 and ATCC 9150 was mainly due to different translational modification of different common genes during gene expression process indicating a economic usage of chromosome DNA in bacteria.One gene encoded different proteins with different functions.Among the specific protein spots some psuedogenes while present as active genes in the other strain caused the inactivation of the gene product,making the related metabolic pathway different.For example some genes related to the synthesis of O-antigen,catabolism of histidine and ascorbate were psuedogenes.
     To understand the genetic relationship of S.typhi and paratyphi A,Proteomics analysis of reference strain CT18 and 3 isolates in China was applied.19 and 64 specific protein spots were obtained between the CT18 and XJ19,28 and 54 specific spots were found between CT18 and 906005,27 and 36 specific proteins between CT18 and 1321, respectively.Primers were designed according to the sequence of the specific protein coding genes of CT18 and PCR was developed to identify these genes in China strains.As a result,one gene coding putative DNA binding protein present on the plasmid PHCM1 was not found in chromosome DNA of all China strains.It is showed the proteomics pattern of GX1321 were similar with that of CT18,while significant difference between XJ19 and 906005,indicating the close relationship in genetics between GX1321 strain and CT18 strain.
     With the analysis of proteomics between S.paratyphi A strain 9150 and China strains we found 15 and 17 specific proteins between 9150 and 98-53,26 and 11 proteins between 9150 and YN77,13 and 10 proteins between 9150 and 9A05036,respectively.Primers were designed according to the sequences of specific protein coding genes of 9150 and PCR was developed to check whether these genes present in China strains or not.As a result,spot number 501 and 663 were PCR amplification negative in 9A05036.Additional, a protein named yeaG,whose coding gene was not found in chromosome of 9150.
     Although it showed large diversity with comparing identified outer membrane proteins between S.typhi and S.paratyphi A,sequences of specific protein coding gene were conserved and only one specific protein of S.typhi was identified,named 90-38. Primers were designed according to its gene sequence,53 S.typhi strains and 49 S. paratyphi A strains were detected with PCR amplification,all S.typhi strains were positive except two,which can not agglutinate with 09 antiserum.All S.paratyphi A strains were negative.The protein was expressed in E.coli and purified.Western blot was carried out and it is showed a strong reaction with several sera from patients with typhoid fever and a weak reaction with people who had paratyphoid fever,which indicates that this protein is a potential candidate for developing diagnostic antigens in typhoid fever diagnosis.
引文
1 Girard MP,Steele D,Chaignat CL,et al,A review of vaccine research and development:human enteric infections.Vaccine.2006,24(15):2732-50
    2 Barrett TJ,Snyder JD,Blake PA,et al.Enzyme-linked immunosorbent assay for detection of Salmonella typhi Vi antigen in urine from typhoid patients.J Clin Microbiol.1982,15(2):235-7
    3 el Fattah MM,Hassan EM,Shaheen H,et al.Evaluation of enzyme-linked immunosorbent assay for detection of Salmonella typhi antigen and antibodies.J Egypt Public Health Assoc.1991,66(1-2):145-57
    4 Popoff MY,Bockem(u|¨)hl J,Gheesling LL.Supplement 2001(no.45) to the Kauffmann-White scheme.Res Microbiol.2003,154(3):173-4
    5 Ansong C,Yoon H,Norbeck AD,et al.Proteomics analysis of the causative agent of typhoid fever.J Proteome Res.2008,7(2):546-557
    6 闫梅英,梁未丽,李伟,et al.1995-2004年全国伤寒副伤寒的流行分析,2005,20(8)401-403
    7 Kidgell C,Reichard U,Wain J,et al,Salmonella typhi,the causative agent of typhoid fever,is approximately 50,000 years old.Infect Genet Evol.2002,2(1):39-45
    8 Kothapalli S,Nair S,Alokam S,et al,Diversity of Genome Structure in Salmonella enterica Serovar Typhi Populations.J Bacteriol.2005,187(8):2638-50
    9 Liu SL,Sanderson KE.Rearrangements in the genome of the bacterium Salmonella typhi.Proc Natl Acad Sci U S A.199534;92(4):1018o22
    10 Echeita MA,Usera MA.Chromosomal rearrangements in Salmonella enterica serotype typhi affecting molecular typing in outbreak investigations.J Clin Microbiol.1998,36(7):2123-6
    11 Ng I,Liu SL,Sanderson KE.Role of genomic rearrangements in producing new ribotypes of Salmonella typhi.J Bacteriol.1999,181(11):3536-41
    12 Thong KL,Cheong YM,Puthucheary S,et al.Epidemiologic analysis of sporadic Salmonella typhi isolates and those from outbreaks by pulsed-field gel electrophoresis. J Clin Microbiol. 1994,32(5): 1135-41
    13 Threlfall EJ, Torre E, Ward LR,et al. Insertion sequence IS200 fingerprinting of Salmonella typhi an assessment of epidemiological applicability. Epidemiol Infect. 1994, 112(2):253-61
    
    14 Navarro F, Llovet T, Echeita MA, Molecular typing of Salmonella enterica serovar Typhi. J Clin Microbiol. 1996, 34(11):2831-4
    
    15 Binnie RA, Zhang H, Mowbray S,et al. Functional mapping of the surface of Escherichia coli ribose-binding protein: mutations that affect chemotaxis and transport. Protein Sci. 1992, 1(12):1642-51
    16 Nair S, Schreiber E, Thong KL,et al.Genotypic characterization of Salmonella typhi by amplified fragment length polymorphism fingerprinting provides increased discrimination as compared to pulsed-field gel electrophoresis and ribotyping. J Microbiol Methods. 2000, 41(1):35-43
    17 Reeves MW, Evins GM, Heiba AA,et al. Clonal nature of Salmonella typhi and its genetic relatedness to other Salmonella as shown by multilocus enzyme electrophoresis, and proposal of Salmonella bongori comb, and proposal of Salmonella bongori comb nov. J Clin Microbiol. 1989,27(2):313-20
    18 Selander RK, Beltran P, Smith NH,et al.Evolutionary genetic relationships of clones of Salmonella serovars that cause human typhoid and other enteric fevers. Infect Immun. 1990, 58(7):2262-75
    19 Hafiz S, Khan SW, Shariff R, et al. Epidemiology of salmonellosis and its sensitivity in Karachi. J Pak Med Assoc. 1993, 43(9): 178-9
    20 Akinyemi KO, Coker AO, Olukoya DK, et al. Prevalence of multi-drug resistant Salmonella typhi among clinically diagnosed typhoid fever patients in Lagos, Nigeria. Z Naturforsch [C]. 2000, 55(5-6):489-93
    21 Threlfall EJ, Fisher IS, Berghold C, et al. Trends in antimicrobial drug resistance in Salmonella enterica serotypes Typhi and Paratyphi A isolated in Europe, 1999-2001. Int J Antimicrob Agents. 2003, 22(5):487-91
    22 Porwollik S, Boyd EF, Choy C, et al. Characterization of Salmonella enterica subspecies I genovars using microarrays. J Bacteriol. 2004, 186(17):5883-98
    23 Porwollik S, Wong RM, McClelland M. Evolutionary genomics of Salmonella: gene acquisitions revealed by microarray analysis. Proc Natl Acad Sci U S A. 2002 , 99(13):8956-61
    24 Boyd EF, Wang FS, Beltran P, et al. Salmonella reference collection B (SARB): strains of 37 serovars of subspecies I. J Gen Microbiol. 1993, 139 Pt 6:1125-32.
    25 Reeves P. Evolution of Salmonella O antigen variation by interspecific gene transfer on a large scale. Trends Genet. 1993, 9(1): 17-22
    26 Parkhill J, Dougan G, James KD,. et al. Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature. 2001 , 413(6858):848-52.
    27 Deng W, Liou SR, Plunkett G 3rd, et al. Comparative genomics of Salmonella enterica serovar Typhi strains Ty2 and CT18. J Bacteriol. 2003, 185(7):2330-7
    28 Han MJ, Lee SY. The Escherichia coli Proteome: Past, Present, and Future Prospects. Microbiol Mol Biol Rev. 2006, 70(2):362-439
    29 Ansong C, Yoon H, Norbeck AD,et al. Proteomics Analysis of the Causative Agent of Typhoid Fever.journal of proteome research. J Proteome Res. 2008 , 7(2):546-57
    30 Xiang SH, Haase AM, Reeves PR.Variation of the rfb Gene Clusters in Salmonella enterica. J Bacteriol. 1993, 175(15):4877-84
    31 Verma NK, Quigley NB, Reeves PR. O-Antigen Variation in Salmonella spp.: rfb Gene Clusters of Three Strains. J Bacteriol. 1988, 170(1):103-7
    
    32 Verma N, Reeves P. Identification and Sequence of rfbS and rfbE, Which Determine Antigenic Specificity of Group A and Group D Salmonellae. J Bacteriol. 1989 , 171(10):5694-701
    33 Liu D, Verma NK, Romana LK,et al. Relationships among the rfb Regions of Salmonella Serovars A, B, and D, J Bacteriol. 1991, 173(15):4814-9
    34 Marolda CL, Valvano MA. Genetic Analysis of the dTDP-Rhamnose Biosynthesis Region of the Escherichia coli VW187 (O7:K1) rfb Gene Cluster: Identification of Functional Homologs of rfbB and rfbA in the rff Cluster and Correct Location of the rffE Gene. J Bacteriol. 1995, 177(19):5539-46
    35 Rick PD, Wolski S, Barr K,et al. Accumulation of a Lipid-Linked Intermediate Involved in Enterobacterial Common Antigen Synthesis in Salmonella typhimurium Mutants Lacking dTDP-Glucose Pyrophosphorylase. J Bacteriol. 1988 , 170(9):4008-14
    36 Mitchison M, Bulach DM, Vinh T, et al. Identification and Characterization of the dTDP-Rhamnose Biosynthesis and Transfer Genes of the Lipopolysaccharide-Related rfb Locus in Leptospira interrogans Serovar Copenhageni. J Bacteriol. 1997, 179(4): 1262-7
    37 Tsukioka Y, Yamashita Y, Oho T, et al. Biological Function of the dTDP-Rhamnose Synthesis Pathway in Streptococcus mutans. J Bacteriol. 1997, 179(4): 1126-34
    38 Kidgell C, Pickard D, Wain J et al. Characterisation and distribution of a cryptic Salmonella typhi plasmid pHCM2. Plasmid. 2002, 47(3): 159-71
    39 Blumenberg M, Magasanik B. Physical Maps of Klebsiella aerogenes and Salmonella typhimurium hut genes. J Bacteriol. 1981, 145(1):664-7
    40 Zhang XX, Rainey PB. Genetic Analysis of the Histidine Utilization (hut) Genes in Pseudomonas fluorescens SBW25. Genetics. 2007, 176(4):2165-76
    41 Liveris D, Klotsky RA, Schwartz I. Growth Rate Regulation of Translation Initiation Factor IF3 Biosynthesis in Escherichia coli. J Bacteriol. 1991 , 173(12):3888-93
    42 Pramanik A, Wertheimer SJ, Schwartz JJ,et al. Expression of Escherichia coli infC: Identification of a Promoter in an Upstream thrS Coding Sequence. J Bacteriol. 1986 , 168(2):746-51
    43 Butler JS, Springer M, Dondon J,et al. Escherichia coli protein synthesis initiation factor IF3 controls its own gene expression at the translational level in vivo. J Mol Biol. 1986 , 192(4):767-80
    44 Sacerdot C, Chiaruttini C, Engst K,et al. The role of the AUU initiation codon in the negative feedback regulation of the gene for translation initiation factor IF3 in Escherichia coli. Mol Microbiol. 1996 , 21(2):331-46
    45 Butler JS, Springer M, Grunberg-Manago M. AUU-to-AUG mutation in the initiator codon of the translation initiation factor IF3 abolishes translational autocontrol of its own gene (infC) in vivo. Proc Natl Acad Sci U S A. 1987 , 84(12):4022-5
    46 Sacerdot C, de Cock E, Engst K,et al. Mutations that alter initiation codon discrimination by Escherichia coli initiation factor IF3. J Mol Biol. 1999, 288(5):803-10
    47 Sussman JK, Simons EL, Simons RW. Escherichia coli translation initiation factor 3 discriminates the initiation codon in vivo. Mol Microbiol. 1996 , 21(2):347-60
    48 Brombach M, Pon CL. The unusual translational initiation codon AUU limits the expression of the infC (initiation factor IF3) gene of Escherichia coli. Mol Gen Genet. 1987, 208(1-2):94-l00
    49 Gonzalez M, Andrews E, Folch H,et al. Cloning, expression and immunogenicity of the translation initiation factor 3 homologue of Brucella abortus. Immunobiology. 2009, 214(2): 113-20
    
    50 Cabrera A, Saez D, Cespedes S. Vaccination with recombinant Semliki Forest virus particles expressing translation initiation factor 3 of Brucella abortus induces protective immunity in BALB/c mice. Immunobiology. 2009 Jan 16
    
    51 Arsene F, Tomoyasu T, Bukau B. The heat shock response of Escherichia coli. Int J Food Microbiol. 2000, 55(1-3):3-9
    
    52 Lund PA. Microbial molecular chaperones. Adv Microb Physiol. 2001, 44:93-140
    
    53 Van Dyk TK, Gatenby AA, LaRossa RA. Demonstration by genetic suppression of interaction of GroE products with many proteins. Nature. 1989, 342(6248):451 -3
    
    54 Fisher MT. GroE chaperonin-assisted folding and assembly of dodecameric glutamine synthetase. Biochemistry (Mosc). 1998, 63(4):382-98
    
    55 Buchmeier NA, Heffron F. Induction of Salmonella stress proteins upon infection of macrophages. Science. 1990, 248(4956):730-2
    
    56 Tang SW, Abubakar S, Devi S,et al. Induction and Characterization of Heat Shock Proteins of Salmonella typhi and Their Reactivity with Sera from Patients with Typhoid Fever. Infect Immun. 1997, 65(7):2983-6
    57 Fayet O, Ziegelhoffer T, Georgopoulos C. The groES and groEL Heat Shock Gene Products of Escherichia coli Are Essential for Bacterial Growth at All Temperatures. J Bacteriol. 1989, 171(3): 1379-85
    58 Fothergill-Gilmore LA, Watson HC. The phosphoglycerate mutases. Adv Enzymol Relat Areas Mol Biol. 1989, 62:227-313
    59 van der Oost J, Huynen MA, Verhees CH. Molecular characterization of phosphoglycerate mutase in archaea. FEMS Microbiol Lett. 2002 , 212(1): 111-20
    60 Johnsen U, Schonheit P. Characterization of cofactor-dependent and cofactor-independent phosphoglycerate mutases from Archaea. Extremophiles. 2007, 11(5):647-57
    61 Song L, Xu Z, Yu X. Molecular cloning and characterization of a phosphoglycerate mutase gene from Clonorchis sinensis. Parasitol Res. 2007, 101(3):709-14
    62 Zhang J, Yu L, Fu Q.et al. Mouse phosphoglycerate mutase M and B isozymes: cDNA cloning, enzyme activity assay and mapping. Gene. 2001, 264(2): 273-9
    63 Nairn J, Price NC, Kelly SM.et al. Phosphoglycerate mutase from Schizosaccharomyces pombe: development of an expression system and characterisation of three histidine mutants of the enzyme. Biochim Biophys Acta. 1996, 1296(1):69-75
    64 Bond CS, White MF, Hunter WN. Mechanistic implications for Escherichia coli cofactor-dependent phosphoglycerate mutase based on the high-resolution crystal structure of a vanadate complex. J Mol Biol. 2002 , 316(5): 1071 -81
    65 Winn SI, Watson HC, Harkins RN. et al.Structure and activity of phosphoglycerate mutase. Philos Trans R Soc Lond B Biol Sci. 1981, 293(1063): 121-30
    66 Wang JL, Walling LL, Jauh GY,et al. Lily cofactor-independent phosphoglycerate mutase: purification, partial sequencing, and immunolocalization. Planta. 1996, 200(3):343-52
    
    67 Tatton WG, Chalmers-Redman RM, Elstner M,et al. Glyceraldehyde-3-phosphate dehydrogenase in neurodegeneration and apoptosis signaling. J Neural Transm Suppl. 2000, (60):77-100
    68 Sirover MA. New insights into an old protein: the functional diversity of mammalian glyceraldehyde-3-phosphate dehydrogenase. Biochim Biophys Acta. 1999 , 1432(2): 159-84
    
    69 Sirover MA. Role of the glycolytic protein, glyceraldehyde-3-phosphate dehydrogenase, in normal cell function and in cell pathology. J Cell Biochem. 1997, 66(2): 133-40
    70 Sirover MA. Minireview. Emerging new functions of the glycolytic protein, glyceraldehyde-3-phosphate dehydrogenase, in mammalian cells. Life Sci. 1996, 58(25):2271-7
    71 Mazzola JL, Sirover MA. Alteration of intracellular structure and function of glyceraldehyde-3-phosphate dehydrogenase: a common phenotype of neurodegenerative disorders? Neurotoxicology. 2002 , 23(4-5):603-9
    
    72 Briine B, Lapetina EG. Protein thiol modification of glyceraldehyde-3-phosphate dehydrogenase as a target for nitric oxide signaling. Genet Eng (N Y). 1995, 17:149-64
    73 Chuang DM, Hough C, Senatorov VV. Glyceraldehyde-3-phosphate dehydrogenase, apoptosis, and neurodegenerative diseases. Annu Rev Pharmacol Toxicol. 2005, 45:269-90
    74 Pancholi V, Chhatwal GS. Housekeeping enzymes as virulence factors for pathogens. Int J Med Microbiol. 2003 , 293(6):391-401
    75 Hindahl MS, Crockford GW, Hancock RE. Outer Membrane Protein NmpC of Escherichia coli: Pore-Forming Properties in Black Lipid Bilayers. J Bacteriol. 1984 , 159(3): 1053-5
    76 Lee DR, Schnaitman CA.. Comparison of Outer Membrane Porin Proteins Produced by Escherichia coli and Salmonella typhimurium. J Bacteriol. 1980 , 142(3): 1019-22
    77 Prilipov A, Phale PS, Koebnik R,et al. Identification and characterization of two quiescent porin genes, nmpC and ompN, in Escherichia coli BE. J Bacteriol. 1998 . 180(13):3388-92
    78 Highton PJ, Chang Y, Marcotte WR Jr,et al. Evidence that the Outer Membrane Protein Gene nmpC of Escherichia coli K-12 Lies Within the Defective qsr' Prophage. J Bacteriol. 1985, 162(1):256-62
    79 Blasband AJ, Marcotte WR Jr, Schnaitman CA. Structure of the lc and nmpC outer membrane porin protein genes of lambdoid bacteriophage. J Biol Chem. 1986 . 261(27): 12723-32
    80 Alves-Pereira I, Canales J, Cabezas A,et al. CDP-Alcohol Hydrolase, a Very Efficient Activity of the 5-Nucleotidase/UDP-Sugar Hydrolase Encoded by the ushA Gene of Yersinia intermedia and Escherichia coli. J Bacteriol. 2008 , 190(18):6153-61.
    81 Innes D, Beacham IR, Burns DM. The role of the intracellular inhibitor of periplasmic UDP-sugar hydrolase (5'-nucleotidase) in Escherichia coli: cytoplasmic localisation of 5'-nucleotidase is conditionally lethal. J Basic Microbiol. 2001, 41(6):329-37
    82 Burns DM, Beacham IR. Nucleotide sequence and transcriptonal analysis of the E. coi ushA gene, encoding periplamc UDP-sugr hydrolase (5'-nucleotidase): regulation of the ushA gene, and the signal sequence of its encoded protein product. Nucleic Acids Res. 1986, 14(10):4325-42
    83 Edwards CJ, Innes DJ, Burns DM,et al. UDP-sugar hydrolase isozymes in Salmonella enterica and Escherichia coli: silent alleles of ushA in related strains of group I Salmonella isolates, and of ushB in wild-type and K12 strains of E. coli, indicate recent and early silencing events, respectively. FEMS Microbiol Lett. 1993 , 114(3):293-8
    84 Burns DM, Beacham IR. Identification and sequence analysis of a silent gene (ushAO) in Salmonella typhimurium. J Mol Biol. 1986 , 192(2): 163-75
    85 Innes D, Beacham IR, Beven CA,,et al. The cryptic ushA gene (ushAc) in natural isolates of Salmonella enterica (serotype Typhimurium) has been inactivated by a single missense mutation. Microbiology. 2001 , 147(Pt 7): 1887-96
    86 Lindquist L, Kaiser R, Reeves PR,et al. Purification, characterization and HPLC assay of Salmonella glucose-1-phosphate thymidylyl-transferase from the cloned rfbA gene, Eur J Biochem. 1993, 211(3):763-70
    87 Jiang XM, Neal B, Santiago F,et al. Structure and sequence of the rfb (O antigen) gene cluster of Salmonella serovar typhimuriunfi (strain LT2), Mol Microbiol. 1991 , 5(3):695-713.
    88 Macpherson DF, Manning PA, Morona R Characterization of the dTDP-rhamnose biosynthetic genes encoded in the rfb iocus of Shigella flexneri. Mol Microbiol. 1994 , 11(2):281-92
    89 Klena JD, Schnaitman CA. Function of the rfb gene cluster and the rfe gene in the synthesis of O antigen by Shigeiia dysenteriae 1. Mol Microbiol. 1993 . 9(2):393-402
    91 Weber A, Kogl SA, Jung K. Time-Dependent Proteome Alterations under Osmotic Stress during Aerobic and Anaerobic Growth in Escherichia coli. J Bacteriol. 2006,188(20):7165-75
    92 Hindupur A, Liu D, Zhao Y,et al. The crystal structure of the E. coli stress protein YciF, Protein Sci. 2006 , 15(11):2605-11
    
    93 Ibanez-Ruiz M, Robbe-Saule V, Hermant D,et al. Identification of RpoS (sigma(S))-regulated genes in Salmonella enterica serovar typhimurium, J Bacteriol ,2000, 182(20)5749-5756
    94 Kim SY, Nishioka M, Hayashi S,,et al. The Gene yggE Functions in Restoring Physiological Defects of Escherichia coli Cultivated under Oxidative Stress Conditions, Appl Environ Microbiol. 2005, 71(5):2762-5
    95 Ojima Y, Kawase D, Nishioka M, Taya M. Functionally undefined gene, yggE, alleviates oxidative stress generated by monoamine oxidase in recombinant Escherichia coli. Biotechnol Lett. 2009 , 31(1): 139-45
    96 细胞生物学,王金发编著,科学出版社,北京2003, 第一版, 229-250
    97 Nowotny V, Nierhaus KH. Assembly of the 30S subunit from Escherichia coli ribosomes occurs via two assembly domains which are initiated by S4 and S7. Biochemistry. 1988, 27(18):7051-5
    98 Robert F, Gagnon M, Sans D,et al. Mapping of the RNA recognition site of Escherichia coli ribosomal protein S7, RNA. 2000 , 6(11):1649-59
    99 Robert F, Brakier-Gingras L. Ribosomal protein S7 from Escherichia coli uses the same determinants to bind 16S ribosomal RNA and its messenger RNA. Nucleic Acids Res. 2001 , 29(3):677-82
    100 Golovin A, Spiridonova V, Kopylov A. Mapping contacts of the S12-S7 intercistronic region of str operon mRNA with ribosomal protein S7 of E. coli. FEBS Lett. 2006, 580(25):5858-62
    
    101 Vartikar JV, Draper DE. S4-16 S ribosomal RNA complex. Binding constant measurements and specific recognition of a 460-nucleotide region. J Mol Biol. 1989 , 209(2):221-34
    102 Andersson DI, Bohman K, Isaksson LA,et al. Translation rates and misreading characteristics of rpsD mutants in Escherichia coli. Mol Gen Genet. 1982, 187(3):467-72.
    103 Olsson MO, Isaksson LA. Analysis of rpsD mutations in Escherichia coli. IV. Accumulation of minor forms of protein S7(K) in ribosomes of rpsD mutant strains due to translational read-through. Mol Gen Genet. 1980 , 177(3):485-91
    104 Jinks-Robertson S, Nomura M. Ribosomal protein S4 acts in trans as a translational repressor to regulate expression of the alpha operon in Escherichia coli, J Bacteriol. 1982, 151(1):193-202
    105 Grundy FJ, Henkin TM. Characterization of the Bacillus subtilis rpsD regulatory target site. J Bacteriol. 1992 , 174(21):6763-70
    106 Balashov S, Humayun MZ. Escherichia coli Cells Bearing a Ribosomal Ambiguity Mutation in rpsD Have a Mutator Phenotype That Correlates with Increased Mistranslation. J Bacteriol. 2003, 185(16):5015-8
    
    107 Torres M, Condon C, Balada JM,et al.Ribosomal protein S4 is a transcription factor with properties remarkably similar to NusA,a protein involved in both non-ribosomal and ribosoma RNA antitermination. EMBO J. 2001 , 20(14):3811-20
    108 Zhang C, Ondeyka JG, Zink DL,et al. Discovery of okilactomycin and congeners from Streptomyces scabrisporus by antisense differential sensitivity assay targeting ribosomal protein S4. J Antibiot (Tokyo). 2009 , 62(2):55-61
    109 Miyamoto A, Usui M, Yamasaki N. Role of the N-terminal region of ribosomal protein S7 in its interaction with 16S rRNA which binds to the concavity formed by the beta-ribbon arm and the alpha-helix. Eur J Biochem. 1999 , 266(2):591 -8
    110 Surdina AV, Rassokhin TI, Golovin AV,et al. Selection of random RNA fragments as method for searching for a site of regulation of translation of E. coli streptomycin mRNA by ribosomal protein S7. Biochemistry (Mosc). 2008 , 73(6):652-9
    111 Saito K, Nomura M. Post-transcriptional regulation of the str operon in Escherichia coli. Structural and mutational analysis of the target site for translational repressor S7. J Mol Biol. 1994, 235(1):125-39
    112 Saito K, Mattheakis LC, Nomura M. Post-transcriptional regulation of the str operon in Escherichia coli. Ribosomal protein S7 inhibits coupled translation of S7 but not its independent translation. J Mol Biol. 1994, 235(1):111-24
    113 Grondek JF, Culver GM.. Assembly of the 30S ribosomal subunit: Positioning ribosomal protein S13 in the S7 assembly branch. RNA. 2004 , 10(12):1861-6
    114 Robert F, Brakier-Gingras L. A functional interaction between ribosomal proteins S7 and S11 within the bacterial ribosome. J Biol Chem. 2003 , 278(45):44913-20
    115 Devaraj A, Shoji S, Holbrook ED, Fredrick K. A role for the 30S subunit E site in maintenance of the translational reading frame. RNA. 2009 , 15(2):255-65
    116 Florova G, Kazanina G, Reynolds KA. Enzymes involved in fatty acid and polyketide biosynthesis in Streptomyces glaucescens: role of FabH and FabD and their acyl carrier protein specificity. Biochemistry. 2002 , 41(33):10462-71
    117 Nie Z, Perretta C, Lu J, Su Y, et al. Structure-based design, synthesis, and study of potent inhibitors of beta-ketoacyl-acyl carrier protein synthase III as potential antimicrobial agents. J Med Chem. 2005 , 48(5): 1596-609.
    118 Castillo YP, Perez MA. Bacterial beta-ketoacyl-acyl carrier protein synthase III (FabH): an attractive target for the design of new broad-spectrum antimicrobial agents. Mini Rev Med Chem. 2008 , 8(1):36-45
    119 Ashek A, Cho SJ. A combined approach of docking and 3D QSAR study of beta-ketoacyl-acyl carrier protein synthase III (FabH) inhibitors. Bioorg Med Chem. 2006, 14(5): 1474-82
    120 Qiu X, Janson CA, Konstantinidis AK,et al. Crystal structure of beta-ketoacyl-acyl carrier protein synthase III. A key condensing enzyme in bacterial fatty acid biosynthesis. J Biol Chem. 1999 , 274(51):36465-71
    121 Tabor CW, Tabor H, Xie QW. Spermidine synthase of Escherichia coli: Localization of the speE gene. Proc Natl Acad Sci U S A. 1986 , 83(16):60404
    
    122 Halaris A, Plietz J. Agmatine : metabolic pathway and spectrum of activity in brain. CNS Drugs. 2007, 21(11):885-900
    
    123 Kim KH, Ahn HJ, Kim DJ,et al. Expression, crystallization and preliminary X-ray crystallographic analysis of human agmatinase. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2005, 61(Pt 10):889-91
    
    124 Ahn HJ, Kim KH, Lee J,et al. Crystal structure of agmatinase reveals structural conservation and inhibition mechanism of the ureohydrolase superfamily. J Biol Chem.2004, 279(48):50505-13
    
    125 Reis DJ, Regunathan S. Is agmatine a novel neurotransmitter in brain? Trends Pharmacol Sci. 2000 , 21(5):187-93.
    
    126 Regunathan S. Agmatine: biological role and therapeutic potentials in morphine analgesia and dependence. AAPS J. 2006 , 8(3):E479-84
    
    127 Sastre M, Regunathan S, Galea E,et al. Agmatinase activity in rat brain: a metabolic pathway for the degradation of agmatine. JNeurochem. 1996 , 67(4):1761-5
    
    128 Carvajal N, Lopez V, Salas M,et al. Manganese is essential for catalytic activity of Escherichia coli agmatinase. Biochem Biophys Res Commun. 1999 , 258(3):808-ll.
    
    129 Carvajal N, Orellana MS, Salas M,et al. Kinetic studies and site-directed mutagenesis of Escherichia coli agmatinase. A role for Glu274 in binding and correct positioning of the substrate guanidinium group. Arch Biochem Biophys. 2004, 430(2):185-90
    
    130 Salas M, Lopez V, Uribe E,et al. Studies on the interaction of Escherichia coli agmatinase with manganese ions: structural and kinetic studies of the H126N and H151N variants. J Inorg Biochem. 2004 , 98(6): 1032-6
    
    131 Salas M, Rodriguez R, Lopez N,et al. Insights into the reaction mechanism of Escherichia coli agmatinase by site-directed mutagenesis and molecular modeling. Eur J Biochem. 2002, 269(22):5522-6
    
    132 Valentin-Hansen P, Boetius F, Hammer-Jespersen K,,et al. The Primary Structure of Escherichia coli K12 2-Deoxyribose 5-Phosphate Aldolase Nucleotide Sequence of the deoC Gene and the Amino Acid Sequence of the Enzyme, Eur J Biochem. 1982 , 125(3):561-6
    133 Jargiello P, Hoffee P. Orientation of the deo Genes and the serB Locus in Salmonella typhimurium, J Bacteriol. 1972, 111(1):296-7
    134 Valentin-Hansen P, Hammer K, Love Larsen JE, et al. The internal regulated promoter of the deo operon of Escherichia coli K-12. Nucleic Acids Res. 1984 , 12(13):5211-24
    
    135 Robertson BC, Jargiello P, Blank J,et al. Genetic Regulation of Ribonucleoside and Deoxyribonucleoside Catabolism in Salmonelka typhimurium, J Bacteriol. 1970 , 102(3):628-35
    136 Valentin-Hansen P, Hammer-Jespersen K, Boetius F,et al. Structure and function of the intercistronic regulatory deoC-deoA element of Escherichia coli K-12, EMBO J. 1984, 3(1): 179-83
    137 Mayer A, Tanner ME. Intermediate release by ADP-L-glycero-D-manno-heptose 6-epimerase. Biochemistry. 2007, 46(20):6149-55
    138 Wegener G, Krause U. Different modes of activating phosphofructokinase, a key regulatory enzyme of glycolysis, in working vertebrate muscle. Biochem Soc Trans. 2002, 30(2):264-70
    139 Daldal F.Nucleotide sequence of gene pfkB encoding the minor phosphofructokinase of Escherichia coli K-12.Gene. 1984, 28(3):337-42
    140 Daldal F. Molecular cloning of the gene for phosphofructokinase-2 of Escherichia coli and the nature of a mutation, pfkB1, causing a high level of the enzyme. J Mol Biol. 1983 , 168(2):285-305
    141 Peskov K, Goryanin I, Demin O. Kinetic model of phosphofructokinase-1 from Escherichia coli. J Bioinform Comput Biol. 2008, 6(4):843-67
    142 Sola-Penna M, dos Santos AC, Alves GG,et al. A radioassay for phosphofructokinase-1 activity in cell extracts and purified enzyme. J Biochem Biophys Methods. 2002 , 50(2-3): 129-40
    143 Ronimus RS, Morgan HW. The biochemical properties and phylogenies of phosphofructokinases from extremophiles. Extremophiles. 2001, 5(6):357-73
    144 Cabrera R, Ambrosio AL, Garratt RC,et al. Crystallographic structure of phosphofructokinase-2 from Escherichia coli in complex with two ATP molecules. Implications for substrate inhibition. J Mol Biol. 2008 , 383(3):588-602
    145 Fenton AW, Reinhart GD. Mechanism of substrate inhibition in Escherichia coli phosphofructokinase.Biochemistry.2003,42(43):12676-81
    146 Fenton AW,Reinhart GD.Isolation of a single activating allosteric interaction in phosphofructokinase from Escherichia coli.Biochemistry.2002,41(45):13410-6
    147 生物化学,主编,周爱儒,查锡良,人民卫生出版社,北京,1978,12月第一版,2004,1月第6次印刷
    148 Bosca L,Aragon JJ,Sols A.Modulation of muscle phosphofructokinase at physiological concentration of enzyme.J Biol Chem.1985,260(4):2100-7
    14 El-Maghrabi MR,Noto F,Wu N,et al.6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase:suiting structure to need,in a family of tissue-specific enzymes.Curr Opin Clin Nutr Metab Care.2001,4(5):411-8
    150 Michels PA,Rigden DJ.Evolutionary analysis of fructose 2,6-bisphosphate metabolism.IUBMB Life.2006,58(3):133-41
    151 Davalos-Garcia M,Conter A,Toesca I,et al.Regulation of osmC Gene Expression by the Two-Component System rcsB-rcsC in Escherichia coll.J Bacteriol.2001,183(20):5870-6
    152 Park SC,Pham BP,Van Duyet L,et al.Structural and functional characterization of osmotically inducible protein C(OsmC) from Thermococcus kodakaraensis KOD1.Biochim Biophys Acta.2008,1784(5):783-8
    153 Lesniak J,Barton WA,Nikolov DB.Structural and functional features of the Escherichia coli hydroperoxide resistance protein OsmC.Protein Sci.2003,12(12):2838-43
    154 Atichartpongkul S,Loprasert S,Vattanaviboon P,et al.Bacterial Ohr and OsmC paralogues define two protein families with distinct functions and patterns of expression.Microbiology.2001,147(Pt 7):1775-82
    155 Toesca I,Petard C,Bouvier J,et al.The transcriptional activator NhaR is responsible for the osmotic induction of osmC(p1),a promoter of the stress-inducible gene osmC in Escherichia coli.Microbiology.2001,147(Pt 10):2795-803
    156 Gordia S,Gutierrez C.Growth-phase-dependent expression of the osmotically inducible gene osmC of Escherichia coli K-12.Mol Microbiol.1996,19(4):729-36
    157 Encheva V,Wait R,Gharbia SE,et al.Proteome analysis of serovars Typhimurium and Pullorum of Salmonella enterica subspecies I.BMC Microbiol.2005,5,42
    158 Sperandio V,Torres AG,Giron JA,et al.Quorum sensing is a global regulatory mechanism in enterohemorrhagic Escherichia coli O157:H7. J. Bacteriol. 2001,183(17):5187-5197
    159 Xavier KB, Bassler BL.LuxS quorum sensing: more than just a numbers game.Curr Opin Microbiol. 2003,6(2): 191-197
    160 Wang L, Li J, March JC, et al.luxS-dependent gene regulation in Escherichia coli K-12 revealed by genomic expression profiling. J Bacteriol. 2005,187(24):8350-8360
    161 Hekstra D, Tommassen J.Functional exchangeability of the ABC proteins of the periplasmic binding protein-dependent transport systems Ugp and Mal of Escherichia coli. J Bacteriol. 1993,175(20):6546-6552
    162 crosa JH,Brenner DJ,Ewing WH, et al.Molecular relationships among Salmonelleae.J bacterial. 1973,115(1):307-315
    163 Edwards RA.Olsen GJ,Maloy SR.Comparative genomics of closely related salmonellae.Trends Microbiol. 2002,10(2):94-99
    164 Abou-Sabe M, Pilla J, Hazuda D,et al. Evolution of the D-Ribose Operon of Escherichia coli B/r. J Bacteriol. 1982 , 150(2):762-9
    165 Tagourti J, Landoulsi A, Richarme G. Cloning, expression, purification and characterization of the stress kinase YeaG from Escherichia coli. Protein Expr Purif. 2008 , 59(1):79-85
    166 Checroun C, Gutierrez C. Sigma(s)-dependent regulation of yehZYXW, which encodes a putative osmoprotectant ABC transporter of Escherichia coli. FEMS Microbiol Lett. 2004 , 236(2):221-6
    167 Massi MN, Shirakawa T, Gotoh A, et al. Identification and sequencing of Salmonella enterica serotype typhi isolates obtained from patients with perforation and non-perforation typhoid fever. Southeast Asian J Trop Med Public Health. 2005, 36(1):118-22
    168 Krogh K, Hermansen NO, Wathne KO. Typhoid and paratyphoid fever in children. Tidsskr Nor Laegeforen. 2005 ,125(12): 1640-2
    169 Manson-Bahr PEC, Bell DR. Manson's tropical diseases, 19th edn. London: Bailliere-Tindall, 1987,194-206
    170 Gilman RH, Terminel M, Levine MM, et al. Comparison of relative efficacy of blood, stool, urine, bone marrow and rose spot cultures for recovery of Salmonella typhi in typhoid fever. Lancet 1975,1:1211-1215
    171 Geddes AM. Unexplained fever. BMJ 1974,4:397-398
    172 Boomsma LJ, Guinee PA, Jansen WH, et al. Value of the Widal test in the diagnosis of typhoid fever in an endemic area and suggestions for a modification. A preliminary study.Trop Geogr Med. 1988,40(2): 103-8
    173 Patil AM, Kulkarni ML, Kulkarni AM . Baseline Widal titres in healthy children.Indian J Pediatr. 2007 ,74(12): 1081-3
    174 Taiwo SS, Fadiora SO, Oparinde DP, et al. Widal agglutination titres in the diagnosis of typhoid fever. West Afr J Med. 2007 ,26(2):97-101
    175 Reynolds DW, Carpenter RL, Simon WH. Diagnostic specificity of Widal's reaction for typhoid fever. JAMA 1970,214:2192-2193
    176 Hoffman SL, Flanigan TP, Klancke D, et al. The Widal slide agglutination test, a valuable rapid diagnostic test in typhoid fever patients at the infectious disease hospital in Jakarta. Am J Epidemiol 1986,123:869-875
    177 Olopoenia LA, King AL. Widal agglutination test — 100 years later: still plagued by controversy. Postgrad Med J. 2000 ,76(892):80-4
    178 Massi MN, Shirakawa T, Gotoh A, et al. Rapid diagnosis of typhoid fever by PCR assay using one pair of primers from flagellin gene of Salmonella typhi. J Infect Chemother. 2003 ,9(3):233-7
    179 Ali K, Zeynab A, Zahra S, et al. Development of an ultra rapid and simple multiplex polymerase chain reaction technique for detection of Salmonella typhi. Saudi Med J. 2006 ,27(8): 1134-8
    180 Haque A, Ahmed N, Peerzada A, et al. Utility of PCR in diagnosis of problematic cases of typhoid. Jpn J Infect Dis. 2001 ,54(6):237-9
    181 Cocolin L, Manzano M, Astori G, et al. A highly sensitive and fast non-radioactive method for the detection of polymerase chain reaction products from Salmonella serovars, such as Salmonella typhi, in blood specimens. FEMS Immunol Med Microbiol. 1998 ,22(3):233-9
    182 Zhu Q, Lim CK, Chan YN. Detection of Salmonella typhi by polymerase chain reaction. J Appl Bacteriol. 1996 ,80(3):244-51
    183 Song JH, Cho H, Park MY, et al. Detection of Salmonella typhi in the blood of patients with typhoid fever by polymerase chain reaction. J Clin Microbiol. 1993 ,31(6): 1439-43
    184 Tan S, Tan HT, Chung MC . Membrane proteins and membrane proteomics. Proteomics. 2008 , 8(19):3924-32
    185 Bond PJ, Sansom MS. The simulation approach to bacterial outer membrane proteins. Mol Membr Biol. 2004 , 21(3):151-61
    
    186 Mogensen JE, Otzen DE. Interactions between folding factors and bacterial outer membrane proteins. Mol Microbiol. 2005, 57(2):326-46
    
    187 Koebnik R, Locher KP, Van Gelder P. Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Mol Microbiol. 2000 , 37(2):239-53
    
    188 Stock JB, Ninfa AJ, Stock AM. Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev. 1989 , 53(4):450-90
    
    189 Kustos I, Kocsis B, Kilar F. Bacterial outer membrane protein analysis by electrophoresis and microchip technology. Expert Rev Proteomics. 2007 , 4(1):91-106
    
    190 Aguero J, Mora G, Mroczenski-Wildey MJ, et al. Cloning, expression and characterization of the 36 KDal Salmonella typhi porin gene in Escherichia coli. Microb Pathog. 1987, 3(6):399-407.
    
    191 Chanana V, Majumdar S, Ray P,et al. Coordinated expression and immunogenicity of an outer membrane protein from Salmonella enterica serovar Typhi under iron limitation, oxidative stress and anaerobic conditions. J Biomed Sci. 2006 , 13(3):303-12
    
    192 Chander H, Majumdar S, Sapru S,et al. Reactivity of typhoid patients sera with stress induced 55 kDa phenotype in Salmonella enterica serovar Typhi. Mol Cell Biochem. 2004, 267(1 -2):75-82
    
    193 Neves-Ferreira AG, de Andrade CM, Vannier-Santos MA,et al. Complete Amino Acid Sequence and Location of Omp-28,an Important Immunogenic Protein from Salmonella enterica serovar typhi. Protein J. 2004, 23(1):71-7
    
    194 Fernandez-Mora M, Oropeza R, Puente JL,et al. Isolation and characterization of ompS1, a novel Salmonella typhi outer membrane protein-encoding gene. Gene. 1995, 158(1):67-72
    
    195 Verdugo-Rodriguez A, Lopez-Vidal Y, Puente JL,et al. Early Diagnosis of Typhoid Fever by an Enzyme Immunoassay Using Salmonella typhi Outer Membrane Protein Preparations. Eur J Clin Microbiol Infect Dis. 1993 , 12(4):248-54
    
    196 Blanco F, Isibasi A, Raul Gonzalez C,et al.Human cell mediated immunity to porins from salmonella typhi. Scand J Infect Dis. 1993, 25(1):73-80
    197 L(?)ng H.Outer membrane proteins as surface display systems.Int J Med Microbiol.2000,290(7):579-85.
    198 Jeannin P,Magistrelli G,Goetsch L,et al.Outer membrane protein A(OmpA):a new pathogen-associated molecular pattern that interacts with antigen presenting cells-impact on vaccine strategies.Vaccine.2002,20 Suppl 4:A23-7.
    199 Khalid S,Bond PJ,Carpenter T,et al.OmpA:gating and dynamics via molecular dynamics simulations.Biochim Biophys Acta.2008,1778(9):1871-80
    200 Mittal R,Prasadarao NV.Outer membrane protein A expression in Escherichia coli K1 is required to prevent the maturation of myeloid dendritic cells and the induction of IL-10 and TGF-beta.J Immunol.2008,181(4):2672-82
    201 Smith SG,Mahon V,Lambert MA,et al.A molecular Swiss army knife:OmpA structure,function and expression.FEMS Microbiol Lett.2007,273(1):1-11
    202 Morona R,Klose M,Henning U.Escherichia coli K-12 outer membrane protein (OmpA) as a bacteriophage receptor:analysis of mutant genes expressing altered proteins.J Bacteriol.1984,159(2):570-8
    203 Freudl R,Cole ST.Cloning and molecular characterization of the ompA gene from Salmonella typhimurium.Eur J Biochem.1983,134(3):497-502
    204 Mizuno T,Mizushima S.Signal transduction and gene regulation through the phosphorylation of two regulatory components:the molecular basis for the osmotic regulation of the porin genes.Mol Microbiol.1990,4(7):1077-82
    205 Igo MM,Slauch JM,Silhavy TJ.Signal transduction in bacteria:kinases that control gene expression.New Biol.1990,2(1):5-9
    206 Pratt LA,Hsing W,Gibson KE,et al.From acids to osmZ multiple factors influence synthesis of the OmpF and OmpC porins in Escherichia Coli.Mol Microbiol.1996,20(5):911-7
    207 Martinez-Flores I,Cano R,Bustamante VH,et al.The ompB Operon Partially Determines Differential Expression of OmpC in Salmonella typhi and Escherichia coli.J Bacteriol.1999,181(2):556-62
    208 高立慧,胡绪敬.应用ELISA测定人血清中流脑IgG水平及对脑膜炎奈瑟氏菌分型和亚型.中华流行病学杂志,1992,13(4)135-138
    209 Matsui M,Fowler JH,Walling LL.Leucine aminopeptidases:diversity in structure and function.Biol Chem.2006,387(12):1535-44
    210 Gonzales T, Robert-Baudouy J . Bacterial aminopeptidases: properties and functions. FEMS Microbiol Rev. 1996 , 18(4):319-44
    211 Matsui M, Fowler JH, Walling LL. Leucine aminopeptidases: diversity in structure and function. Biol Chem. 2006 , 387(12): 1535-44
    212 Cappiello M, Lazzarotti A, Buono F, et al. New role for leucyl aminopeptidase in glutathione turnover. Biochem J. 2004, 378(Pt 1):35-44
    213 Mathew Z, Knox TM, Miller CG. Salmonella enterica Serovar Typhimurium Peptidase B Is a Leucyl Aminopeptidase with Specificity for Acidic Amino Acids. J Bacteriol. 2000, 182(12):3383-93
    214 Dong L, Cheng N, Wang MW,et al. The leucyl aminopeptidase from Helicobacter pylori is an allosteric enzyme. Microbiology. 2005 , 151 (Pt 6):2017-23
    215 Park SJ, McCabe J, Turna J, et al. Regulation of the citrate synthase (gltA) gene of Escherichia coli in response to anaerobiosis and carbon supply: role of the arcA gene product. J Bacteriol. 1994, 176(16):5086-92
    216 Patton AJ, Hough DW, Towner P,et al. Does Escherichia coli possess a second citrate synthase gene ? Eur J Biochem. 1993, 214(1):75-81
    217 Kim MS, Shin J, Lee W, et al. Crystal Structures of RbsD Leading to the Identification of Cytoplasmic Sugar-binding Proteins with a Novel Folding Architecture. J Biol Chem. 2003, 278(30):28173-80
    218 Iida A, Harayama S, Iino T,et al. Molecular Cloning and Characterization of Genes Required for Ribose Transport and Utilization in Escherichia coli K-12. J Bacteriol. 1984, 158(2):674-82
    219 Lopilato JE, Garwin JL, Emr SD,et al. D-Ribose Metabolism in Escherichia coli K-12: Genetics, Regulation,and Transport. J Bacteriol. 1984 , 158(2):665-73
    220 Pradel N, Santini CL, Ye CY,et al. Influence of tat mutations on the ribose-binding protein translocation in Escherichia coli. Biochem Biophys Res Commun. 2003 , 306(3):786-91.
    221 Ahn T, Kin H. Differential effect of precursor ribose binding protein of Escherichia coli and its signal peptide on the SecA penetration of lipid bilayer. J Biol Chem. 1996 , 271(21):12372-9.
    222 Kim J, Lee Y, Kim C,et al. Involvement of SecB, a chaperone, in the export of ribose-binding protein. J Bacteriol. 1992 , 174(16):5219-27
    [1]Girard MP,Steele D,Chaignat CL,et al.A review of vaccine research and development:human enteric infections[J]Vaccine,2006,24(15):2732-2750.
    [2]Maskey AP,Day iN,Phung QT,et al.Salmonella enterica serovar Paratyphi A and S.enterica serovar Typhi cause indistinguishable clinical syndromes in Kathmandu,Nepal[J].Clin Infect Dis,2006,42(9):1247-1253
    [3]Massi MN,Shirakawa T,Gotoh A,et al.Identification and sequencing of Salmonella enterica serotype typhi isolates obtained from patients with perforation and non-perforation typhoid fever[J]Southeast Asian J rrop Med Public Health,2005,36(1):118-122.
    [4]Krogh K,Hermansen NO,Wathne KO.Typhoid and paratyphoid fever in children[J]ridsskr Nor Laegeforen,2005,125(12):1640-1642.
    [5]Olopoenia LA,King AL.Widal agglutination test -100 years later: still plagued by controversy (J) . Postgrad Med J, 2000 ,76(892):80-84.
    [6] Robbins JD, Robbins JB. Reexamination of the protective role of the capsular polysaccharide (Vi antigen) of Salmonella typhi (J) . J Infect Dis, 1984 ,150(3): 436-449.
    [7] Barrett TJ, Snyder JD, Blake PA, et al. Enzyme-linked immunosorbent assay for detection of Salmonella typhi Vi antigen in urine from typhoid patients (J) . J Clin Microbiol, 1982 ,15(2): 235-237.
    [8] Widal FM. Serodiagnostic de la fievre typhoide a-propos d' uve modification par MMC Nicolle et al. Halipie (J) . Bull Soc Med Hop Paris, 1896,13:561-566.
    [9] Patil AM, Kulkarni ML, Kulkarni AM . Baseline Widal titres in healthy children (J) .Indian J Pediatr, 2007 ,74(12):1081-1083.
    [10] Taiwo SS, Fadiora SO, Oparinde DP, et al. Widal agglutination titres in the diagnosis of typhoid fever (J) .West Afr J Med, 2007 ,26(2):97-101.
    [11] Vaishnavi C, Kaur S, SinghK. Evaluation of an in-house rapid diagnostic method for detection of Salmonella enterica serovar Typhi in fecal specimens (J) .Trop Gastroenterol, 2006 ,27(1):19-21.
    [12] Begum Z, Hossain MA, Musa AK, et al. Comparison between DOT EIA IgM and Widal Test as early Diagnosis of Typhoid Fever (J) .Mymensingh Med J, 2009, 18(1): 13-17.
    [13] Ayyildiz A, Demir Y, Tuncel E, et al. Comparison of the Gruber-Widal and ELISA technics used to study Salmonella typhi and Salmonella paratyphi infections in patients (J) . Mikrobiyol Bul, 1986 ,20(1):14-24.
    [14] Rai GP, Zachariah K, Shrivastava S. Detection of typhoid fever by Widal and indirect fluorescent antibody (IFA) tests. A comparative study (J) . J Hyg Epidemiol Microbiol Immunol, 1989, 33(3):331-336.
    [15] Handojo I, Dewi R. The diagnostic value of the ELISA-Ty test for the detection of typhoid fever in children (J) . Southeast Asian J Trop Med Public Health, 2000 , 31 (4):702-707.
    [16] Chart H, Cheasty T, de Pinna E, et al. Serodiagnosis of Salmonella enterica serovar Typhi and S. enterica serovars Paratyphi A, B and C human infections (J) .J Med Microbiol, 2007 ,56(Pt 9):1161-1166.
    [17] Frankie Chi Hang Tam, Pak Leong Lim. The TUBEXk typhoid test based on particle-inhibition mmunoassay detects IgM but not IgG anti-09 antibodies (J) .Journal of Immunological Methods, 2003, (282): 83-91.
    [18] Gopalakrishnan V, Sekhar WY, Soo EH, et al .Typhoid fever in Kuala Lumpur and a comparative evaluation of two commercial diagnostic kits for the detection of antibodies to Salmonella typhi (J) .Singapore Med J, 2002 ,43(7): 354-358.
    [19] Hatta M, Goris MG, Heerkens E, et al. Simple dipstick assay for the detection of Salmonella typhi-specific IgM antibodies and the evolution of the immune response in patients with typhoid fever (J) .Am J Trop Med Hyg, 2002 ,66(4):416-421.
    [20] Tam FC, Ling TK, Wong KT, et al. The TUBEX test detects not only typhoid-specific antibodies but also soluble antigens and whole bacteria (J) .J Med Microbiol, 2008 ,57(Pt 3): 316-323.
    
    [21] Rahman M, Siddique AK, Tam FC, et al. Rapid detection of early typhoid fever in endemic community children by the TUBEX 09-antibody test (J) . Diagn Microbiol Infect Dis, 2007 ,58(3):275-281.
    [22] Pastoor R, Hatta M, Abdoel TH,et al. Simple, rapid, and affordable point-of-care test for the serodiagnosis of typhoid fever (J). Diagn Microbiol Infect Dis, 2008 , 61(2):129-134.
    [23] Fadeel MA, Crump JA, Mahoney FJ, et al. Rapid diagnosis of typhoid fever by enzyme-linked immunosorbent assay detection of Salmonella serotype typhi antigens in urine (J) . Am J Trop Med Hyg, 2004,70(3):323-328.
    [24] Massi MN, Shirakawa T, Gotoh A, et al. Rapid diagnosis of typhoid fever by PCR assay using one pair of primers from flagellin gene of Salmonella typhi (J) . J Infect Chemother, 2003 ,9(3):233-237.
    
    [25] Ali K, Zeynab A, Zahra S, et al. Development of an ultra rapid and simple multiplex polymerase chain reaction technique for detection of Salmonella typhi (J) .Saudi Med J, 2006 , 27(8):1134-1138.
    [26] Haque A, Ahmed N, Peerzada A, et al. Utility of PCR in diagnosis of problematic cases of typhoid (J) . Jpn J Infect Dis, 2001 ,54(6):237-239.
    [27] Fitzgerald C, Collins M, van Duyne S, et al. Multiplex, bead-based suspension array for molecular determination of common Salmonella serogroups (J) .J Clin Microbiol, 2007 ,45(10):3323-3334.
    
    [28] Hirose K, Itoh K, Nakajima H, et al. Selective amplification of tyv (rfbE), prt (rfbS), viaB, and fliC genes by multiplex PCR for identification of Salmonella enterica serovars Typhi and Paratyphi A (J) . J Clin Microbiol, 2002 ,40 (2): 633-636.
    [29] Ou HY, Ju CT, Thong KL, et al. Translational genomics to develop a Salmonella enterica serovar Paratyphi A multiplex polymerase chain reaction assay (J) .J Mol Diagn, 2007 ,9(5): 624-630.
    [30] Teh CS, Chua KH, Puthucheary SD, et al . Further evaluation of a multiplex PCR for differentiation of salmonella paratyphi A from other salmonellae (J) . Jpn J Infect Dis, 2008 ,61(4):313-314.
    [31] Kumar S, Balakrishna K, Batra HV. Detection of Salmonella enterica serovar Typhi (S. Typhi) by selective amplification of invA, viaB, fliC-d and prt genes by polymerase chain reaction in mutiplex format (J) . Lett Appl Microbiol, 2006 ,42(2):149-154.
    [32] Ali A, Haque A, Haque A, et al . Multiplex PCR for differential diagnosis of emerging typhoidal pathogens directly from blood samples (J) . Epidemiol Infect, 2009 ,137(1):102-107.
    [33] Massi MN, Shirakawa T, Gotoh A, et al . Rapid diagnosis of typhoid fever by PCR assay using one pair of primers from flagellin gene of Salmonella typhi (J) . J Infect Chemother, 2003 ,9(3):233-237.
    
    [34] Levy H, Diallo S, Tennant SM, et al . PCR method to identify Salmonella enterica serovars Typhi, Paratyphi A, and Paratyphi B among Salmonella Isolates from the blood of patients with clinical enteric fever (J) . J Clin Microbiol, 2008 ,46(5):1861-1866.
    [35] Hatta M, Smits HL. Detection of Salmonella typhi by nested polymerase chain reaction in blood, urine, and stool samples (J) . Am J Trop Med Hyg, 2007,76(1): 139-143.
    
    [36] Prakash P, Mishra OP, Singh AK. Evaluation of nested PCR in diagnosis of typhoid fever (J) . J Clin Microbiol, 2005 ,43(1):431-432.
    
    [37] Ambati SR, Nath G, Das BK. Diagnosis of typhoid fever by polymerase chain reaction (J) .Indian J Pediatr, 2007 ,74(10):909-913.
    
    [38] Chart H, Cheasty T, de Pinna E, et al. Serodiagnosis of Salmonella enterica serovar Typhi and S. enterica serovars Paratyphi A, B and C human infections (J) . J Med Microbiol, 2007 ,56(Pt 9):1161-1166.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700