用户名: 密码: 验证码:
抗污染聚醚砜超滤膜性能研究及其在中药精制中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为中药成分提取分离高新技术之一的膜分离技术在中药现代化生产中具有良好的应用前景。本论文将超滤应用于中药精制过程,选择聚醚砜(PES)为膜主体材料,Pluronic F127为添加剂,研制出抗污染超滤膜。在对中药模拟体系成功分离纯化的基础上,应用抗污染超滤膜对中药金芪降糖片原料药黄连、黄芪和金银花水提液进行精制,为超滤应用于中药成分分离纯化提供了初步的参考和指导。
     研制出PES/Pluronic F127抗污染超滤膜,采用扫描电子显微镜(SEM)、静态水接触角、X射线光电子能谱(XPS)和红外光谱(FTIR)等方法进行了表征,并对膜的分离特性和抗污染能力进行了系统研究。Pluronic F127的引入显著改善了膜表面和膜孔表面的亲水性,通量恢复率可高达94%,远高于空白膜62%的通量恢复率;同时Pluronic F127的胶团化行为还起到了致孔的作用,随着Pluronic F127的添加,膜的纯水通量呈现规律性的增大,但对BSA的截留率仍保持在97%以上。Pluronic F127具有表面改性和致孔的双重作用。一方面,由于Pluronic F127中疏水PPO链段与膜主体材料PES的相互作用,Pluronic F127被固定于膜表面,同时亲水链段PEO富集于膜和膜孔表面,形成抗污染层。另一方面,Pluronic F127自发形成了以疏水PPO链段为核,亲水PEO链段为壳的胶团结构,增大铸膜液中Pluronic F127的添加量,提高了皮层的孔径和孔隙率。
     针对中药提取液精制中广泛存在的物质种类,选取蛋白质、鞣质和多糖为模拟体系,利用自行制备的高性能抗污染超滤膜考察了这三类物质及其混合物的分离特性和超滤污染行为。结果表明虽然PES/Pluronic F127抗污染超滤膜与各种溶液相互作用类型有差异,但通量恢复率均保持在较高水平,截留率大于90%,且多糖被证明为影响超滤通量的主要污染物质。
     在模拟体系的研究基础上,开展超滤精制中药金芪降糖片原料药黄连、黄芪和金银花的工作,通过对三种原料药及其混合物超滤性能的考察,确认了PES/Pluronic F127抗污染超滤膜对真实中药体系的适用性。研究表明在精制过程中应用抗污染超滤膜,可对黄连中小檗碱、黄芪中黄芪多糖和金银花中绿原酸进行高效的分离提纯,同时对去除固体悬浮物,提高药液澄明度也有显著效果。最后,通过比较不同精制方式,设计出基于超滤的中药生产新工艺,该工艺具有工序少,处理能力大,成本低的特点。
Membrane separation, as an advanced technology for purification, has excellent prospects of application in modernization and production of Traditional Chinese Medicine. In this dissertation, we chose polyethersulfone polymer as membrane matrix and Pluronic F127 as additive, prepared a series of PES/Pluronic F127 antifouling ultrafiltration membrane and then used in Traditional Chinese Medicine refining process. Based on experimental investigation of model system, refinement of Rhizoma Coptidis, Radix Astragali and Flos Lonicerae Japonicae aqueous solutions were carried out in order to tentatively offer preliminary information and guidance on the modernization of Traditional Chinese Medicine using antifouling ultrafiltration membranes.
     The PES/Pluronic F127 antifouling membrane was well prepared and the separation performance and antifouling ability was studied. Scanning Electron Microscope (SEM), static water contact angle measurement, X-ray Photoelectron Spectroscopy (XPS) and Fourier Transform Infrared Spectroscopy (FTIR) were all introduced to characterize the antifouling membranes. The introduction of Pluronic F127 had greatly improved the hydrophilicity of membrane and pore surface. The flux recovery ratio reached as high as 94%, far beyond 62% of PES control membrane. The pure water flux enhanced with an increasing Pluronic F127 amount, while the rejection ratios of BSA remained higher than 97%. The dual role of Pluronic F127 as surface modifier and pore-forming agent was distinctly observed and tentatively analyzed. During the dissolution and subsequent coagulation process, some Pluronic F127 molecules are bound to and/or tangled with PES chains due to the presence of hydrophobic PPO blocks, and then spontaneously segregate to the membrane/water interfaces due to the presence of hydrophilic PEO blocks. Meanwhile, the majority of Pluronic F127 molecules self-assemble into spherical micelles with core/shell configuration. These micelles are extracted into the coagulation bath during the coagulation process and the spaces they once occupied will turn into the pores of the membranes.
     Among materials widely existed in Traditional Chinese Medicine solutions, we chose protein solution, tannin solutions, polysaccharide solution and their mixtures as model systems to investigate separation performance and antifouling ability during ultrafiltration. Research results revealed that although the interactions between membranes and various solutions were quite different from each other, the flux recovery ratio still retained on a high level, while the rejection ratios were all higher than 90%, and the polysaccharide was proved to be the major pollutant during ultrafiltration.
     Based on the study of simulative system, we introduced ultrafiltration to refinement of Traditional Chinese Medicine Jinqi Jiangtang Pian, including Rhizoma Coptidis, Radix Astragali and Flos Lonicerae Japonicae. In order to investigate the applicability of PES/Pluronic F127 antifouling membranes in real medicine system, the ultrafiltration performances of three raw materials and their mixtures were all measured, respectively. The results revealed that the application of antifouling ultrafiltration membranes in refinement could effectively separate and purify Berberine, AstragalosideIV and Chlorogenic acid from Rhizoma Coptidis, Radix Astragali and Flos Lonicerae Japonicae, respectively. Meanwhile, the clarity of solutions could be improved as well as the suspended solids could be eliminated. Finally, the inherent relationship between medicine solutions and antifouling membranes was studied; and the guidance for rational design of new process based on ultrafiltration was tentatively presented.
引文
[1]时钧,袁权,膜技术手册,北京:化学工业出版社,2001,336~361
    [2]梁国明,陆晓峰,操作条件对膜污染及蛋白质超滤滤出速度影响的研究,水技术,1999,67:7~9
    [3]卞晓锴,陆晓峰,蛋白质超滤过程及超滤膜的表面改性研究现状,膜科学与技术,2001,21:46~51
    [4] Reis R.V., Gadam S., Frautschy L.N., High performance tangential flow filtration, Biotechnology and Bioengineering, 1997, 71~81
    [5]梁国明,陆晓峰,聚醚酮超滤膜的污染及其对滤速影响的研究,水处理技术,1999,25:14~18
    [6] Saksena S., Zedney A.L., Effect of solution pH and ionic strength on the separation of albumin from immunoglobulins by selective filtration, Biotechnology and Bioengineering, 1994, 960~968
    [7] Goosen M.F.A., Sablani S.S., Al-Hinai H., et al., Fouling of reverse osmosis and ultrafiltration membranes: A critical review, Separation Science and Technology, 2004, 39(10): 2261~2297
    [8] Katsoufidou K., Yiantsios S.G., Karabelas A.J., A study of ultrafiltration membrane fouling by humic acids and flux recovery by backwashing: Experiments and modeling, Journal of Membrane Science, 2005, 266(1-2): 40~50
    [9]袁晓燕,盛京,吕晓龙等,高分子多孔膜的表面改性与抗污染研究,化学工业与工程,2003,20(2):95~99
    [10] Belfer S., Modification of ultrafiltration polyacrylonitrile membranes by sequential grafting of oppositely charged monomers: pH-dependent behavior of the modified membranes, Reactive and Functional Polymers, 2003, 54(1-3): 155~165
    [11] Ulbricht M., Belfort G., Surface modification of ultrafiltration membranes by low temperature plasma. I. Treatment of polyacrylonitrile, Journal of Applied Polymer Science, 1995, 56(3): 325~343
    [12] Chen H., Belfort G., Surface modification of poly(ether sulfone) ultrafiltration membranes by low-temperature plasma-induced graft polymerization, Journal of Applied Polymer Science, 1999, 72(13): 1699~1711
    [13] Ulbricht M., Oechel A., Photo-bromination and photo-induced graft polymerization as a two-step approach for surface modification of polyacrylonitrile ultrafiltration membranes, European Polymer Journal, 1996, 32( 9): 1045~1054
    [14] Thom V., Jankvoa K., Ulbricht M., Synthesis of photoreactiveα-4-azidobenzoyl-ω-methoxy-poly(ethylene glycol)s and their end-on photo-grafting onto polysulfone ultrafiltration membrane, Macromolecular Chemistry and Physics, 1998, 199 (12): 2723~2729
    [15] Pieraccia J., Crivellob J.V., Belfort G., Photochemical modification of 10 kDa polyethersulfone ultrafiltration membranes for reduction of biofouling, Journal of Membrane Science, 1999, 156 (2): 223~240
    [16] Taniguchi M., Belfort G., Low protein fouling synthetic membranes by UV-assisted surface grafting modification: varying monomer type, Journal of Membrane Science, 2004, 231 (1): 147~157
    [17] Mok S., Worsfold D.J., Fouda A., et al., Surface modification of polyethersulfone hollow-fiber membranes byγ-ray irradiation, Journal of Applied Polymer Science, 1994, 51(1):193~199
    [18]陆晓峰,汪赓华,梁国明,聚偏氟乙烯超滤膜的辐照接枝改性研究,膜科学与技术,1998,18(6):54~57
    [19] Beyer M., Felgenhauer T., Ralf Bischoff F., et al., Novel glass slide-based peptide array support with high functionality resisting non-specific protein adsorption, Biomaterials, 2006, 27(18): 3505~3514
    [20]陆晓峰,陈仕意,李存珍等,表面活性剂对超滤膜表面改性的研究,膜科学与技术,1997,17(4):35~40
    [21] Randona J., Blancb P., Patersona R., Modification of ceramic membrane surfaces using phosphoric acid and alkyl phosphoric acids and its effects on ultrafiltration of BSA protein, Journal of Membrane Science, 1995, 98(1-2): 119~129
    [22] Suk D.E., Chowdhury G., Matsuura T., Study on the Kinetics of Surface Migration of Surface Modifying Macromolecules in Membrane Preparation, Macromolecules, 2002, 35(8): 3017~3021
    [23] Richard R.T., Douglas R.A., William F.G., et al., Preparation and surface properties of acrylic polymers containing fluorinated monomers, Macromolecules, 1997, 30(10): 2883~2890
    [24] Chen W., McCarthy T.J., Adsorption/Migration of a Perfluorohexylated fullerene from the bulk to the polymer/air interface, Macromolecules, 1999, 32 (7):2342~2347
    [25] Ebbens S.J., Badyal J.P.S., Surface enrichment of fluorochemical-doped polypropylene films, Langmuir, 2001, 17 (13): 4050~4055
    [26] Yasuhiko I., Kazunari A., Highly wettable polyethylene films generated by spontaneous surface enrichment of perfluoroalkylated phosphorylcholines, Journal of Applied Polymer Science, 2006, 102(3): 2868~2874
    [27] Ostuni E., Chapman R.G., Holmlin R.E., et al., A survey of structure-property relationships of surfaces that resist the adsorption of protein, Langmuir, 2001, 17 (18): 5605~5620
    [28] Ishihara K., Fukumoto K., Iwasaki Y., et al., Modification of polysulfone with phospholipid polymer for improvement of the blood compatibility. Part 1. Surface characterization, Biomaterials, 1999, 20(17): 1545~1551
    [29] Westa S.L., Salvagea J.P., Lobbb E.J., The biocompatibility of crosslinkable copolymer coatings containing sulfobetaines and phosphobetaines, Biomaterials, 2004, 25 (10): 1195~1204
    [30] Bergstrom K., Osterberg E., Holmberg K., et al., Effects of branching and molecular weight of surface-bound poly(ethylene oxide) on protein rejection, Journal of Biomaterials Science. Polymer edition, 1994, 6(2): 123~132
    [31] Lyman D.J., Loo B.H., Crawford R.W., New synthetic membranes for dialysis. I a copolyether-ester membrane system, Biochemistry, 1964, 3: 985~990
    [32] Mori Y., Nagaoka S., Takiuchi H., et al., A new antithrombogenic material with long polyethyleneoxide chains, Transactions American Society for Artificial Internal Organs, 1982, 28: 459~463
    [33] Kim H.K., Chung H.J., Park T.G., Biodegradable polymeric microspheres with“open/closed”pores for sustained release of human growth hormone, Journal of Controlled Release, 2006, 112: 167~174
    [34] Wang Y., Wang T., Su Y., et al., Remarkable Reduction of Irreversible Fouling and Improvement of the Permeation Properties of Poly(ether sulfone) Ultrafiltration Membranes by Blending with Pluronic F127, Langmuir, 2005, 21: 11856~11862
    [35] Wang Y., Su Y., Sun Q., et al., Improved permeation performance of Pluronic F127–Polyethersulfone blend ultrafiltration membranes, Journal of Membrane Science, 2006, 282: 44~51
    [36] Rahimpour A., Madaeni S.S., Mansourpanah Y., The effect of anionic, non-ionic and cationic surfactants on morphology and performance of polyethersulfone ultrafiltration membranes for milk concentration, Journal of Membrane Science, 2007, 296: 110~121
    [37]郭立玮,金万勤,彭国平,21世纪的植物药深加工现代化技术—膜分离,南京中医药大学学报(自然科学版),2000,16(2):65~67
    [38] Akira I., Liquid containing extract ingredient of white sweet potato for medicine primarily produced in Brazil and its production, JP2291243, 1990-12-03
    [39]中国人民解放军空军北京药局,应用超滤技术制备中草药注射液,中草药通讯,1979,8:12~14
    [40]中国人民解放军空军北京药局,超滤法制备复方中药注射液的实验研究,中草药,1981,8:12~16
    [41]黄伟文,超滤法制备中草药注射液的质量研究,水处理技术,1988,14:87
    [42]全山丛,超滤法和水醇法制备补骨脂注射液的实验比较研究,中草药,1990,12:3
    [43]简惠,超滤新技术应用于中药口服液的可行性研究,中药新药与临床药理,1994,5:49
    [44]杨张谓,人参精采用超滤工艺的中试研究,中成药,1994,16:4
    [45]胡奇芬,不同工艺对复方中药制剂中总多糖含量的影响,中成药,1990,12:6
    [46]董波,采用超滤法处理何首乌药液的初步研究,甘肃药学,1992,7:29
    [47]张宇,应用超滤技术制备四逆口服液的研究,佳木斯医学院学报,1992,15:30
    [48]俞加林,用超滤法制备中药浸膏制剂,中药材,1989,12:44
    [49]郭立玮,大孔树脂吸附与超滤连用对六味地黄丸中丹皮粉和马钱素含量的影响,南京中医药大学学报,1999,15:86
    [50]冯汉鸽,超滤法制备麻黄雾化液的实验研究,时珍国医国药研究,1993,4:32
    [51]郁瑞昌,超滤法在中药复方植物多糖营养输液制备,中成药研究,1987,1:4
    [52]王世芩,超滤法提取黄芩甙的初步观察,中成药研究,1988,3:5
    [53]何昌生,甜菊糖甙超滤的应用研究,水处理技术,1994,20:89
    [54]颜峰,超滤法在中药制剂中的应用体会,中成药,1989,11:8
    [55] Machado P.S.T., Habert A.C., Borges C.P., Membrane formation mechanism based on precipitation kinetics and membrane morphology: flat and hollow fiber polysulfone membranes, Journal of Membrane Science, 1999, 155: 171~183
    [56] Su Y., Liu H., Wang J., et al., Study of salt effects on the micellization of PEO-PPO-PEO block copolymer in aqueous solution by FTIR spectroscopy, Langmuir, 2002, 18(3): 865~871
    [57] Pereira A.M.M., Lopes M.C., Timmer J.M.K., et al., Solvent sorption measurements in polymeric membranes with ATR-IR spectroscopy, Journal of Membrane Science, 2005, 260: 174~180
    [58] Van de Witte P., Dijkstra P.J., Berg J.W.A., et al., Phase separation processes in polymer solution in relation to membrane formation, Journal of Membrane Science, 1996, 117(1): 1~31
    [59] Yamasaki A., Tyagi R.K., Fouda A.E., et al., Effect of SDS surfactant as an additive on the formation of asymmetric polysulfone membranes for gas separation, in: I. Pinnau, B.D. Freeman (Eds.), Membrane Formation and Modification, 2000 (Chapter 6)
    [60] Alexandridis P., Holzwarth J.F., Hatton T.A., Micellization of Poly(ethy1ene oxide)-Poly(propy1ene oxide)-Poly(ethy1ene oxide) triblock copolymers in aqueous solutions: thermodynamics of copolymer association, Macromolecules, 1994, 27: 2414-2425
    [61] Kozlov M.Y., Melik-Nubarov N.S., Batrakova E.V., et al., Relationship between Pluronic block copolymer structure, critical micellization concentration and partitioning coefficients of low molecular mass solutes, Macromolecules, 2000, 33: 3305-3313
    [62]国家药典委员会,中华人民共和国药典(2005年版第一部),北京:化学工业出版社,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700