用户名: 密码: 验证码:
棉铃虫变态时期差异表达基因的鉴定及真核起始因子5C基因克隆及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉铃虫(Helicoverpa armigera)属于鳞翅目夜蛾科(Lepidoptera Noctuidae),在世界各地广泛分布,危害棉花、谷物、玉米、土豆、大豆、高粱和烟叶等农作物达上百种,往往造成巨大的经济损失,是我国和世界农业的主要害虫之一。目前棉铃虫防治中使用的大多数化学农药对环境和人类健康有害,而对于转基因作物如Bt抗虫棉的安全性也存在争议。因此在理论研究的基础上,发展新型生物农药一直是害虫防治的研究热点。完全变态类昆虫要经过周期性幼虫蜕皮和变态才能完成整个生活史,昆虫发育的生理活动是在一系列激素的精细调控下才得以顺利完成。通过对棉铃虫蜕皮相关基因的研究,不仅可以为进一步了解昆虫的生长发育和蜕皮激素调控的分子机理奠定基础,而且在此基础上可以发现新的分子靶标,为害虫防治提供新思路。本论文利用抑制性消减杂交(Suppression subtractivehybridization,SSH)的方法鉴定在棉铃虫变态时期差异表达的新基因,并从中选择棉铃虫真核起始因子5C(eukaryotic translation initiation factor 5C,eIF5C)作为研究对象,克隆了该基因的全长,并对它的性质进行了研究。
     蜕皮对于全变态昆虫来说,是一个重要的生理过程。全变态昆虫的一生经由一系列蜕皮活动完成,其中包括幼虫蜕皮,即各个龄期之间的蜕皮、化蛹蜕皮和羽化蜕皮,后两者称为变态蜕皮。幼虫蜕皮包括不吃少动的昏睡阶段和脱皮阶段两个生理过程,而变态过程更为复杂,除与幼虫蜕皮相似的蜕皮级联反应外,还包括幼虫组织解体和成虫组织重建。蜕皮受蜕皮激素20-OH-蜕皮酮(20-hydroxyecdysone,20E)和保幼激素(juvenile hormone,JH)共同调控。当保幼激素存在时,蜕皮激素启动幼虫不同龄期间的蜕皮,当保幼激素滴度降低或消失时,蜕皮激素启动变态蜕皮。越来越多的证据证明有很多的激素和调节因子参与这个复杂的蜕皮信号途径。目前已经证明一些转录因子如EcR,USP,HR3,Broad C和细胞程序性死亡基因参与该途径,也鉴定了一些调控基因如Broad complex,E74B和E93,但对它们的下游基因还知之甚少,因此,蜕皮的分子机理仍然知之甚少。棉铃虫属鳞翅目,与烟草天蛾(Manduca sexta)和家蚕(Bombyx mori)有共同的蜕皮特征,由于没有基因组测序和商业芯片,蜕皮和变态差异表达基因的鉴定尤为困难。本室前期工作中已经用双向电泳的方法新鉴定了30个蛋白在蜕皮时期高表达,在此基础上拟用抑制性消减杂交的方法鉴定更多蜕皮变态相关的新基因。
     本文进行了变态时期各个组织与取食时期各个组织的抑制性消减杂交鉴定变态时期差异表达的基因,并用取食时期各个组织与变态时期进行抑制性消减杂交鉴定取食时期差异表达的基因。与本实验室柴连琴等完成的幼虫蜕皮时期抑制性消减杂交SSH文库共同分析,共得到100个表达序列标签expressed sequencetags(ESTs),其中73个在基因库中有相似序列,27个为未知基因。进一步用RT-PCR的方法验证SSH的结果。有11个基因已经证明在蜕皮或变态时期表达水平有所变化,可能参与蜕皮变态过程。该研究提供了一系列鳞翅目昆虫蜕皮或变态差异表达的新基因,如真核起始因子5(eIF5C),核转移因子等,它们可以作为进一步研究鳞翅目昆虫幼虫蜕皮和变态调控机理的候选基因。该研究将拓展我们在全变态昆虫幼虫蜕皮和变态级联反应过程中的知识。
     本论文选择其中的eIF5C进行了表达模式等性质研究。真核翻译起始阶段需要很多蛋白质因子的参与,大量证据证明,真核翻译起始因子(eukaryotictranslation initiation factors,eIFs)不仅在蛋白质翻译的起始过程中有重要作用,还参与很多其它的生命活动。一些eIFs已经证明与信号途径有关,如果蝇eIF4A通过介导SMAD(mother against dpp)降解负调控Dpp/BMP(decapentaplagic/bonemorphogenetic protein)信号途径,eIF6选择性调控Wnt信号途径。eIF5C蛋白包含一个N端的亮氨酸拉链基序和一个C端的eIF5C结构域。目前对eIF5C功能的研究很少,仅在果蝇中报道它与核糖体蛋白L5相互作用,可能参与蛋白合成。但含有eIF5C功能域或者亮氨酸拉链基序的其它同源基因功能报道较多,如果蝇中cryptocephal基因编码亮氨酸拉链蛋白调控蜕皮和变态,具有GTP酶活化蛋白的功能,与细胞周期调控有关等。由于同源基因具有相似的功能,我们推测在变态时期高表达的eIF5C可能在蜕皮变态过程中行使重要功能。
     以SSH文库中获得的EST为基础,我们从棉铃虫中克隆到了eIF5C的全长基因。cDNA全长1675 bp,开放阅读框1260 bp,编码419个氨基酸(GenBank接收号EU526835),命名为Ha-eIF5C。在大肠杆菌中重组表达,并用GlutathioneSepharose 4B(GS4B)柱纯化,用以免疫家兔制备多克隆抗体。
     实时定量PCR(Quantitative real-time PCR,QRT-PCR)分析Ha-eIF5C mRNA转录,结果显示Ha-eIF5C在变态时期的头胸部、表皮、中肠和脂肪体组织中都有高表达。QRT-PCR分析Ha-eIF5C在中肠和脂肪体各发育阶段的表达发现,Ha-eIF5C在5龄头壳爆裂时期有一个短暂的表达小高峰,然后在变态时期显著上调。免疫印记结果显示,在蛋白质水平上,Ha-eIF5C在中肠和脂肪体各发育阶段的表达情况和mRNA表达水平一致。
     免疫组织化学结果显示,在中肠中,Ha-eIF5C定位于胞质,较强的信号分布在中肠的外边缘,该处主要是中肠的肌肉组织。在脂肪体和表皮组织中,Ha-eIF5C在核与质中均有分布。而且Ha-eIF5C在变态时期的信号要明显强于取食时期和蜕皮时期,这与前面的分析结果一致。
     Ha-eIF5C的表达水平随着蜕皮激素的滴度变化,它在棉铃虫蜕皮与变态过程中的作用还需要进一步的研究。
The cotton bollworm, Helicoverpa armigera, which belongs to Lepidoptera Noctuidae, distributes broadly in the world and harms a lot of crops including cotton, cereal, corn, potato, bean and tobacco leaf. The cotton bollworm is one of the major pests of the world agriculture, which often brings great lost in economy. At the present time, the majority chemical pesticides used to prevent cotton bollworm are harmful to human and environment, and there is controversy on the security of the transgene crops such as the Bt cotton. Therefore, development of the biological pesticides based on the theory studies is always the focus of the pest prevention. For the holometabolous insects, periodically molting occurs during larval development. The hormones regulate many physiological events throughout the insect life cycle. Through the research of the molting related genes, especial the genes regulated by 20E, we may further understand the molecular mechanism of development and ecdysone regulation, and find the novel molecular targets to effectively control the pest. We identify some putative genes which might be involved in metamophosis, by Suppression subtractive hybridization (SSH) of tester cDNA from metamorphically committed larvae and driver cDNA from feeding 5th instar larvae and choose eukaryotic translation initiation factor 5C (eIF5C) as target to clone the full cDNA and analyze its character during the development of the cotton bollworm in the experiments.
     Molting is a physiological process common to all holometabolous insects, its life cycle is characterized by a series of molts: larval molts, during which the larva progresses from one instar to the next, and metamorphic molts, which lead to pupation and eclosion. Generally, molting consists of two phases, inactive phase and ecdysis. Subsequent metamorphosis, the transformation of larva to pupa to adult, includes metamorphic molting. During this process, more complicated physiological processes occur, including histolysis of larval tissues, remodeling and formation of adult tissues, in addition to a molting cascade similar to the larval molt. Insect larval molting and metamorphosis are governed by ecdysteroids (20-hydroxyecdysone, 20E) and juvenile hormone (JH), with 20E orchestrating the molting process and JH determining the nature of the molt. In the presence of JH, 20E directs larval molting. Otherwise, 20E directs metamorphosis. Increasing evidence indicates that other hormones and receptors may contribute to the complex developmental pathways associated with metamorphosis. Many genes have been shown to be involved in molting or metamorphosis, such as the transcription factors EcR, USP, HR3, Broad C, and the programmed cell death pathway genes and some key regulatory genes have been identified, such as Broad complex, E74B and E93, but very few genes downstream of Broad complex, E74B and E93 are identified. Therefore, the molecular mechanisms that lead to larval molt and metamorphosis are poorly understood. The lepidopteran, Helicoverpa armigera shares molting and metamorphosis features with Manduca sexta and Bombyx mori. Because no genomic sequence or commercial microarrays exist for H. armigera, large scale screening of genes expressed differentially expressed during molting and metamorphosis is a great challenge. We performed two-dimensional electrophoresis and identified 30 new proteins whose expression increased during larval molting. Here, we use SSH to identify more genes involved in larval molting and metamorphosis in H. armigera.
     We performed SSH between tissues from a variety of developmental stages, including metamorphically committed and feeding 5th instar larvae, and feeding 5th instar and metamorphically committed larvae including molting 5th and feeding 6th instar larvae which have been completed in previous study. One hundred expressed sequence tags (ESTs) were identified and included 73 putative genes with similarity to known genes, and 27 unknown ESTs. SSH results were further characterized by RT-PCR. The expression levels of eleven genes were found to change during larval molting or metamorphosis, suggesting a functional role during these processes. These results provide a new set of genes expressed specifically during larval molt or metamorphosis such as eukaryotic translation initiation factor 5C and nuclear transport factor and so on, which are candidates for further studies into the regulatory mechanisms of those stage-specific genes during larval molt and metamorphosis.
     Initiation phase of protein synthesis requires a large number of protein factors. To date, it is known that more than 12 translation initiation factors (eIFs) are required in eukaryotes. More and more evidence showed that eIFs is not only essential to the initiation of protein translation but also important in other life processes. Some eIFs is related to signal pathway such as a novel function of Drosophila eIF4A as a negative regulator of Dpp/BMP (decapentaplagic/bone morphogenetic protein) signalling that mediates SMAD (mother against dpp) degradation. Eukaryotic initiation factor 6 selectively regulates Wnt signaling andβ-catenin protein synthesis.
     eIF5C is a phylogenetically conserved protein predicted to contain an N-terminal leucine zipper motif and a C-terminal eIF5C domain. Few data show the function of eIF5C except it is associated with the ribosome through interaction with Drosophila ribosomal protein L5 (dRPL5) which suggest its possible role in protein synthesis.
     The orthologs of eIF5C containing eIF5C domain or leucine zipper motif play important roles in many species. Eukaryotic Translation Initiation Factor 5 functions as a GTPase-activating protein. Basic-leucine zipper proteins control molting and metamorphosis in Drosophila. In human, BZAP45 contributes to transcriptional control at the G1/S phase transition. Similar to it's homologs, eIF5C might enroll in the process of larval molting and metamorphosis.
     Based on the expressed sequence tags (EST) of eIF5C from SSH library of larval metamorphosis of Helicoverpa armigera, the full-length cDNA was 1675 bp with an open reading frame (ORF) of 1260 bp, which encodes a polypeptide of 419 amino acids (GenBank accession No.: EU526835). The gene with an N-terminal leucine zipper motif and a C-terminal eIF5C domain was denominated Ha-eIF5C. We further express Ha-eIF5C in E.coli and purified it using a Glutathione Sepharose 4B (GS4B) column. The rabbit antiserum against Ha-eIF5C was prepared.
     Ha-eIF5C transcript was detected by Quantitative real-time PCR (QRT-PCR). The result indicated that Ha-eIF5C transcript was detected a high level in the head-throax, integument, midgut and fat body but not in haemocytes in metamorphosis stage. QRT-PCR analyze the expression of Ha-eIF5C in developmental midgut and fat body show that there is a transient peak at the 5th head capsule splitted stage and increased during metamorphosis process. The expression of Ha-eIF5C protein agrees with the mRNA transcription.
     Immunocytochemical localization of eIF5C expression were demonstrated in the midgut, fat body and integument. A strong signal of Ha-eIF5C was detected at the border of the midgut suggesting that eIF5C localized at the muscle. Ha-eIF5C was distributed into cytoplasm in the midgut, however in the integument and fat body it was localized in both cytoplasm and nucleus. Compared with 5th feeding and molting stages, the expression level of eIF5C was higher during metamorphosis, which were consistent with the previous analyses.
     The expression level of Ha-eIF5C was correlated with the titer of 20E. It requires more efforts to demonstrate the function of Ha-eIF5C during larval molting and metamorphosis.
引文
Albuquerque-Araujo W.I., Rosa-e-Silva A.A., Antunes-Rodrigues J., Favaretto A.L., Is ovarian adrenergic innervation essential to gonadal function in adult rats. Arch. Physiol. Biochem., 1995, 103:109-113.
    Algire M.A., Maaq D., Lorsch J.R., Pi release from eIF2, not GTP hydrolysis, is the step controlled by start-site selection during eukaryotic translation initiation. Mol. Cell, 2005,20: 251-262.
    Arabi A., Wu S., Ridderstrale K., Bierhoff H., Shiue C., Fatyol K, c-Myc associates with ribosomal DNA and activates RNA polymerase I transcription. Nat. Cell Biol., 2005,7:303-310.
    Asano K., Clayton J., Shalev A., Hinnebusch A.G., A multifactor complex of eukaryotic initiation factors, eIF1, eIF2, eIF3, eIF5, and initiator tRNA(Met) is an important translation initiation intermediate in vivo. Genes Dev., 2000, 14: 2534-2546.
    Asano K., Krishnamoorthy T., Phan L., Pavitt G.D., Hinnebusch A.G., Conserved bipartite motifs in yeast eIF5 and eIF2Bepsilon, GTPase-activating and GDP-GTP exchange factors in translation initiation, mediate binding to their common substrate eIF2. EMBO J., 1999,18: 1673-1688.
    Asano K., Shalev A., Phan L., Nielsen K., Clayton J., Valasek L., Donahue T.F., Hinnebusch A.G., Multiple roles for the C-terminal domain of eIF5 in translation initiation complex assembly and GTPase activation. EMBO. J., 2001, 20: 2326-2337.
    Baehrecke E.H., Thummel C.S., The Drosophila E93 gene from the 93F early puff displays stage- and tissue-specific regulation by 20-hydroxyecdysone. Dev. Biol., 1995,171:85-97.
    Basu U., Si K., Warner J.R., Maitra U., The Saccharomyces cerevisiae TIF6 gene encoding translation initiation factor 6 is required for 60S ribosomal subunit biogenesis. Mol. Cell Biol., 2001,21: 1453-1462.
    Bayer C., Zhou X., Zhou B., Evolution of the Drosophila broad locus: the Manduca sexta broad Z4 isoform has biological activity in Drosophila. Dev. Genes Evol., 2003,213:471-476.
    Bhattacharya A., Steward R., The Drosophila homolog of NTF-2, the nuclear transport factor-2, is essential for immune response. EMBO Rep. 2002,3:378-383
    Bialecki M., Shilton A., Fichtenberg C, Segraves W.A., Thummel C.S., Loss of the ecdysteroid-inducible E75A orphan nuclear receptor uncouples molting from metamorphosis in Drosophila. Dev. Cell., 2002,3:209-220.
    Blackburn M.B., Wagner R.M., Kochansky J.P., Harrison D.J., Thomas-Laemont P., Raina A.K., The identification of two myoinhibitory peptides, with sequence similarities to the galanins, isolated from the ventral nerve cord of Manduca sexta. Regul. Pept., 1995,57:213-219.
    Bodenstein D., The postembryonic development of Drosophila. In: Demerec, M. (Ed.), Biology of Drosophila, third ed. Cold Spring Harbor Press, New York, 1994. pp. 275-367.
    Brennan C.A., Li T.R., Bender M., Broad-complex, but not ecdysone receptor, is required for progression of the morphogenetic furrow in the Drosophila eye. Development, 2001, 128:1 -11.
    Broadus J., McCabe J.R., Endrizzi B., The Drosophila beta FTZ-F1 orphan nuclear receptor provides competence for stage-specific responses to the steroid hormone ecdysone. Mol. Cell, 1999,3:143-149.
    Butler M., Lebrun R.A., Ginsberq H.S., Gettman A.D., Efficacy of methoprene for mosquito control in storm water catch basins. J. Am. Mosq. Control. Assoc., 2006, 22:333-338.
    Brantjes H., Barker N., van E.J., Clevers H., TCF: Lady Justice casting the final verdict on the outcome of Wnt signalling. Biol. Chem., 2002,383: 255-261.
    Ceci M., Gaviraghi C., Gorrini C., Sala L.A., Offenhauser N., Marchisio P.C., Release of eIF6 (p27BBP) from the 60S subunit allows 80S ribosome assembly. Nature, 2003,426: 579-584.
    Chavez V.M., Marques G., Delbecque J., Kobayashi K., Hollingsworth M., Burr J., Natzle J.E., O'Connor M.B., The Drosophila disembodied gene controls late embryonic morphogenesis and codes for a cytochrome P450 enzyme that regulates embryonic ecdysone levels. Development, 2000,127:4115- 4126.
    Chen L., O'Keefe S.L., Hodgetts R.B., Control of Dopa decarboxylase gene expression by the Broad-Complex during metamorphosis in Drosophila. Mech. Dev., 2002,119:145-156.
    Chen P., Nordstrom W., Gish B., Abrams J.M., grim, a novel cell death gene in Drosophila. Genes Dev., 1996,10: 1773-1782.
    Clayton G.M., Peak-Chew S.Y., Evans R.M., Schwabe W.R., The structure of the ultraspiracle ligand-binding domain reveal a nuclear receptor locked in an inactive conformation. Proc. Natl. Acad. Sci. USA, 2001,98: 1549 -1554.
    Clemens M.J., Targets and mechanisms for the regulation of translation in malignant transformation. Oncogene, 2004,23: 3180-3188.
    Crane R., Craig R., Murray R., Dunand-Sauthier I., Humphrey T., Norbury C., A fission yeast homolog of Int-6, the mammalian oncoprotein and eIF3 subunit, induces drug resistance when overexpressed. Mol. Biol. Cell, 2000, 11: 3993-4003.
    Dai J.D., Gilbert L.I., Metamorphosis of the corpus allatum and degeneration of the prothoracic glands during the larval-pupal-adult transformation of Drosophila melanogaster: a cytophysiological analysis of the ring gland. Dev. Biol., 1991,144: 309-326.
    Daish T.J., Mills K., Kumar S. Drosophila caspase DRONC is required for specific developmental cell death pathways and stress-induced apoptosis. Dev. Cell, 2004, 7:909-915.
    Davis N.T., Blackburn M.B., Golubeva E.G., Hildebrand J.G., Localization of myoinhibitory peptide immunoreactivity in Manduca sexta and Bombyx mori, with indications that the peptide has a role in molting and ecdysis. J. Exp. Biol., 2003, 206:1449-1460.
    Deng W.M., Bownes M., Two signalling pathways specify localised expression of the Broad-Complex in Drosophila eggshell patterning and morphogenesis. Development, 1997,124: 4639-4647.
    Diatchenko L., Lau Y.F., Campbell A.P., Chenchik A., Moqadam F., Huang B., Lukyanov S., Lukyanov K., Gurskaya N., Sverdlov E.D., Siebert P.D., Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc. Natl. Acad. Sci. USA., 1996, 93(12): 6025-6030.
    DiBello P.R., Withers D. A., Bayer C.A., Fristrom J.W., Guild G.M., The Drosophila Broad-Complex encodes a family of related proteins containing zinc fingers. Genetics, 1991,129: 385-397.
    Dong D.J., He H.J., Chai L.Q., Zhao X.F., Wang J.X., Identification of genes differentially expressed during larval molting and metamorphosis of Helicoverpa armigera. BMC Dev. Biol., 2007,25:73.
    Draizen T.A., Ewer J., Robinow S. Genetic and hormonal regulation of the death of peptidergic neurons in the Drosophila central nervous system. J. Neurobiol., 1999, 38:455465.
    Dubnau J., Chiang A.S., Grady L., Barditch J., Gossweiler S., McNeil J., Smith P., Buldoc F., Scott R., Certa U., Broger C., Tully T., The staufen/pumilio pathway is involved in Drosophila long-term memory. Curr. Biol., 2003,13: 286-296.
    Dunne J.C., Kondylis V., Rabouille C., Ecdysone triggers the expression of Golgi genes in Drosophila imaginal discs via broad-complex. Dev. Biol., 2002, 245:172-186.
    Elmogy M., Iwami M., Sakurai S., Presence of membrane ecdysone receptor in the anterior silk gland of the silkworm Bombyx mori. Eur. J. Biochem., 2004, 271:3171-3179.
    Foley R.C., Grossman C., Ellis J.G., Llewellyn D.J., Dennis E.S., Peacock W.J., Singh K.B., Isolation of a maize bZIP protein subfamily: candidates for the ocs-element transcription factor. Plant J., 1993,3: 669-679.
    Giguere V., Tini M., Flock G., Ong E., Evans R.M., Otulakowski G., Isoform-specific amino-terminal domains dictate DNAbinding properties of RAR, a novel member of orphan nuclear hormone receptors. Genes Dev., 1994, 8:538-553.
    Gilbert L.I., Halloween genes encode P450 enzymes that mediate steroid hormone biosynthesis in Drosophila melanogaster. Molecular and Cellular Endocrinology, 2004,215:1-10.
    Gilbert L.I., Rybczynski R., Tobe S.. In: Gilbert L.I., Tata J., Arkison P. eds Metamorphosis: Post - embryonic reprogramming of gene expression in amphibian and insect cells. San Diego: Academic Press, 1996,60-75.
    Gilbert L.I., Rybczynski R., Warren J.T., Control and biochemical nature of the ecdysteroidogenic pathway. Annu. Rev. Entomol, 2002,47:883-916.
    Gorski S.M., Chittaranjan S., Pleasance E.D., A SAGE approach to discovery of genes involved in autophagic cell death. Curr. Biol., 2003,13:358-363.
    Goyal L., McCall K., Agapite J., Induction of apoptosis by Drosophila reaper, hid and grim through inhibition of IAP function. EMBO J., 2000,19:589-597.
    Grebe M., Fauth T., Spindler-Barth M., Dynamic of ligand binding to Drosophila melanogaster ecdysteroid receptor. Insect Biochem Mol. Biol., 2004,34:981-989.
    Grether M.E., Abrams J.M., Agapite J., White K., Steller H., The head involution defective gene of Drosophila melanogaster functions in programmed cell death. Genes Dev., 1995,9: 1694-1708.
    Gwozdz T., Dutko-Gwozdz J., Nieva C., Betanska K., Orlowski M., Kowalska A., Dobrucki J., Spindler-Barth M., Spindler K.D., Ozyhar A., EcR and Usp, components of the ecdysteroid nuclear receptor complex, exhibit differential distribution of molecular determinants directing subcellular trafficking. Cell Signal 2007,19:490-503.
    Hammock B.D., Sparks T.C., A rapid assay for insect juvenile hormone esterase activity. Anal. Biochem., 1977,82:573-579.
    Harding H.P., Lazar M.A., The orphan receptor Rev-ErbA activates transcription via a novel response element. Mol. Cell Biol., 1993, 13:3113-3121.
    Hart M., Concordet J.P., Lassot I., Albert I., del los S.R., Durand H., The F-box protein beta-TrCP associates with phosphorylated beta-catenin and regulates its activity in the cell. Curr. Biol., 1999,9: 207-210.
    Hawkins C.J., Yoo S.J., Peterson E.P., The Drosophila caspase DRONC cleaves following glutamate or aspartate and is regulated by DIAP1, HID, and GRIM. J. Biol. Chem., 2000,275:27084-27093.
    He T.C.,Sparks A.B.,Rago C.,Hermeking H.,Zawel L.,da Costa L.T.,Identification of c-MYC as a target of the APC pathway.Science,1998,281:1509-1512.
    Hewes R.S.,Schaefer A.M.,Taghert P.H.,The cryptocephal gene(ATF4)encodes multiple basic-leucine zipper proteins controlling molting and metamorphosis in Drosophila.Genetics,2000,155:1711-1723.
    Hiruma K.,Carter M.S.,Riddiford L.M.,Characterization of the dopa decarboxylase gene of Manduca sexta and its suppression by 20-hydroxyecdysone.Dev.Biol.,1995,169:195-209.
    Hiruma K.,Riddiford L.M.,Regulation of melanization of tobacco hornworm larva in vitro.J.Exp.Zool.,1984,230:393-403.
    Hiruma K.,Riddiford L.M.,Hopkins T.L.,Morgan T.D.,Roles ofdopa decarboxylase and phenoloxidase in the melanizationof the tobacco hornworm and their control by 20-hydroxyecdysone.J.Comp.Physiol.,1985,155B:659-669.
    Hiruma K.,Riddiford L.M.,Hormonal regulation of dopa decarboxylase during a larval molt.Dev.Biol.,1985,110:509-513.
    Hiruma K.,Riddiford L.M.,Regulation of dopa decarboxylase gene expression in the larval epidermis of the tobacco homworm by 20-hydroxyecdysone and juvenile hormone.Dev Biol.,1990,138:214-224.
    Hiruma K.,Riddiford L.M.,Regulation of transcription factors MHR4 and βFTZ-F1by 20-hydroxyecdysone during a larval molt in the tobacco hornworm,Manduca sexta.Dev.Biol.,2001,2232:265-274.
    Hiruma K.,Riddiford L.M.,Differential control of MHR3 promoter activity by isoforms of the ecdysone receptor and inhibitory effects of E75A and MHR3.Dev.Biol.,2004,272:510-521.
    Holgert H.,Dagerlind A.,Hokfelt T.,Immunohistochemical characterization of the peptidergic innervation of the rat adrenal gland.Horm.Metab.Res.,1998,30:315-322.
    Hiruma K.,Shinoda T.,Malone F.,Pdddiford L.M.,Juvenile hormone modulates 20-hydroxyecdysone-inducible ecdysone receptor and Ultraspiracle gene expression in the tobacco hornworm,Manduca sexta.Dev.Genes Evol.,1999,209: 18-30.
    Hoareau Alves K., Bochard V., Rety S., Jalinot P., Association of the mammalian proto-oncoprotein Int-6 with the three protein complexes eIF3, COP9 signalosome and 26S proteasome. FEBS Lett., 2002,527:15-21.
    Hopkins T.L., Kramer K.J., Insect cuticle sclerotization. Ann. Rev. Entomol., 1992, 37: 273-302.
    Hu X., Cherbas L., Cherbas P., Transcription activation by the ecdysone receptor (EcR/USP): identification of activation functions. Mol. Endocrinol., 2003, 17:716-731.
    Hua Y.J., Tanaka Y., Nakamura K., Sakakibara M., Nagata S., Kataoka H., Identification of a prothoracicostatic peptide in the larval brain of the silkworm, Bombyx mori. J. Biol. Chem., 1999,270:21103-21108.
    Ji Y., Shah S., Soanes K., Islam M.N., Hoxter B., Biffo S., Heslip T., Byers S., Eukaryotic initiation factor 6 selectively regulates Wnt signaling and beta-catenin protein synthesis. Oncogene, 2008,27:755-762.
    Jiang C., Baehrecke E.H., Thummel C.S., Steroid regulated programmed cell death during Drosophila metamorphosis. Development, 1997,124:4673-4683.
    Jiang C., Lamblin A.F., Steller H., Thummel C.S., A steroid-triggered transcriptional hierarchy controls salivary gland cell death during Drosophila metamorphosis. Mol. Cell., 2000,5:445-455.
    Jiang H.Y., Wek R.C., GCN2 phosphorylation of eIF2alpha activates NF-kappaB in response to UV irradiation. Biochem. J., 2005, 385:371-380.
    Jindra M., Huang J.Y., Malone F., Asahina M., Riddiford L.M., Identification and mRNA developmental profiles of two ultraspiracle isoforms in the epidermis and wings of Manduca sexta. Insect Mol. Biol., 1997, 6:41-53.
    Jindra M., Malone F., Hiruma K., Riddiford L.M., Developmental profiles and ecdysteroid regulation of the mRNAs for two ecdysone receptor isoforms in the epidermis and wings of the tobacco hornworm, Manduca sexta.. Dev. Biol., 1996, 180:258-272.
    Kageyama Y., Masuda S., Hirose S., Ueda H., Temporal regulation of the mid-prepupal gene FTZ-F1: DHR3 early late gene product is one of the plural positive regulators. Genes to Cells, 1997,2:559-569.
    Kapp L.D., Lorsch J.R., The molecular mechanics of eukaryotic translation. Annu. Rev. Biochem., 2004,73:657-704.
    Kataoka H., Nagasawa H., Isogai I., Isolation and partial characterization of a prothoracicotropic hormone of the silkworm, Bombyx mori. Agric. Biol. Chem., 1987,51:1067-1076.
    Kawakami A., Kataoka H., Oka T., Mizoguchi A., Kimura-Kawakami M., Adachi T., Iwami M., Nagasawa H., Suzuki A., Ishizaki H., Molecular cloning of the Bombyx mori prothoracicotropic hormone. Science, 1990,247: 1333-1335.
    Keshan B., Hiruma K., Riddiford L.M., Developmental expression and hormonal regulation of different isoforms of the transcription factor E75 in the tobacco hornworm Manduca sexta. Dev. Biol., 2006,295:623-632.
    Kitagawa M., Hatakeyama S., Shirane M., Matsumoto M., Ishida N., Hattori K., An F-box protein, FWD1, mediates ubiquitin-dependent proteolysis of beta-catenin. EMBO J., 1999,18: 2401-2410.
    Kopec S., Studies on the necessity of the brain for the inception of insect metamorphosis. Biol. Bull., 1922,42,323-342
    Kucharova-Mahmood S., Raska I., Mechler B.M., Temporal regulation of Drosophilasalivary gland degeneration by the Broad-Complex transcription factors. J. Struct. Biol., 2002,140:67-78.
    Kumar M.B., Fujimoto T., Potter D.W., Deng Q., Palli S.R., A single point mutation in ecdysone receptor leads to increased ligand specificity: implications for gene switch applications. Proc. Natl. Acad. Sci. USA., 2002,99:14710-14715.
    Lafont R., Dauphin-Villemant C., Warren J.T., Rees H., Ecdysteroid chemistry and biochemistry. In: Gilbert, L.I., Iatrou, K., Gill, S.S. (Eds.), Comprehensive Molecular Insect Science, Elsevier, Oxford, 2005, 3:125- 195.
    Lam G.T., Jiang C., Thummel C.S., Coordination of larval and prepupal gene expression by the DHR3 orphan receptor during Drosophila metamorphosis. Development, 1997,124:1757-1769.
    Lan Q., Wu Z., Riddiford L.M., Regulation of the ecdysone receptor, USP, E75 and MHR3 mRNAs by 20-hydroxyecdysone in the GV1 cell line of the tobacco hornworm, Manduca sexta. Insect Mol. Biol., 1997,6:3-10.
    Lan Q., Hiruma K., Hu X., Jindra M., Riddiford L.M., Activation of a delayed-early gene encoding MHR3 by the ecdysone receptor heterodimer EcR-B1/USP-1 but not by EcR-B1/USP-2. Mol Cell Biol., 1999,19:4897-4906.
    Langelan R.E., Fisher J.E., Hiruma K., Palli S.R., Riddiford L.M., Patterns of MHR3 expression in the epidermis during a larval molt of the tobacco hornworm, Manduca sexta. Dev. Biol., 2000,227:481-494.
    Lee C.Y., Baehrecke E.H., Steroid regulation of autophagic programmed cell death during development. Development, 2001,128:1443-1455.
    Lee C.Y., Cooksey B.A., Baehrecke E.H., Steroid regulation of midgut cell death during Drosophila development. Dev. Biol., 2002, 250:101-111.
    Lee C.Y., Wendel D.P., Reid P., E93 directs steroid-triggered programmed cell death in Drosophila. Mol. Cell, 2000,6:433-443.
    Li F.Q., Ueda H., Hirose S., Mediators of activation of fushi tarazu gene transcription by BmFTZ-F1. Mol. Cell. Biol., 1994,14:3013-3021.
    Li J., Li W.X., A novel function of Drosophila eIF4A as a negative regulatior of Dpp/BMP signalling that mediates SMAD degradation. Nature Cell Biology, 2006, 8: 1407-1414.
    Liang Y.Y., Lin X., Liang M., Brunicardi F.C., ten Dijke P., Chen Z., Choi K.W., Feng X.H., dSmurf selectively degrades decapentaplegic-activated MAD, and its overexpression disrupts imaginal disc development. J. Biol. Chem., 2003, 278:26307-26310.
    Liu E., Restifo L.L., Identification of a broad complex-regulated enhancer in the developing visual system of Drosophila. J. Neurobiol., 1998, 34:253-270.
    Lu D., Lee K.Y., Horodyski F.M., Witten J.L., Molecular characterization and cell-specific expression of a Manduca sexta FLRFamide gene. J. Comp. Neurol., 2002,446:377-396.
    Luo C., Dewey E.M., Sudo S., Ewer J., Hsu S., Honegger H., Hsueh A., Bursicon, The insect cuticle-hardening hormone,is a heterodimeric cystine knot protein that activates Gprotein-coupled receptor LGR2.PNAS,2005,102:2820-2825.
    Mesce K.A.,Fahrbach S.E.,Integration of endocrine signals that regulate insect ecdysis.Front Neuroendocrinol,2002,23:179-199.
    Mirth C.,Truman J.W.,Riddiford L.M.,The role of the prothoracic gland in determining critical weight for metamorphosis in Drosophila melanogaster.Curr.Biol.,2005,15:1796-1807.
    Mitra P.,Vaughan P.S.,Stein J.L.,Stein G.S.,van Wijnen A.J.,Purification and functional analysis of a novel leucine-zipper/nucleotide-fold protein,BZAP45,stimulating cell cycle regulated histone H4 gene transcription.Biochemistry.2001,40:10693-10699.
    Mugat B.,Brodu V.,Kejzlarova-Lepesant J.,Dynamic expression of broad-complex isoforms mediates temporal control of an ecdysteroid target gene at the onset of Drosophila metamorphosis.Dev.Biol.,2000,227:104-117.
    Nishita Y.,Takiya S.,Structure and expression of the gene encoding a Broad-Complex homolog in the silkworm,Bombyx mori.Gene,2004,339:161-172.
    Niwa R.,Matsuda T.,Yoshiyama T.,Namiki T.,Mita K.,Fujimoto Y.,Kataoka H.,CYP306Al,a cytochrome P450 enzyme,is essential for eedysteroid biosynthesis in the prothoracic glands of Bombyx and Drosophila.J.Biol.Chem.,2004,279:35942-35949.
    Oldham S.,Hafen E.,Insulin/IGF and target of rapamyein signaling:a TOR de force in growth control.Trends Cell Biol.,2003,13:79-85.
    Orford K.,Crockett C.,Jensen J.P.,Weissman A.M.,Byers S.W.,Serine phosphorylation-regulated ubiquitination and degradation of beta-eatenin.J.Biol.Chem.,1997,272:24735-24738.
    Palli S.R.,Hiruma K.,Riddiford L.M.,An ecdysteroidinducible Manduca gene similar to the Drosophila DHR3 gene,a member of the steroid hormone receptor superfamily.Dev.Biol.,1992,150:306-318.
    Palli S.R.,Ladd T.R.,Sohi S.S.,Cook B.J.,Retnakaran A.,Cloning and developmental expression of Choristoneura hormone receptor 3,an ecdysone-inducible gene and a member of the steroid hormone receptor superfamily. Insect Biochem. Mol. Biol., 1996,26:485-499.
    
    Park M.H., The post-translational synthesis of a polyamine-derived amino acid, hypusine, in the eukaryotic translation initiation factor 5A (eIF5A). J. Biochem., 2006,139:161-169.
    Parthasarathy R., Palli S.R., Proliferation and differentiation of intestinal stem cells during metamorphosis of the red flour beetle, Tribolium castaneum. Dev. Dyn., 2008,237:893-908.
    Paulin F. E., Campell L. E., O'Brien K., Eukaryotic translation initiation factor 5 (eIF-5) acts as a classical GTPase-activator protein. Curr. Biol., 2001,11:55-59.
    Perkins D.J., Barber G.N., Defects in translational regulation mediated by the alpha subunit of eukaryotic initiation factor 2 inhibit antiviral activity and facilitate the malignant transformation of human fibroblasts. Mol. Cell Biol., 2004, 24: 2025-2040.
    Petryk A., Warren J.T., Marques G., Jarcho M.P., Gilbert L.I., Kahler J., Parvy J.P., Li. Y., Dauphin-Villemant C., O'Connor M.B., Shade is the Drosophila P450
    
    enzyme that mediates the hydroxylation of ecdysone to the steroid insect molting hormone 20-hydroxyecdysone. Proc. Natl Acad Sci. USA., 2003, 100:13773-13778.
    Podos S.D., Hanson K.K., Wang, Y.C., Ferguson E. L., The DSmurf ubiquitin-protein ligase restricts BMP signaling spatially and temporally during Drosophila embryo genesis. Dev. Cell, 2001,1: 567-578.
    Retnakaran A., Smith L.F.R., Tomkins W.L., Primavera M., Palli S.R., Payne N., Jobin L., Effect of RH-5992, a non-steroidal ecdysone agonist, on the spruce budworm, Choristoneura fumiferana (Lepidoptera:Tortricidae): laboratory, greenhouse and ground spray trials. Can. Entomol., 1997, 129:871-885.
    Reddy K.L., Rovani M.K., Wohlwill A., Katzen A., Storti R.V., The Drosophila Par domain protein I gene, Pdp1, is a regulator of larval growth, mitosis and endoreplication. Dev. Biol., 2006,289: 100-114.
    Richards G., The radioimmune assay of ecdysteroid titres in Drosophila melanogaster. Mol. Cell Endocrinol., 1981,21:181-197.
    Riddiford L.M., Hormones and Drosophila development. In: Bate, M., Martinez-Arias, A. (Eds.), The Development of Drosophila melanogaster, 1993, Cold Spring Harbor Press, New York, p899- 939.
    Riddiford L.M., Hewes R.S., Truman J.W., Dynamics and metamorphosis of an identifiable peptidergic neuron in an insect. J. Neurobiol., 1994,25: 819-830.
    Riddiford L.M., Hiruma K., Lan Q., Zhou B., Regulation and role of nuclear receptors during larval molting and metamorphosis of Lepidoptera. Am. Zool. 1999, 39:736-746.
    Riddiford L.M., Hiruma K., Zhou X.F., Nelson C.A., Insights into the molecular basis of the hormonal control of molting and metamorphosis from Manduca sexta and Drosophila melanogaster. Insect Biochemistry and Molecular Biology, 2003, 33:1327-1338.
    Rubinfeld B., Albert I., Porfiri E., Fiol C., Munemitsu S., Polakis P., Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly. Science, 1996,272: 1023-1026.
    Ruggero D., Sonenberg N., The Akt of translational control. Oncogene, 2005, 24: 7426-7434.
    
    Sambrook J., Fritsch E. F., Maniatis T., 1992, Molecular Cloning.
    Sandstrom D.J., Restifo L.L., Epidermal tendon cells require Broad Complex function for correct attachment of the indirect flight muscles in Drosophila melanogaster. J. Cell Sci., 1999, 112:4051-4065.
    Sauman I., Reppert S.M., Molecular characterization of prothoracicotropic hormone (PTTH) from the giant silkmoth, Antheraea pernyi: Developmental appearance of PTTH-expressing cells and relationship to circadian clock cells in central brain. Dev. Biol., 1996,178:418-429.
    Schubiger M., Tomita S., Sung C., Robinow S., Truman J.W., Isoform specific control of gene activity in vivo by the Drosophila ecdysone receptor. Mechanisms of Development, 2003,120: 909-918.
    Segraves W.A., Hogness D.S., The E75 ecdysone-inducible gene responsible for the 75B early puff in Drosophila encodes two new members of the steroid receptor superfamily.Genes & Dev.,1990,4:204-219.
    Sehnal F.,Hansen I.,Scheller K.,The cDNA-structure of the prothoracicotropic hormone(PTTH)of the silkmoth Hyalophora cecropia.Insect Biochem.Mol.Biol.,2002,32:233-237.
    Shionoya M.,Matsubayashi H.,Asahina M.,Molecular cloning of the prothoracicotropic hormone from the tobacco hornworm,Manduca sexta.Insect Biochem.Mol.Biol.,2003,33:795-801.
    Si K.,Maitra U.,The Saccharomyces cerevisiae homologue of mammalian translation initiation factor 6 does not function as a translation initiation factor.Mol.Cell Biol.,1999,19:1416-1426.
    Strudwick S.,Borden K.L.,The emerging roles of translation factor eIF4E in the nucleus.Differentiation,2002,70:10-22.
    Sun G.C.,Hirose S.,Ueda H.,Intermittent expression of BmFTZ-F1,a member of the nuclear hormone receptor superfamily during development of the silkworm Bombyx mori.Dev.Biol.,1994,162:426-437.
    Svitkin Y.V.,Herdy B.,Costa-Mattioli M.,Gingras A.C.,Raught B.,Sonenberg N.,Eukaryotic translation initiation factor 4E availability controls the switch between cap-dependent and internal ribosomal entry site-mediated translation.Mol.Cell Biol.,2005,25:10556-10565.
    Tavva V.S.,Dinkins R.D.,Palli S.R.,Collins G.B.,Development of a methoxyfenozide-responsive gene switch for applications in plants.Plant J.,2006,45:457-469.
    Thummel C.S.,Steroid-triggered death by autophagy.BioEssays,2001,23:677-682.
    Topisirovic I.,Kentsis A.,Perez J.M.,Guzman M.L.,Jordan C.T.,Borden K.L.,Eukaryotic translation initiation factor 4E activity is modulated by HOXA9 at multiple levels.Mol.Cell Biol.,2005,25:1100-1112.
    Topisirovic I.,Ruiz-Gutierrez M.,Borden K.L.,Phosphorylation of the eukaryotic translation initiation factor eIF4E contributes to its transformation and mRNA transport activities.Cancer Res.,2004,64:8639-8642.
    Truman J.W., Steroid hormone secretion in insects comes of age. Proc. Natl. Acad. Sci., 2006,103:8909-8910.
    Valasek L., Mathew A.A., Shin B.S., Nielsen K.H., Szamecz B., Hinnebusch A.G., The yeast eIF3 subunits TIF32/a, NIP1/c, and eIF5 make critical connections with the 40S ribosome in vivo. Genes Dev., 2003,17: 786-799.
    Valasek L., Nielsen K.H., Zhang F., Fekete C.A., Hinnebusch A.G., Interactions of eukaryotic translation initiation factor 3 (eIF3) subunit NIPl/c with eIF1 and eIF5 promote preinitiation complex assembly and regulate start codon selection. Mol. Cell Biol., 2004,24:9437-9455.
    Vernooy S.Y., Copeland J., Ghaboosi N., Cell death regulation in Drosophila: conservation of mechanism and unique insights. J. Cell. Biol., 2000,150(2): 69-76.
    von Arnim A.G., Chamovitz D.A., Protein homeostasis: a degrading role for Int6/eIF3e. Curr. Biol., 2003,13:323-325.
    Wang D., Xu M., Liu J., Wan Y., Deng H., Dou F., Xie W., Drosophila Ecp is a novel ribosome associated protein interacting with dRPL5. Biochim. Biophys. Acta., 2006,1760:1428-1433.
    Wang J.L., Jiang X.J., Wang Q., Hou L.J., Xu D.W., Wang J.X., Zhao X.F., Identification and expression profile of a putative basement membrane protein gene in the midgut of Helicoverpa armigera. BMC Dev. Biol., 2007:76.
    Warren J.T., Petryk A., Marques G., Jarcho M., Parvy J.P., Dauphin-Villemant C., O'Connor M.B., Gilbert LI., Molecular and biochemical characterization of two P450 enzymes in the ecdysteroidogenic pathway of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA., 2002,99:11043-11048.
    Warren J.T., Petryk A., Marques G., Jarcho M., Parvy J.P., Shinoda T., Itoyama K., Kobayashi J., Jarcho M., Li Y., O'Connor M.B., Dauphin-Villemant C., Gilbert LI., Phantom encodes the 25-hydroxylase of Drosophila melanogaster and Bombyx mori: a P450 enzyme critical in ecdysone biosynthesis. Insect Biochem. Mol. Biol., 2004,34:991-1010.
    Wei Z.J., Zhang Q.R., Kang L., Xu W.H., Ddenlinger D.L., Molecular characterization and expression of prothoracicotropic hormone during development and pupal diapause in the cotton bollworm, Helicoverpa armigera. J. Insect Physiol., 2005, 51:691-700.
    Weller J., Sun G.C., Zhou B., Lan Q., Hiruma K., Riddiford L.M., Isolation and developmental expression of two nuclear receptors, MHR4 and PFTZ-F1, in the tobacco hornworm, Manduca sexta. Insect Biochem. Mol. Biol., 2001,31: 827-837.
    Wells C.Jr., Aparicio K., Sahnon A., Zadel A., Fuse M., Structure-activity relationship of ETH during ecdysis in the tobacco hornworm, Manduca sexta. Peptides, 2006, 27:698-709.
    White K., Tahaoglu E., Steller H., Cell killing by the Drosophila gene reaper. Science, 1996,271:805-807.
    White K.P., Hurban P., Watanabe T., Hogness D.S., Coordination of Drosophila metamorphosis by two ecdysone-induced nuclear receptors. Science, 1997, 276: 114-117.
    Winston J.T., Strack P., Beer-Romero P., Chu C.Y., Elledge S.J., Harper J.W., The SCFbeta-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in DcappaBalpha and beta-catenin and stimulates DcappaBalpha ubiquitination in vitro. Genes Dev., 1999,13: 270-283.
    Woodard C.T., Baehrecke E.H., Thummel C.S., Molecular mechanismfor the stage specificity of the Drosophila prepupal genetic response to ecdysone. Cell, 1994,79: 607-615.
    Zhao X.F., Li Z.M., Wang J.X., Wang J.B., Wang S.L., Blankespoor H.D., Efficacy of RH-2485, a new non-steroidal ecdysone agonist, against the cotton boll worm; Helicoverpa armigera(Lepidoptera: noctuidae) in the laboratory and field. Crop Protection, 2003,22:959-965.
    Xu W.H., Denlinger D.L., Molecular characterization of prothoracicotropic hormone and diapause hormone in Heliothis virescens during diapause, and a new role for diapause hormone. Insect Mol. Biol., 2003, 12:509-516.
    Xu W.H., Rinehart J.P., Denlinger D.L., Structural characterization and expression analysis of prothoracicotropic hormone in the corn earworm, Helicoverpa zea. Peptides, 2003, 24:1319-1325
    Yamanaka N.,Zitnan D.,Kim Y.J.,Adams M.E.,Hua Y.J.,Suzuki Y.,Suzuki M.,Suzuki A.,Satake H.,Mizoguchi A.,Asaoka K.,Tanaka Y.,Kataoka H.,Regulation of insect steroid hormone biosynthesis by innervating peptidergic neurons.Proc.Natl.Acad.Sci.USA,2006,103:8622-8627.
    Yamanaka N.,Hua Y.J.,Mizoguchi A.,Watanabe K.,Niwa R.,Tanaka Y.,Kataoka H.,Identification of a novel prothoracicostatic hormone and its receptor in the silkworm Bombyx mori.J.Biol.Chem.,2005,280:14684-14690.
    Yao T.P.,Forman B.M.,Jiang Z.,Cherbas L.,Chen J.D.,McKeown M.,Cherbas P.,Evans R.M.,Functional ecdysone receptor is the product of EcR and Ultraspiracle genes.Nature,1993,366:476-479.
    Yen H.C.,Chang E.C.,INT6—a link between the proteasome and tumorigenesis.Cell Cycle,2003,2:81-83.
    Yin V.P.,Thummel C.S.,A balance between the diapldeath inhibitor and reaper and hid death inducers controls steroid-triggered cell death in Drosophila.Proc.Natl.Acad.Sci.,2004,101:8022-8027.
    Yussa M.,LE hr U.l.,Su K.,Pick L.,The nuclear receptor Ftz-Fl and homeodomain protein Ftz interact through evolutionarily conserved protein domains mechanisms of development.Mechanisms of Development,2001,107:39-53.
    Zhao X.F.,He H.J.,Dong D.J.,Wang J.X.,Identification of differentially expressed proteins during larval molting of Helicoverpa armigera.J.Proteome Res.,2006,5:164-169.
    Zhao X.F.,Wang J.X.,Xu X.L.,Li Z.M.,Kang C.J.,Molecular cloning and expression patterns of the molt-regulating transcription factor HHR3 from Helicoverpa armigera.Insect Mol.Biol.,2004,13:407-412.
    Zhou B.,Hiruma K.,Jindra M.,Shinoda T.,Segraves W.A.,Malone F.,Riddiford L.M.,Regulation of the transcription factor E75 by 20-hydroxyecdysone and juvenile hormone in the epidermis of the tobacco homworm,Manduca sexta,during larval molting and metamorphosis.Dev.Biol.,1998,193:127-138.
    Zhou B.,Riddiford L.M.,Hormonal regulation and patterning of the Broad-complex in the epidermis and wing discs of the tobacco hornworm,Manduca sexta.Dev. Biol.,2001,231:125-137.
    Zhou X.,Riddiford L.M.,Broad specifies pupal development and mediates the 'status quo' action of juvenile hormone on the pupal-adult transformation in Drosophila and Manduca.Development,2002,129:2259-2269.
    Zhou X.,Zhou B.,Truman J.W.,Overexpression of broad:a new insight into its role in the Drosophila prothoracic gland cells.Exp Biol.,2004,207:1151-1161.
    何昆,周涛,靳宝锋,胡美茹,杨怡,张学敏,eIF5A的亚细胞定位研究。军事医学科学院院刊,2003,27:330-333.
    李庆荣,邓小娟,杨婉莹,黄志君,钟仰进,曹阳,夏庆友,果蝇蜕皮激素诱导程序性细胞死亡的遗传调控因子。昆虫学报,2006,49:118-125.
    王荫长,陈长琨,韩召军,昆虫生理生化学,1994,中国农业出版社,p19-21.
    赵小凡,昆虫蜕皮的分子机理及应用。昆虫知识,2007,44:323-326.
    This work was supported by grants from the National Natural Science Foundation of China (No:30710103901,30330070).
    Dong D.J.,He H.J.,Chai L.Q.,Zhao X.F.,Wang J.X.,Identification of genes differentially expressed during larval molting and metamorphosis of Helicoverpa armigera.BMC Dev.Biol.,2007,25(7):73.
    Hewes R.S.,Schaefer A.M.,Taghert P.H.,The cryptocephal gene(ATF4)encodes multiple basic-leucine zipper proteins controlling molting and metamorphosis in Drosophila.Genetics,2000,155:1711-1723.
    Hoareau Alves K.,Bochard V.,Rety S.,Jalinot P.,Association of the mammalian proto-oncoprotein Int-6 with the three protein complexes eIF3,COP9 signalosome and 26S proteasome.FEBS Lett.,2002,527(1-3):15-21.
    Ji Y.,Shah S.,Soanes K.,Islam M.N.,Hoxter B.,Biffo S.,Heslip T.,Byers S.,Eukaryotic initiation factor 6 selectively regulates Wnt signaling and beta-catenin protein synthesis.Oncogene,2008,27(6):755-762.
    Kenneth J.L.,Thomas D.S.,Analysis of Relative Gene Expression Data Using Real Time Quantitative PCR and the 2~(-ΔΔCT)Method.METHODS,2001,25:402-408.
    Li J.,Li W.X.,A novel function of Drosophila eIF4A as a negative regulatior of Dpp/BMP signalling that mediates SMAD degradation.Nature Cell Biology,2006,8:1407-1414.
    Paulin F.E.,Campell L.E.,O'Brien K.,Eukaryotic translation initiation factor 5(eIF-5)acts as a classical GTPase-activator protein.Curr.Biol.,2001,11(1):55-59.
    Reddy K.L.,Rovani M.K.,Wohlwill A.,Katzen A.,Storti R.V.,The Drosophila Par domain protein I gene,Pdp1,is a regulator of larval growth,mitosis and endoreplication.Dev.Biol.,2006,289(1):100-114.
    Sambrook J.,Fritsch E.F.and Maniatis T.,1989.Molecular cloning:a laboratory manual,2nd ed.Cold Spring Harbor,NY:Cold Spring Harbor Laboratory Press.
    Topisirovic I.,Ruiz-Gutierrez M.,Borden K.L.,Phosphorylation of the eukaryotic translation initiation factor eIF4E contributes to its transformation and mRNA transport activities.Cancer Res.,2004,64(23):8639-8642.
    Wang D.,Xu M.,Liu J.,Wan Y.,Deng H.,Dou F.,Xie W.,Drosophila Ecp is a novel ribosome associated protein interacting with dRPLS.Biochim.Biophys.Acta.,2006,1760(9):1428-1433.
    Zhao X.F.,An X.M.,Wang J.X.,Dong D.J.,Du X.J.,Sueda S.and Kondo H.,Expression of the Helicoverpa cathepsin B-like proteinase during embryonic development.Arch.Insect Biochem.Physiol.,2005,58:39-46.
    Zhao X.F.,Wang J.X.and Wang Y.C.,Purification and characterization of a cysteine proteinase from eggs of cotton boll worm,Helicoverpa armigera.Insect Biochem Mol Biol,1998,28:259-264.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700