用户名: 密码: 验证码:
PfCP-2.9疟疾疫苗候选抗原系列突变体的构建及其表位和免疫学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
疟疾仍然严重威胁着人类的健康。世界卫生组织在2008年的疟疾报告中指出,2006年全世界大约有247,000,000人感染疟疾,其中约1,000,000人死亡;并且,死亡患者大多数是撒哈拉沙漠以南非洲地区的五岁以下儿童。随着疟原虫抗药性和蚊媒抗杀虫剂的出现和扩散,研发安全有效的疟疾疫苗已经成为未来疟疾防治的一种潜在的重要手段。
     恶性疟原虫融合抗原-2.9(Plasmodium falciparum chimeric protein-2.9, PfCP-2.9)是由恶性疟原虫裂殖子表面蛋白1(Merozoite surface protein 1, MSP1)的C末端19kDa片段(PfMSPl-19)和恶性疟原虫顶端膜抗原-1(Apical membrane antigen-1, AMA-1)的Ⅲ亚区(PfAMA-1 (III))通过一段28个氨基酸的连接序列融合而成。在动物实验中,该融合抗原比其两个单组分具有更强的免疫原性和更高的体外抑制疟原虫生长效力。该疫苗的临床试验结果也表明,疫苗安全、耐受性好,并且具有较强的免疫原性。为探索该疫苗增强免疫应答的机制,我们利用定点突变的方式,采用Western Blot和酶联免疫吸附试验(Enzyme-linked immunosorbent assay, ELISA)相结合的检测方法分析该疫苗抗原的表位分布及其可能的功能。
     为了解PfCP-2.9的表位分布,我们共设计了该抗原的17个单氨基酸突变体。这些突变位点有9个位于AMA-1 (III)组分,8个位于MSP1-19组分。AMA-1 (III)组分上的突变位点主要选择疟原虫种间高度保守的氨基酸位点,或者被单抗FS.12.19识别的氨基酸位点。该单抗虽然没有体外抑制活性,但是参与了不同疟原虫种间的交叉反应,而这种交叉反应被认为是抑制疟原虫入侵红细胞的机理之一。MSP1-19组分上的突变位点主要选择该抗原上已被确认的阻遏性位点,或者是在晶体结构中暴露于分子表面并且极有可能参与阻遏性或者抑制性表位形成的氨基酸位点。按照上述所设计的突变位点,我们采用重叠延伸聚合酶链反应(Overlap-extention Polymerase Chain Reaction)的方法,对pfcp-2.9基因分别进行定点突变。具体方法是:采用通用引物和相互重叠的两条突变引物中的一条,分别扩增出上、下游含突变位点的片段,再通过第二轮PCR,以纯化后的上、下游片段为模板,以两端的两条通用引物为引物,扩增产生突变体基因。将各突变体基因通过酶切,克隆到表达载体pPIC9K上,转化毕氏酵母(GS115),经过G418筛选后,在毕赤酵母中进行了分泌表达。在采用SDS-PAGE及Western Blot进行表达产物的检测中(以兔抗-PfCP-2.9为一抗),17个突变体基因均能在该表达系统中稳定表达出完整的蛋白,并能与PfCP-2.9免疫血清反应。这为进一步鉴定PfCP-2.9的表位分析提供了基础。
     本实验室已制备了一组(共12株)PfCP-2.9的单克隆抗体。此外,从其它实验室获得一株单抗。这些单抗识别PfCP-2.9抗原的不同表位,具有不同的生物学特性和功能,包括识别线性表位或构象表位、具有抑制疟原虫入侵或阻遏该抑制作用等。采用Western Blot和ELISA方法,通过检测各单抗与各PfCP-2.9突变体的结合反应,分析这些单抗识别的表位及其分布。结果显示:(1)一株抑制性单抗mAb7G识别的表位与三个氨基酸位点突变(M62:Phe491→Ala, M82:Glu511→Gln和M84:Arg513→Lys)相关,这三个位点均位于AMA-1(Ⅲ)的C末端非结构区(Unstructured region)的分子表面,在空间构象上彼此靠近,并且其中的任何一个位点发生突变都会使mAb7G的识别明显减弱。(2)M62和M82的突变还致使单抗mAb11.12的结合发生减弱;M62使单抗mAbW9.10的结合减弱。这些结果提示,mAb11.12(Phe491和Glu511)和mAbW9.10 (Phe491)有可能通过结合位点的相互竞争而阻断mAb7G抗体的抑制活性;(3)在针对PfMSP1-19组分的突变体设计中,有四个突变体是针对MSP1-19阻遏性表位的突变,这些突变所在的位点分别是Asn15, Glu27, Leu31和Glu43,文献报道结果表明,这四个位点的突变可以阻断四个阻遏性单抗(mAb7.5, mAb2.2,mAb1E1和mAb111.4)与PfMSPl-19结合。本实验结果显示,采用Western Blot和ELISA方法均证实,阻遏性单抗mAblEl与PfCP-2.9上述位点的突变体结合与PfMSP1-19结果一致;(4)M160突变导致对多数单抗的结合发生改变,表明该位点(Asn15)可能在PfCP-2.9分子的折叠和维持构象中发挥重要作用。
     为分析疟疾病人免疫血清与PfCP-2.9及其突变体的结合反应,我们收集了96份恶性疟疾病人的血清,采用ELISA方法检测这些血清样本对PfCP-2.9的识别情况。结果显示,其中91份血清识别PfCP-2.9,阳性率94.8%,表明在自然感染情况下,能产生针对PfCP-2.9疫苗抗原的特异抗体。在此基础上,我们选取其中74份阳性血清样本,比较它们与PfCP-2.9及其突变体的结合差异。结果显示,现场血清可以与大部分PfCP-2.9的突变体正常结合。但在PfMSPl-19组分上的突变体与血清结合发生了明显的改变,特别是突变其阻遏性表位的突变体(M160、M172、M176和M188),这可能缘于病人血清中存在较高水平的阻遏性抗体。这些结果为今后设计排除阻遏性表位的疫苗提供了依据。
     为了解PfCP-2.9突变体的免疫原性及其免疫血清体外抑制疟原虫生长的效力是否发生改变,我们将PfCP-2.9及其三个突变阻遏性表位的突变体进行发酵和蛋白纯化,获得的重组蛋白进行平行新西兰兔免疫实验。免疫血清分析结果表明,PfCP-2.9与其突变体的免疫原性,即抗体水平,无显著差异(p>0.05)。我们分离了免疫兔血清中的总IgG并进行体外抑制试验。结果表明,PfCP-2.9免疫组与突变体免疫组的免疫血清及总IgG,在体外抑制疟原虫生长效力方面无统计学差异(p>0.05)。
     小结:为分析PfCP-2.9疟疾疫苗候选抗原的表位及其生物学功能,我们采用重叠延伸聚合酶链反应的方法,对pfcp-2.9基因进行系列突变,制备了17个单氨基酸改变的PfCP-2.9突变体。利用本实验室前期制备的一组识别PfCP-2.9的单抗,采用Western Blot和ELISA的免疫学方法,分析单抗与突变体之间的识别反应,发现其中一些具有不同功能的单抗,其识别反应发生了改变;同时提出了其可能的生物学意义。此外,通过PfCP-2.9突变体与自然感染疟疾病人血清进行识别反应,发现其中一些突变体的识别反应发生了改变。以上结果,为阐明PfCP-2.9这个重要疟疾疫苗候选抗原的免疫保护机制,改进和设计更为有效的疟疾疫苗提供了依据和见解。
Malaria remains to be a severe tropical disease. It is reported by World Health Organization that it caused more than 247 million cases around the world and about 1 million death in 2006, most of which were in children under five years of age in Sub-Saharan Africa. With the emergence and spread of insecticide-resistant mosquitoes and drug-resistant parasites, there is an urgent need for the development of a safe and effective vaccine to prevent or even to eradicate the disease.
     In a previous study, plasmodium falciparum chimeric protein-2.9 (PfCP-2.9) was constructed by fusing the C terminal 19kDa frangment (MSP1-19) of merozoite surface protein 1(MSP1) with apical membrane antigen-1 (AMA-1) domain III (AMA-1 (III)) through a 28-mer peptide. In animal studies, the chimeric protein was proved to enhance the immunogenicity, and in vitro growth inhibitory activities. Two separate Phase I clinical trials have also demonstrated that the vaccine candidate was safe, tolerable and immunogenic. In order to investigate the enhancement of the immunological mechanism, by which the vaccine exerts function, we performed an epitope mapping of PfCP-2.9 by Western Blot and enzyme-linked immunosorbent assays (ELISA).
     In this study, we designed and created 17 mutants of PfCP-2.9 with single amino acid substitution. Nine of them were mutated on the AMA-1 (III) component, and the rest eight were made on the MSP 1-19 component. The mutated amino acids selected on AMA-1 (III) component are those highly conserved in the Plasmodium or involved in the formation of the epitope recognized by mAbF8.12.19, which was not inhibitory but involved in cross-reactivities across species. The eight aminio acid substitutions on MSP1-19 component were those proved to be involved in the formation of blocking epitopes or those surface-exposed on the crystal structure of PfMSPl-19 and putatively involved in the inhibitory or blocking epitopes. The above mutations were made by the method of overlap extention polymerase chain reaction (PCR), which generate the upstream or downstream fragments through the first round of PCR using the forward universial primer and a reverse mutant primer or the reverse universial primer and a forward mutant primer, respectively; and then combine the purified upstream and downstream fragments with the forward and reverse universial primes by the second round of PCR.The mutant genes were subsequently ligased into the expression vector of pPIC9K and sequenced. The vector with the correct target sequence was further transformed into the Pichia pastoris expression system to secrete the mutated proteins in the supernatant. By sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and Western Blot analysis, it was confirmed that all the 17 mutant genes were sucdessfully expressed and the mutant proteins could be recognized by the rabbit immune sera. These results provided bases for the investigation into the epitopes of PfCP-2.9.
     The epitope mapping was carried out by Western Blot and ELISA, using the above mutant proteins as well as a serial of mAbs, which were prepared and characterized in our previous work or obtained from other labs. The results we obtained may have the following implications:(i) An inhibitory epitope recognized by mAb7G was found, and the epitope is closely related with three substitutions (M62:Phe491→Ala, M82:Glu511→Gln and M84:Arg513->Lys), because any of them could reduce the binding of the mAb. In addition, all of the three amino acids are in close proximity to each other in conformation on the C terminal unstructured region of AMA-1(Ⅲ). (ii) M62 and M82 could further reduce the binding of mAbG 11.12, while M62 could reduce the binding of mAbW9.10. Therefore, there is possibility that the two mAbs compete with mAb7G at the position of M62 and M82 and at the position of M62, separately. (iii) Some information about blocking epitopes was also obtained. There are four definitive amino acids (Asn15, Glu27, Leu31 and Glu43) that were involved in the formation of blocking epitopes on PfMSPl-19. It was reported that mutation of these four amino acids abolished the binding of blocking mAbs of mAb7.5, mAb2.2, mAb1E1 and mAb111.4, seperately. In this study, it was confirmed that the epitope recognized by mAb1E1 was the same as that identified on the PfMSP1-19 molecule. (iv) The amino acid of Asn15 was found to be of critical importance, since the substitution of this residue to Arg on PfCP-2.9 reduced the binding of most mAbs.
     To investigate the recognition differences of sera from malaria infected individuals between PfCP-2.9 and its mutant proteins, we collected 96 sera samples from patients infected with Plasmodium falciparum. The results showed that 91 out of the 96 (94.8%) sera samples recognized PfCP-2.9, which indicated that anti-PfCP-2.9 specific antibodies could be produced during natural infections.74 positive sera samples were futher selected to compare the recognition between PfCP-2.9 and the mutant proteins. And the results showed that most of the mutant proteins could be recognized by the selected sera. However, apparent differences were found between PfCP-2.9 and the mutant proteins with substitutions on the MSP1-19 component (especially the mutations on blocking epitopes of PfMSP1-19), which implied that blocking antibodies dominate these sera samples. These results provide evidence for future vaccines eliminating blocking epitopes.
     To investigate the immunogenicity of the mutant proteins, we performed animal studies in New Zealand White rabbits with Pichia expressed and purified PfCP-2.9 as well as three mutant proteins with substitution on blocking epitopes. The analysis from the rabbit immue sera showed that there were no significant differences between PfCP-2.9 and mutatated proteins, either in the ELISA titers (p>0.05) or in the in vitro growth inhibiton assay (GIA) by sera, as well as total IgG (p>0.05).
     Briefly, in this study, we created a panel of 17 mutant proteins of PfCP-2.9 with single amino acid substitution. With the mAbs against PfCP-2.9 prepared in previous work, we have mapped some epitopes of the vaccine candidate by Western Blot and ELISA, and raised the possible biological function of these epitopes. Recognition of the mutant proteins by sera from natural infections was also investigated, and the results showed that the binding of some mutant proteins was altered by the sera samples, compared with the binding of the wild-type protein. The data obtained may prove to be valuable and helpful for designing more effective malaria vaccines against blood-stage parasites in future studies.
引文
1. Mayor S:WHO report shows progress in efforts to reduce malaria incidence. BMJ (Clinical research ed 2008,337:a1678.
    2. O'Donnell RA, Saul A, Cowman AF, Crabb BS:Functional conservation of the malaria vaccine antigen MSP-119across distantly related Plasmodium species. Nature medicine 2000,6(1):91-95.
    3. Triglia T, Healer J, Caruana SR, Hodder AN, Anders RF, Crabb BS, Cowman AF: Apical membrane antigen 1 plays a central role in erythrocyte invasion by Plasmodium species. Mol Microbiol 2000,38(4):706-718.
    4. Harris PK, Yeoh S, Dluzewski AR, O'Donnell RA, Withers-Martinez C, Hackett F, Bannister LH, Mitchell GH, Blackman MJ:Molecular identification of a malaria merozoite surface sheddase. PLoS pathogens 2005,1(3):241-251.
    5. Howell SA, Well I, Fleck SL, Kettleborough C, Collins CR, Blackman MJ:A single malaria merozoite serine protease mediates shedding of multiple surface proteins by juxtamembrane cleavage. The Journal of biological chemistry 2003, 278(26):23890-23898.
    6. Hu J, Chen Z, Gu J, Wan M, Shen Q, Kieny MP, He J, Li Z, Zhang Q, Reed ZH et al: Safety and immunogenicity of a malaria vaccine, Plasmodium falciparum AMA-1/MSP-1 chimeric protein formulated in montanide ISA 720 in healthy adults. PloS one 2008,3(4):e1952.
    7. Malkin E, Hu J, Li Z, Chen Z, Bi X, Reed Z, Dubovsky F, Liu J, Wang Q, Pan X et al: A phase 1 trial of PfCP2.9:an AMA1/MSP1 chimeric recombinant protein vaccine for Plasmodium falciparum malaria. Vaccine 2008,26(52):6864-6873.
    8. Collins WE, Pye D, Crewther PE, Vandenberg KL, Galland GG, Sulzer AJ, Kemp DJ, Edwards SJ, Coppel RL, Sullivan JS et al: Protective immunity induced in squirrel monkeys with recombinant apical membrane antigen-1 of Plasmodium fragile. The American journal of tropical medicine and hygiene 1994, 51(6):711-719.
    9. Astagneau P, Roberts JM, Steketee RW, Wirima JJ, Lepers JP, Deloron P: Antibodies to a Plasmodium falciparum blood-stage antigen as a tool for predicting the protection levels of two malaria-exposed populations. The American journal of tropical medicine and hygiene 1995,53(1):23-28.
    10. Okech B, Mujuzi G, Ogwal A, Shirai H, Horii T, Egwang TG:High titers of IgG
    antibodies against Plasmodium falciparum serine repeat antigen 5 (SERA5) are associated with protection against severe malaria in Ugandan children. The American journal of tropical medicine and hygiene 2006,74(2):191-197.
    11. Pinder M, Sutherland CJ, Sisay-Joof F, Ismaili J, McCall MB, Ord R, Hallett R, Holder AA, Milligan P:Immunoglobulin G antibodies to merozoite surface antigens are associated with recovery from chloroquine-resistant Plasmodium falciparum in Gambian children. Infection and immunity 2006,74(5):2887-2893.
    12. Dutta S, Sullivan JS, Grady KK, Haynes JD, Komisar J, Batchelor AH, Soisson L, Diggs CL, Heppner DG, Lanar DE et al: High antibody titer against apical membrane antigen-1 is required to protect against malaria in the Aotus model. PloS one 2009,4(12):e8138.
    13. Dekker C, Uthaipibull C, Calder LJ, Lock M, Grainger M, Morgan WD, Dodson GG, Holder AA:Inhibitory and neutral antibodies to Plasmodium falciparum MSP119 form ring structures with their antigen. Molecular and biochemical parasitology 2004,137(1):143-149.
    14. Uthaipibull C, Aufiero B, Syed SE, Hansen B, Guevara Patino JA, Angov E, Ling IT, Fegeding K, Morgan WD, Ockenhouse C et al: Inhibitory and blocking monoclonal antibody epitopes on merozoite surface protein 1 of the malaria parasite Plasmodium falciparum. Journal of molecular biology 2001, 307(5):1381-1394.
    15. Nwuba RI, Sodeinde O, Anumudu CI, Omosun YO, Odaibo AB, Holder AA, Nwagwu M:The human immune response to Plasmodium falciparum includes both antibodies that inhibit merozoite surface protein 1 secondary processing and blocking antibodies. Infection and immunity 2002,70(9):5328-5331.
    16. Hui GS, Siddiqui WA:Serum from Pf195 protected Aotus monkeys inhibit Plasmodium falciparum growth in vitro. Experimental parasitology 1987, 64(3):519-522.
    17. Chang SP, Gibson HL, Lee-Ng CT, Barr PJ, Hui GS:A carboxyl-terminal fragment of Plasmodium falciparum gp195 expressed by a recombinant baculovirus induces antibodies that completely inhibit parasite growth. J Immunol 1992,149(2):548-555.
    18. Cooper JA, Cooper LT, Saul AJ:Mapping of the region predominantly recognized by antibodies to the Plasmodium falciparum merozoite surface antigen MSA 1. Molecular and biochemical parasitology 1992,51(2):301-312.
    19. Blackman MJ, Heidrich HG, Donachie S, McBride JS, Holder AA:A single fragment of a malaria merozoite surface protein remains on the parasite during red cell invasion and is the target of invasion-inhibiting antibodies. The Journal of experimental medicine 1990,172(1):379-382.
    20. Pirson PJ, Perkins ME:Characterization with monoclonal antibodies of a surface antigen of Plasmodium falciparum merozoites. J Immunol 1985, 134(3):1946-1951.
    21. Guevara Patino JA, Holder AA, McBride JS, Blackman MJ:Antibodies that inhibit malaria merozoite surface protein-1 processing and erythrocyte invasion are blocked by naturally acquired human antibodies. The Journal of experimental medicine 1997,186(10):1689-1699.
    22. Miura K, Zhou H, Moretz SE, Diouf A, Thera MA, Dolo A, Doumbo O, Malkin E, Diemert D, Miller LH et al: Comparison of biological activity of human anti-apical membrane antigen-1 antibodies induced by natural infection and vaccination. J Immunol 2008,181(12):8776-8783.
    23. Morgan WD, Birdsall B, Frenkiel TA, Gradwell MG, Burghaus PA, Syed SE, Uthaipibull C, Holder AA, Feeney J:Solution structure of an EGF module pair from the Plasmodium falciparum merozoite surface protein 1. Journal of molecular biology 1999,289(1):113-122.
    24. Pizarro JC, Chitarra V, Verger D, Holm I, Petres S, Dartevelle S, Nato F, Longacre S, Bentley GA:Crystal structure of a Fab complex formed with PfMSPl-19, the C-terminal fragment of merozoite surface protein 1 from Plasmodium falciparum:a malaria vaccine candidate. Journal of molecular biology 2003, 328(5):1091-1103.
    25. Morgan WD, Lock MJ, Frenkiel TA, Grainger M, Holder AA:Malaria parasite-inhibitory antibody epitopes on Plasmodium falciparum merozoite surface protein-1(19) mapped by TROSY NMR. Molecular and biochemical parasitology 2004,138(1):29-36.
    26. Morgan WD, Frenkiel TA, Lock MJ, Grainger M, Holder AA:Precise epitope mapping of malaria parasite inhibitory antibodies by TROSY NMR cross-saturation. Biochemistry 2005,44(2):518-523.
    27. Autore F, Melchiorre S, Kleinjung J, Morgan WD, Fraternali F:Interaction of
    malaria parasite-inhibitory antibodies with the merozoite surface protein MSP1(19) by computational docking. Proteins 2007,66(3):513-527.
    28. Nair M, Hinds MG, Coley AM, Hodder AN, Foley M, Anders RF, Norton RS: Structure of domain III of the blood-stage malaria vaccine candidate, Plasmodium falciparum apical membrane antigen 1 (AMA1). Journal of molecular biology 2002,322(4):741-753.
    29. Pan W, Huang D, Zhang Q, Qu L, Zhang D, Zhang X, Xue X, Qian F:Fusion of two malaria vaccine candidate antigens enhances product yield, immunogenicity, and antibody-mediated inhibition of parasite growth in vitro. J Immunol 2004,172(10):6167-6174.
    30. Braga EM, Barros RM, Reis TA, Fontes CJ, Morais CG, Martins MS, Krettli AU: Association of the IgG response to Plasmodium falciparum merozoite protein (C-terminal 19 kD) with clinical immunity to malaria in the Brazilian Amazon region. The American journal of tropical medicine and hygiene 2002, 66(5):461-466.
    31. Egan AF, Morris J, Barnish G, Allen S, Greenwood BM, Kaslow DC, Holder AA, Riley EM:Clinical immunity to Plasmodium falciparum malaria is associated with serum antibodies to the 19-kDa C-terminal fragment of the merozoite surface antigen, PfMSP-1. The Journal of infectious diseases 1996, 173(3):765-769.
    32. Dodoo D, Theander TG, Kurtzhals JA, Koram K, Riley E, Akanmori BD, Nkrumah FK, Hviid L:Levels of antibody to conserved parts of Plasmodium falciparum merozoite surface protein 1 in Ghanaian children are not associated with protection from clinical malaria. Infection and immunity 1999,67(5):2131-2137.
    33. Tolle R, Fruh K, Doumbo O, Koita O, N'Diaye M, Fischer A, Dietz K, Bujard H:A prospective study of the association between the human humoral immune response to Plasmodium falciparum blood stage antigen gp190 and control of malarial infections. Infection and immunity 1993,61(1):40-47.
    34. Okech BA, Corran PH, Todd J, Joynson-Hicks A, Uthaipibull C, Egwang TG, Holder AA, Riley EM:Fine specificity of serum antibodies to Plasmodium falciparum merozoite surface protein, PfMSP-1(19), predicts protection from malaria infection and high-density parasitemia. Infection and immunity 2004, 72(3):1557-1567.
    35. Corran PH, O'Donnell RA, Todd J, Uthaipibull C, Holder AA, Crabb BS, Riley EM: The fine specificity, but not the invasion inhibitory activity, of 19-kilodalton merozoite surface protein 1-specific antibodies is associated with resistance to malarial parasitemia in a cross-sectional survey in The Gambia. Infection and immunity 2004,72(10):6185-6189.
    36. Omosun YO, Adoro S, Anumudu CI, Odaibo AB, Uthiapibull C, Holder AA, Nwagwu M, Nwuba RI:Antibody specificities of children living in a malaria endemic area to inhibitory and blocking epitopes on MSP-1 19 of Plasmodium falciparum. Acta tropica 2009,109(3):208-212.
    37. Chesne-Seck ML, Pizarro JC, Vulliez-Le Normand B, Collins CR, Blackman MJ, Faber BW, Remarque EJ, Kocken CH, Thomas AW, Bentley GA:Structural comparison of apical membrane antigen 1 orthologues and paralogues in apicomplexan parasites. Molecular and biochemical parasitology 2005, 144(1):55-67.
    38. Igonet S, Vulliez-Le Normand B, Faure G, Riottot MM, Kocken CH, Thomas AW, Bentley GA:Cross-reactivity studies of an anti-Plasmodium vivax apical membrane antigen 1 monoclonal antibody:binding and structural characterisation. Journal of molecular biology 2007,366(5):1523-1537.
    39. Dutta S, Haynes JD, Barbosa A, Ware LA, Snavely JD, Moch JK, Thomas AW, Lanar DE:Mode of action of invasion-inhibitory antibodies directed against apical membrane antigen 1 of Plasmodium falciparum. Infection and immunity 2005,73(4):2116-2122.
    40. Dutta S, Haynes JD, Moch JK, Barbosa A, Lanar DE:Invasion-inhibitory antibodies inhibit proteolytic processing of apical membrane antigen 1 of Plasmodium falciparum merozoites. Proceedings of the National Academy of Sciences of the United States of America 2003,100(21):12295-12300.
    41. Bordo D, Argos P:Suggestions for "safe" residue substitutions in site-directed mutagenesis. Journal of molecular biology 1991,217(4):721-729.
    42. Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR:Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 1989,77(1):51-59.
    43. Dobano C, McTague A, Sette A, Hoffman SL, Rogers WO, Doolan DL:Mutating the anchor residues associated with MHC binding inhibits and deviates CD8+ T cell mediated protective immunity against malaria. Molecular immunology 2007,44(9):2235-2248.
    44. Coley AM, Parisi K, Masciantonio R, Hoeck J, Casey JL, Murphy VJ, Harris KS, Batchelor AH, Anders RF, Foley M:The most polymorphic residue on Plasmodium falciparum apical membrane antigen 1 determines binding of an invasion-inhibitory antibody. Infection and immunity 2006,74(5):2628-2636.
    45. Dutta S, Dlugosz LS, Clayton JW, Pool CD, Haynes JD, Gasser RA,3rd, Batchelor AH:Alanine mutagenesis of the primary antigenic escape residue cluster, c1, of apical membrane antigen 1. Infection and immunity,78(2):661-671.
    46. Wang Z, Shao D, Zhong X, Han C, Cai P, Wang H:Epitope mapping of monoclonal antibody 1B9 against plasmodium falciparum-derived macrophage migration inhibitory factor. Immunological investigations 2009, 38(5):422-433.
    47. Sabo JK, Keizer DW, Feng ZP, Casey JL, Parisi K, Coley AM, Foley M, Norton RS: Mimotopes of apical membrane antigen 1:Structures of phage-derived peptides recognized by the inhibitory monoclonal antibody 4G2dcl and design of a more active analogue. Infection and immunity 2007,75(1):61-73.
    48. Coley AM, Campanale NV, Casey JL, Hodder AN, Crewther PE, Anders RF, Tilley LM, Foley M:Rapid and precise epitope mapping of monoclonal antibodies against Plasmodium falciparum AMA1 by combined phage display of fragments and random peptides. Protein engineering 2001,14(9):691-698.
    49. DeLano W:The PyMOL User's Manual. San Carlos,California:DeLano Scientific; 2002.
    50. Mueller MS, Renard A, Boato F, Vogel D, Naegeli M, Zurbriggen R, Robinson JA, Pluschke G:Induction of parasite growth-inhibitory antibodies by a virosomal formulation of a peptidomimetic of loop I from domain III of Plasmodium falciparum apical membrane antigen 1. Infection and immunity 2003, 71(8):4749-4758.
    51. Vekemans J, Leach A, Cohen J:Development of the RTS,S/AS malaria candidate vaccine. Vaccine 2009,27 Suppl 6:G67-71.
    52. Egan AF, Blackman MJ, Kaslow DC:Vaccine efficacy of recombinant Plasmodium falciparum merozoite surface protein 1 in malaria-naive,-exposed, and/or-rechallenged Aotus vociferans monkeys. Infection and immunity 2000,68(3):1418-1427.
    53. Kester KE, Cummings JF, Ofori-Anyinam O, Ockenhouse CF, Krzych U, Moris P, Schwenk R, Nielsen RA, Debebe Z, Pinelis E et al: Randomized, double-blind, phase 2a trial of falciparum malaria vaccines RTS,S/AS01B and RTS,S/AS02A in malaria-naive adults:safety, efficacy, and immunologic associates of protection. The Journal of infectious diseases 2009,200(3):337-346.
    54. World Malaria Report 2008. Geneva:World Health Organization; 2008.
    55. Thomas AW, Deans JA, Mitchell GH, Alderson T, Cohen S:The Fab fragments of monoclonal IgG to a merozoite surface antigen inhibit Plasmodium knowlesi invasion of erythrocytes. Molecular and biochemical parasitology 1984, 13(2):187-199.
    56. Egan AF, Burghaus P, Druilhe P, Holder AA, Riley EM:Human antibodies to the 19kDa C-terminal fragment of Plasmodium falciparum merozoite surface protein 1 inhibit parasite growth in vitro. Parasite immunology 1999, 21(3):133-139.
    57. Blackman MJ, Whittle H, Holder AA:Processing of the Plasmodium falciparum major merozoite surface protein-1:identification of a 33-kilodalton secondary processing product which is shed prior to erythrocyte invasion. Molecular and biochemical parasitology 1991,49(1):35-44.
    58. Dluzewski AR, Ling IT, Hopkins JM, Grainger M, Margos G, Mitchell GH, Holder AA, Bannister LH:Formation of the food vacuole in Plasmodium falciparum:a potential role for the 19 kDa fragment of merozoite surface protein 1 (MSP1(19)). PloS one 2008,3(8):e3085.
    59. Gilson PR, O'Donnell RA, Nebl T, Sanders PR, Wickham ME, McElwain TF, de Koning-Ward TF, Crabb BS:MSP1(19) miniproteins can serve as targets for invasion inhibitory antibodies in Plasmodium falciparum provided they contain the correct domains for cell surface trafficking. Mol Microbiol 2008, 68(1):124-138.
    60. Ahlborg N, Ling IT, Howard W, Holder AA, Riley EM:Protective immune responses to the 42-kilodalton (kDa) region of Plasmodium yoelii merozoite surface protein 1 are induced by the C-terminal 19-kDa region but not by the adjacent 33-kDa region. Infection and immunity 2002,70(2):820-825.
    61. Hui G, Hashimoto C:Plasmodium falciparum anti-MSP1-19 antibodies induced by MSP1-42 and MSP1-19 based vaccines differed in specificity and parasite growth inhibition in terms of recognition of conserved versus variant epitopes. Vaccine 2007,25(5):948-956.
    62. Huaman MC, Martin LB, Malkin E, Narum DL, Miller LH, Mahanty S, Long CA: Ex vivo cytokine and memory T cell responses to the 42-kDa fragment of Plasmodium falciparum merozoite surface protein-1 in vaccinated volunteers. J Immunol 2008,180(3):1451-1461.
    63. Wipasa J, Hirunpetcharat C, Mahakunkijcharoen Y, Xu H, Elliott S, Good MF: Identification of T cell epitopes on the 33-kDa fragment of Plasmodium yoelii merozoite surface protein 1 and their antibody-independent protective role in immunity to blood stage malaria. J Immunol 2002,169(2):944-951.
    64. Malhotra I, Wamachi AN, Mungai PL, Mzungu E, Koech D, Muchiri E, Moormann AM, King CL:Fine specificity of neonatal lymphocytes to an abundant malaria blood-stage antigen:epitope mapping of Plasmodium falciparum MSP1(33). J Immunol 2008,180(5):3383-3390.
    65. Deans JA, Thomas AW, Alderson T, Cohen S:Biosynthesis of a putative protective Plasmodium knowlesi merozoite antigen. Molecular and biochemical parasitology 1984,11:189-204.
    66. Narum DL, Thomas AW:Differential localization of full-length and processed forms of PF83/AMA-1 an apical membrane antigen of Plasmodium falciparum merozoites. Molecular and biochemical parasitology 1994,67(1):59-68.
    67. Crewther PE, Culvenor JG, Silva A, Cooper JA, Anders RF:Plasmodium falciparum:two antigens of similar size are located in different compartments of the rhoptry. Experimental parasitology 1990,70(2):193-206.
    68. Waters AP, Thomas AW, Deans JA, Mitchell GH, Hudson DE, Miller LH, McCutchan TF, Cohen S:A merozoite receptor protein from Plasmodium knowlesi is highly conserved and distributed throughout Plasmodium. The Journal of biological chemistry 1990,265(29):17974-17979.
    69. Waters AP, Thomas AW, Mitchell GH, McCutchan TF:Intra-generic conservation and limited inter-strain variation in a protective minor surface antigen of Plasmodium knowlesi merozoites. Molecular and biochemical parasitology 1991, 44(1):141-144.
    70. Kappe SH, Adams JH:Sequence analysis of the apical membrane antigen-1 genes (ama-1) of Plasmodium yoelii yoelii and Plasmodium berghei. Molecular
    and biochemical parasitology 1996,78(1-2):279-283.
    71. Marshall VM, Peterson MG, Lew AM, Kemp DJ:Structure of the apical membrane antigen I (AMA-1) of Plasmodium chabaudi. Molecular and biochemical parasitology 1989,37(2):281-283.
    72. Peterson MG, Nguyen-Dinh P, Marshall VM, Elliott JF, Collins WE, Anders RF, Kemp DJ:Apical membrane antigen of Plasmodium fragile. Molecular and biochemical parasitology 1990,39(2):279-283.
    73. Cheng Q, Saul A:Sequence analysis of the apical membrane antigen I (AMA-1) of Plasmodium vivax. Molecular and biochemical parasitology 1994, 65(1):183-187.
    74. Dutta S, Malhotra P, Chauhan VS:Sequence analysis of apical membrane antigen 1 (AMA-1) of Plasmodium cynomolgi bastianelli. Molecular and biochemical parasitology 1995,73(1-2):267-270.
    75. Marshall VM, Zhang L, Anders RF, Coppel RL:Diversity of the vaccine candidate AMA-1 of Plasmodium falciparum. Molecular and biochemical parasitology 1996,77(1):109-113.
    76. Kocken CH, Narum DL, Massougbodji A, Ayivi B, Dubbeld MA, van der Wel A, Conway DJ, Sanni A, Thomas AW:Molecular characterisation of Plasmodium reichenowi apical membrane antigen-1 (AMA-1), comparison with P. falciparum AMA-1, and antibody-mediated inhibition of red cell invasion. Molecular and biochemical parasitology 2000,109(2):147-156.
    77. Donahue CG, Carruthers VB, Gilk SD, Ward GE:The Toxoplasma homolog of Plasmodium apical membrane antigen-1 (AMA-1) is a microneme protein secreted in response to elevated intracellular calcium levels. Molecular and biochemical parasitology 2000,111(1):15-30.
    78. Hehl AB, Lekutis C, Grigg ME, Bradley PJ, Dubremetz JF, Ortega-Barria E, Boothroyd JC:Toxoplasma gondii homologue of plasmodium apical membrane antigen 1 is involved in invasion of host cells. Infection and immunity 2000, 68(12):7078-7086.
    79. Hodder AN, Crewther PE, Matthew ML, Reid GE, Moritz RL, Simpson RJ, Anders RF:The disulfide bond structure of Plasmodium apical membrane antigen-1. The Journal of biological chemistry 1996,271(46):29446-29452.
    80. Crewther PE, Matthew ML, Flegg RH, Anders RF:Protective immune responses to apical membrane antigen 1 of Plasmodium chabaudi involve recognition of strain-specific epitopes. Infection and immunity 1996,64(8):3310-3317.
    81. Narum DL, Ogun SA, Thomas AW, Holder AA:Immunization with parasite-derived apical membrane antigen 1 or passive immunization with a specific monoclonal antibody protects BALB/c mice against lethal Plasmodium yoelii yoelii YM blood-stage infection. Infection and immunity 2000, 68(5):2899-2906.
    82. Deans JA, Knight AM, Jean WC, Waters AP, Cohen S, Mitchell GH:Vaccination trials in rhesus monkeys with a minor, invariant, Plasmodium knowlesi 66 kD merozoite antigen. Parasite immunology 1988,10(5):535-552.
    83. Dicko A, Sagara I, Ellis RD, Miura K, Guindo O, Kamate B, Sogoba M, Niambele MB, Sissoko M, Baby M et al: Phase 1 study of a combination AMA1 blood stage malaria vaccine in Malian children. PloS one 2008,3(2):e1563.
    84. Ellis RD, Mullen GE, Pierce M, Martin LB, Miura K, Fay MP, Long CA, Shaffer D, Saul A, Miller LH et al. A Phase 1 study of the blood-stage malaria vaccine candidate AMA1-C1/Alhydrogel with CPG 7909, using two different formulations and dosing intervals. Vaccine 2009,27(31):4104-4109.
    85. Mullen GE, Ellis RD, Miura K, Malkin E, Nolan C, Hay M, Fay MP, Saul A, Zhu D, Rausch K et al. Phase 1 trial of AMA1-C1/Alhydrogel plus CPG 7909:an asexual blood-stage vaccine for Plasmodium falciparum malaria. PloS one 2008,3(8):e2940.
    86. Pichyangkul S, Tongtawe P, Kum-Arb U, Yongvanitchit K, Gettayacamin M, Hollingdale MR, Limsalakpetch A, Stewart VA, Lanar DE, Dutta S et al: Evaluation of the safety and immunogenicity of Plasmodium falciparum apical membrane antigen 1, merozoite surface protein 1 or RTS,S vaccines with adjuvant system AS02A administered alone or concurrently in rhesus monkeys. Vaccine 2009,28(2):452-462.
    87. Polhemus ME, Magill AJ, Cummings JF, Kester KE, Ockenhouse CF, Lanar DE, Dutta S, Barbosa A, Soisson L, Diggs CL et al: Phase I dose escalation safety and immunogenicity trial of Plasmodium falciparum apical membrane protein (AMA-1) FMP2.1, adjuvanted with AS02A, in malaria-naive adults at the Walter Reed Army Institute of Research. Vaccine 2007,25(21):4203-4212.
    88. Sagara I, Dicko A, Ellis RD, Fay MP, Diawara SI, Assadou MH, Sissoko MS, Kone M, Diallo AI, Saye R et al: A randomized controlled phase 2 trial of the blood stage AMA1-C1/Alhydrogel malaria vaccine in children in Mali. Vaccine 2009, 27(23):3090-3098.
    89. Sagara I, Ellis RD, Dicko A, Niambele MB, Kamate B, Guindo O, Sissoko MS, Fay MP, Guindo MA, Kante 0 et al: A randomized and controlled Phase 1 study of the safety and immunogenicity of the AMAl-C1/Alhydrogel+CPG 7909 vaccine for Plasmodium falciparum malaria in semi-immune Malian adults. Vaccine 2009,27(52):7292-7298.
    90. Spring MD, Cummings JF, Ockenhouse CF, Dutta S, Reidler R, Angov E, Bergmann-Leitner E, Stewart VA, Bittner S, Juompan L et al: Phase 1/2a study of the malaria vaccine candidate apical membrane antigen-1 (AMA-1) administered in adjuvant system AS01B or AS02A. PloS one 2009,4(4):e5254.
    91. Thera MA, Doumbo OK, Coulibaly D, Diallo DA, Kone AK, Guindo AB, Traore K, Dicko A, Sagara I, Sissoko MS et al: Safety and immunogenicity of an AMA-1 malaria vaccine in Malian adults:results of a phase 1 randomized controlled trial. PloS one 2008,3(1):e1465.
    92. Pizarro JC, Vulliez-Le Normand B, Chesne-Seck ML, Collins CR, Withers-Martinez C, Hackett F, Blackman MJ, Faber BW, Remarque EJ, Kocken CH et al: Crystal structure of the malaria vaccine candidate apical membrane antigen 1. Science (New York, NY2005,308(5720):408-411.
    93. Collins CR, Withers-Martinez C, Bentley GA, Batchelor AH, Thomas AW, Blackman MJ:Fine mapping of an epitope recognized by an invasion-inhibitory monoclonal antibody on the malaria vaccine candidate apical membrane antigen 1. The Journal of biological chemistry 2007, 282(10):7431-7441.
    94. Bai T, Becker M, Gupta A, Strike P, Murphy VJ, Anders RF, Batchelor AH: Structure of AMA1 from Plasmodium falciparum reveals a clustering of polymorphisms that surround a conserved hydrophobic pocket. Proceedings of the National Academy of Sciences of the United States of America 2005, 102(36):12736-12741.
    95. Coley AM, Gupta A, Murphy VJ, Bai T, Kim H, Foley M, Anders RF, Batchelor AH:Structure of the malaria antigen AMA1 in complex with a growth-inhibitory antibody. PLoS pathogens 2007,3(9):1308-1319.
    1. World Malaria Report 2008. Geneva:World Health Organization; 2008.
    2. Thomas AW, Deans JA, Mitchell GH, Alderson T, Cohen S:The Fab fragments of monoclonal IgG to a merozoite surface antigen inhibit Plasmodium knowlesi invasion of erythrocytes. Molecular and biochemical parasitology 1984, 13(2):187-199. 3. Egan AF, Burghaus P, Druilhe P, Holder AA, Riley EM:Human antibodies to the 19kDa C-terminal fragment of Plasmodium falciparum merozoite surface protein 1 inhibit parasite growth in vitro. Parasite'immunology 1999, 21(3):133-139.
    4. Triglia T, Healer J, Caruana SR, Hodder AN, Anders RF, Crabb BS, Cowman AF: Apical membrane antigen 1 plays a central role in erythrocyte invasion by Plasmodium species. Mol Microbiol 2000,38(4):706-718.
    5. Blackman MJ, Whittle H, Holder AA:Processing of the Plasmodium falciparum major merozoite surface protein-1:identification of a 33-kilodalton secondary processing product which is shed prior to erythrocyte invasion. Molecular and biochemical parasitology 1991,49(1):35-44.
    6. Dluzewski AR, Ling IT, Hopkins JM, Grainger M, Margos G, Mitchell GH, Holder AA, Bannister LH:Formation of the food vacuole in Plasmodium falciparum:a potential role for the 19 kDa fragment of merozoite surface protein 1 (MSP1(19)). PloS one 2008,3(8):e3085.
    7. Gilson PR, O'Donnell RA, Nebl T, Sanders PR, Wickham ME, McElwain TF, de Koning-Ward TF, Crabb BS:MSP1(19) miniproteins can serve as targets for invasion inhibitory antibodies in Plasmodium falciparum provided they contain the correct domains for cell surface trafficking. Mol Microbiol 2008, 68(1):124-138.
    8. Ahlborg N, Ling IT, Howard W, Holder AA, Riley EM:Protective immune responses to the 42-kilodalton (kDa) region of Plasmodium yoelii merozoite surface protein 1 are induced by the C-terminal 19-kDa region but not by the adjacent 33-kDa region. Infection and immunity 2002,70(2):820-825.
    9. Cooper JA, Cooper LT, Saul AJ:Mapping of the region predominantly recognized by antibodies to the Plasmodium falciparum merozoite surface antigen MSA 1. Molecular and biochemical parasitology 1992,51(2):301-312.
    10. Guevara Patino JA, Holder AA, McBride JS, Blackman MJ:Antibodies that inhibit malaria merozoite surface protein-1 processing and erythrocyte invasion are blocked by naturally acquired human antibodies. The Journal of experimental medicine 1997,186(10):1689-1699.
    11. Morgan WD, Birdsall B, Frenkiel TA, Gradwell MG, Burghaus PA, Syed SE, Uthaipibull C, Holder AA, Feeney J:Solution structure of an EGF module pair from the Plasmodium falciparum merozoite surface protein 1. Journal of molecular biology 1999,289(1):113-122.
    12. O'Donnell RA, Saul A, Cowman AF, Crabb BS:Functional conservation of the malaria vaccine antigen MSP-119across distantly related Plasmodium species. Nature medicine 2000,6(1):91-95.
    13. Uthaipibull C, Aufiero B, Syed SE, Hansen B, Guevara Patino JA, Angov E, Ling IT, Fegeding K, Morgan WD, Ockenhouse C et al: Inhibitory and blocking monoclonal antibody epitopes on merozoite surface protein 1 of the malaria parasite Plasmodium falciparum. Journal of molecular biology 2001, 307(5):1381-1394.
    14. Pizarro JC, Chitarra V, Verger D, Holm I, Petres S, Dartevelle S, Nato F, Longacre S, Bentley GA:Crystal structure of a Fab complex formed with PfMSP1-19, the C-terminal fragment of merozoite surface protein 1 from Plasmodium falciparum:a malaria vaccine candidate. Journal of molecular biology 2003, 328(5):1091-1103.
    15. Dekker C, Uthaipibull C, Calder LJ, Lock M, Grainger M, Morgan WD, Dodson GG, Holder AA:Inhibitory and neutral antibodies to Plasmodium falciparum MSP119 form ring structures with their antigen. Molecular and biochemical parasitology 2004,137(1):143-149.
    16. Morgan WD, Lock MJ, Frenkiel TA, Grainger M, Holder AA:Malaria parasite-inhibitory antibody epitopes on Plasmodium falciparum merozoite surface protein-1(19) mapped by TROSY NMR. Molecular and biochemical parasitology 2004,138(1):29-36.
    17. Morgan WD, Frenkiel TA, Lock MJ, Grainger M, Holder AA:Precise epitope mapping of malaria parasite inhibitory antibodies by TROSY NMR cross-saturation. Biochemistry 2005,44(2):518-523.
    18. Autore F, Melchiorre S, Kleinjung J, Morgan WD, Fraternali F:Interaction of malaria parasite-inhibitory antibodies with the merozoite surface protein MSP1(19) by computational docking. Proteins 2007,66(3):513-527.
    19. Hui G, Hashimoto C:Plasmodium falciparum anti-MSP1-19 antibodies induced by MSP1-42 and MSPl-19 based vaccines differed in specificity and parasite growth inhibition in terms of recognition of conserved versus variant epitopes. Vaccine 2007,25(5):948-956.
    20. Huaman MC, Martin LB, Malkin E, Narum DL, Miller LH, Mahanty S, Long CA: Ex vivo cytokine and memory T cell responses to the 42-kDa fragment of Plasmodium falciparum merozoite surface protein-1 in vaccinated volunteers. J Immunol 2008,180(3):1451-1461.
    21. Wipasa J, Hirunpetcharat C, Mahakunkijcharoen Y, Xu H, Elliott S, Good MF: Identification of T cell epitopes on the 33-kDa fragment of Plasmodium yoelii
    merozoite surface protein 1 and their antibody-independent protective role in immunity to blood stage malaria. J Immunol 2002,169(2):944-951.
    22. Malhotra I, Wamachi AN, Mungai PL, Mzungu E, Koech D, Muchiri E, Moormann AM, King CL:Fine specificity of neonatal lymphocytes to an abundant malaria blood-stage antigen:epitope mapping of Plasmodium falciparum MSP1(33). J Immunol 2008,180(5):3383-3390.
    23. Deans JA, Thomas AW, Alderson T, Cohen S:Biosynthesis of a putative protective Plasmodium knowlesi merozoite antigen. Molecular and biochemical parasitology 1984,11:189-204.
    24. Narum DL, Thomas AW:Differential localization of full-length and processed forms of PF83/AMA-1 an apical membrane antigen of Plasmodium falciparum merozoites. Molecular and biochemical parasitology 1994,67(1):59-68.
    25. Crewther PE, Culvenor JG, Silva A, Cooper JA, Anders RF:Plasmodium falciparum:two antigens of similar size are located in different compartments of the rhoptry. Experimental parasitology 1990,70(2):193-206.
    26. Waters AP, Thomas AW, Deans JA, Mitchell GH, Hudson DE, Miller LH, McCutchan TF, Cohen S:A merozoite receptor protein from Plasmodium knowlesi is highly conserved and distributed throughout Plasmodium. The Journal of biological chemistry 1990,265(29):17974-17979.
    27. Waters AP, Thomas AW, Mitchell GH, McCutchan TF:Intra-generic conservation and limited inter-strain variation in a protective minor surface antigen of Plasmodium knowlesi merozoites. Molecular and biochemical parasitology 1991, 44(1):141-144.
    28. Kappe SH, Adams JH:Sequence analysis of the apical membrane antigen-1 genes (ama-1) of Plasmodium yoelii yoelii and Plasmodium berghei. Molecular and biochemical parasitology 1996,78(1-2):279-283.
    29. Marshall VM, Peterson MG, Lew AM, Kemp DJ:Structure of the apical membrane antigen I (AMA-1) of Plasmodium chabaudi. Molecular and biochemical parasitology 1989,37(2):281-283.
    30. Peterson MG, Nguyen-Dinh P, Marshall VM, Elliott JF, Collins WE, Anders RF, Kemp DJ:Apical membrane antigen of Plasmodium fragile. Molecular and biochemical parasitology 1990,39(2):279-283.
    31. Cheng Q, Saul A:Sequence analysis of the apical membrane antigen I (AMA-1) of Plasmodium vivax. Molecular and biochemical parasitology 1994, 65(1):183-187.
    32. Dutta S, Malhotra P, Chauhan VS:Sequence analysis of apical membrane antigen 1 (AMA-1) of Plasmodium cynomolgi bastianelli. Molecular and biochemical parasitology 1995,73(1-2):267-270.
    33. Marshall VM, Zhang L, Anders RF, Coppel RL:Diversity of the vaccine candidate AMA-1 of Plasmodium falciparum. Molecular and biochemical parasitology 1996,77(1):109-113.
    34. Kocken CH, Narum DL, Massougbodji A, Ayivi B, Dubbeld MA, van der Wel A, Conway DJ, Sanni A, Thomas AW:Molecular characterisation of Plasmodium reichenowi apical membrane antigen-1 (AMA-1), comparison with P. falciparum AMA-1, and antibody-mediated inhibition of red cell invasion. Molecular and biochemical parasitology 2000,109(2):147-156.
    35. Donahue CG, Carruthers VB, Gilk SD, Ward GE:The Toxoplasma homolog of Plasmodium apical membrane antigen-1 (AMA-1) is a microneme protein secreted in response to elevated intracellular calcium levels. Molecular and biochemical parasitology 2000, 111(1):15-30.
    36. Hehl AB, Lekutis C, Grigg ME, Bradley PJ, Dubremetz JF, Ortega-Barria E, Boothroyd JC:Toxoplasma gondii homologue of plasmodium apical membrane antigen 1 is involved in invasion of host cells. Infection and immunity 2000, 68(12):7078-7086.
    37. Chesne-Seck ML, Pizarro JC, Vulliez-Le Normand B, Collins CR, Blackman MJ, Faber BW, Remarque EJ, Kocken CH, Thomas AW, Bentley GA:Structural comparison of apical membrane antigen 1 orthologues and paralogues in apicomplexan parasites. Molecular and biochemical parasitology 2005, 144(1):55-67.
    38. Hodder AN, Crewther PE, Matthew ML, Reid GE, Moritz RL, Simpson RJ, Anders RF:The disulfide bond structure of Plasmodium apical membrane antigen-1. The Journal of biological chemistry 1996,271(46):29446-29452.
    39. Crewther PE, Matthew ML, Flegg RH, Anders RF:Protective immune responses to apical membrane antigen 1 of Plasmodium chabaudi involve recognition of strain-specific epitopes. Infection and immunity 1996,64(8):3310-3317.
    40. Narum DL, Ogun SA, Thomas AW, Holder AA:Immunization with parasite-derived apical membrane antigen 1 or passive immunization with a specific monoclonal antibody protects BALB/c mice against lethal Plasmodium yoelii yoelii YM blood-stage infection. Infection and immunity 2000, 68(5):2899-2906.
    41. Deans JA, Knight AM, Jean WC, Waters AP, Cohen S, Mitchell GH:Vaccination trials in rhesus monkeys with a minor, invariant, Plasmodium knowlesi 66 kD merozoite antigen. Parasite immunology 1988,10(5):535-552.
    42. Dicko A, Sagara I, Ellis RD, Miura K, Guindo 0, Kamate B, Sogoba M, Niambele
    MB, Sissoko M, Baby M et al: Phase 1 study of a combination AMA1 blood stage malaria vaccine in Malian children. PloS one 2008,3(2):e1563.
    43. Ellis RD, Mullen GE, Pierce M, Martin LB, Miura K, Fay MP, Long CA, Shaffer D, Saul A, Miller LH et al: A Phase 1 study of the blood-stage malaria vaccine candidate AMA1-C1/Alhydrogel with CPG 7909, using two different formulations and dosing intervals. Vaccine 2009,27(31):4104-4109.
    44. Hu J, Chen Z, Gu J, Wan M, Shen Q, Kieny MP, He J, Li Z, Zhang Q, Reed ZH et al: Safety and immunogenicity of a malaria vaccine, Plasmodium falciparum AMA-1/MSP-1 chimeric protein formulated in montanide ISA 720 in healthy adults. PloS one 2008,3(4):e1952.
    45. Malkin E, Hu J, Li Z, Chen Z, Bi X, Reed Z, Dubovsky F, Liu J, Wang Q, Pan X et al: A phase 1 trial of PfCP2.9:an AMA1/MSP1 chimeric recombinant protein vaccine for Plasmodium falciparum malaria. Vaccine 2008,26(52):6864-6873.
    46. Mullen GE, Ellis RD, Miura K, Malkin E, Nolan C, Hay M, Fay MP, Saul A, Zhu D, Rausch K et al: Phase 1 trial of AMA1-C1/Alhydrogel plus CPG 7909:an asexual blood-stage vaccine for Plasmodium falciparum malaria. PloS one 2008,3(8):e2940.
    47. Pichyangkul S, Tongtawe P, Kum-Arb U, Yongvanitchit K, Gettayacamin M, Hollingdale MR, Limsalakpetch A, Stewart VA, Lanar DE, Dutta S et al: Evaluation of the safety and immunogenicity of Plasmodium falciparum apical membrane antigen 1, merozoite surface protein 1 or RTS,S vaccines with adjuvant system AS02A administered alone or concurrently in rhesus monkeys. Vaccine 2009,28(2):452-462.
    48. Polhemus ME, Magill AJ, Cummings JF, Kester KE, Ockenhouse CF, Lanar DE, Dutta S, Barbosa A, Soisson L, Diggs CL et al: Phase I dose escalation safety and immunogenicity trial of Plasmodium falciparum apical membrane protein (AMA-1) FMP2.1, adjuvanted with AS02A, in malaria-naive adults at the Walter Reed Army Institute of Research. Vaccine 2007,25(21):4203-4212.
    49. Sagara I, Dicko A, Ellis RD, Fay MP, Diawara SI, Assadou MH, Sissoko MS, Kone M, Diallo AI, Saye R et al: A randomized controlled phase 2 trial of the blood stage AMAl-C1/Alhydrogel malaria vaccine in children in Mali. Vaccine 2009, 27(23):3090-3098.
    50. Sagara I, Ellis RD, Dicko A, Niambele MB, Kamate B, Guindo O, Sissoko MS,
    Fay MP, Guindo MA, Kante 0 et al: A randomized and controlled Phase 1 study of the safety and immunogenicity of the AMA1-C1/Alhydrogel+CPG 7909 vaccine for Plasmodium falciparum malaria in semi-immune Malian adults. Vaccine 2009,27(52):7292-7298.
    51. Spring MD, Cummings JF, Ockenhouse CF, Dutta S, Reidler R, Angov E, Bergmann-Leitner E, Stewart VA, Bittner S, Juompan L et al: Phase 1/2a study of the malaria vaccine candidate apical membrane antigen-1 (AMA-1) administered in adjuvant system AS01B or AS02A. PloS one 2009,4(4):e5254.
    52. Thera MA, Doumbo OK, Coulibaly D, Diallo DA, Kone AK, Guindo AB, Traore K, Dicko A, Sagara I, Sissoko MS et al: Safety and immunogenicity of an AMA-1 malaria vaccine in Malian adults:results of a phase 1 randomized controlled trial. PloS one 2008,3(1):e1465.
    53. Pizarro JC, Vulliez-Le Normand B, Chesne-Seck ML, Collins CR, Withers-Martinez C, Hackett F, Blackman MJ, Faber BW, Remarque EJ, Kocken CH et al: Crystal structure of the malaria vaccine candidate apical membrane antigen 1. Science (New York, NY2005,308(5720):408-411.
    54. Collins CR, Withers-Martinez C, Bentley GA, Batchelor AH, Thomas AW, Blackman MJ:Fine mapping of an epitope recognized by an invasion-inhibitory monoclonal antibody on the malaria vaccine candidate apical membrane antigen 1. The Journal of biological chemistry 2007, 282(10):7431-7441.
    55. Igonet S, Vulliez-Le Normand B, Faure G, Riottot MM, Kocken CH, Thomas AW, Bentley GA:Cross-reactivity studies of an anti-Plasmodium vivax apical membrane antigen 1 monoclonal antibody:binding and structural characterisation. Journal of molecular biology 2007,366(5):1523-1537.
    56. Coley AM, Campanale NV, Casey JL, Hodder AN, Crewther PE, Anders RF, Tilley LM, Foley M:Rapid and precise epitope mapping of monoclonal antibodies against Plasmodium falciparum AMA1 by combined phage display of fragments and random peptides. Protein engineering 2001,14(9):691-698.
    57. Coley AM, Parisi K, Masciantonio R, Hoeck J, Casey JL, Murphy VJ, Harris KS, Batchelor AH, Anders RF, Foley M:The most polymorphic residue on Plasmodium falciparum apical membrane antigen 1 determines binding of an invasion-inhibitory antibody. Infection and immunity 2006,74(5):2628-2636.
    58. Bai T, Becker M, Gupta A, Strike P, Murphy VJ, Anders RF, Batchelor AH: Structure of AMA1 from Plasmodium falciparum reveals a clustering of polymorphisms that surround a conserved hydrophobic pocket. Proceedings of the National Academy of Sciences of the United States of America 2005, 102(36):12736-12741.
    59. Coley AM, Gupta A, Murphy VJ, Bai T, Kim H, Foley M, Anders RF, Batchelor AH:Structure of the malaria antigen AMA1 in complex with a growth-inhibitory antibody. PLoS pathogens 2007,3(9):1308-1319.
    60. Okech BA, Corran PH, Todd J, Joynson-Hicks A, Uthaipibull C, Egwang TG, Holder AA, Riley EM:Fine specificity of serum antibodies to Plasmodium falciparum merozoite surface protein, PfMSP-1(19), predicts protection from malaria infection and high-density parasitemia. Infection and immunity 2004, 72(3):1557-1567.
    61. Miura K, Zhou H, Moretz SE, Diouf A, Thera MA, Dolo A, Doumbo O, Malkin E, Diemert D, Miller LH et al: Comparison of biological activity of human anti-apical membrane antigen-1 antibodies induced by natural infection and vaccination. J Immunol 2008,181(12):8776-8783.
    1. World Health Organization:World Malaria Report 2008. Geneva; 2008.
    2. O'Donnell RA, Saul A, Cowman AF, Crabb BS:Functional conservation of the malaria vaccine antigen MSP-119across distantly related Plasmodium species. Nature medicine 2000,6:91-95.
    3. Triglia T, Healer J, Caruana SR, Hodder AN, Anders RF, Crabb BS, Cowman AF:Apical membrane antigen 1 plays a central role in erythrocyte invasion by Plasmodium species. Mol Microbiol 2000,38:706-718.
    4. Harris PK, Yeoh S, Dluzewski AR, O'Donnell RA, Withers-Martinez C, Hackett F, Bannister LH, Mitchell GH, Blackman MJ:Molecular identification of a malaria merozoite surface sheddase. PLoS Pathogens 2005,1:241-251.
    5. Howell SA, Well I, Fleck SL, Kettleborough C, Collins CR, Blackman MJ:A single malaria merozoite serine protease mediates shedding of multiple surface proteins by juxtamembrane cleavage. J Biol Chem 2003,278:23890-23898.
    6. Howell SA, Withers-Martinez C, Kocken CH, Thomas AW, Blackman MJ:Proteolytic processing and primary structure of Plasmodium falciparum apical membrane antigen-1. J Biol Chem 2001,276:31311-31320.
    7. O'Donnell RA, Blackman MJ:The role of malaria merozoite proteases in red blood cell invasion. Curr Opin Microbiol 2005,8:422-427.
    8. Zhang Q, Xue X, Qu L, Pan W:Construction and evaluation of a multistage combination vaccine against malaria. Vaccine 2007,25:2112-2119.
    9. Pan W, Huang D, Zhang Q, Qu L, Zhang D, Zhang X, Xue X, Qian F:Fusion of two malaria vaccine candidate antigens enhances product yield, immunogenicity, and antibody-mediated inhibition of parasite growth in vitro. J Immunol 2004,172:6167-6174.
    10. Hu J, Chen Z, Gu J, Wan M, Shen Q, Kieny MP, He J, Li Z, Zhang Q, Reed ZH et al: Safety and immunogenicity of a malaria vaccine, Plasmodium falciparum AMA-1/MSP-1 chimeric protein formulated in montanide ISA 720 in healthy adults. PloS One 2008, 3:e1952.
    11. Malkin E, Hu J, Li Z, Chen Z, Bi X, Reed Z, Dubovsky F, Liu J, Wang Q, Pan X et al: A phase 1 trial of PfCP2.9:an AMA1/MSP1 chimeric recombinant protein vaccine for Plasmodium falciparum malaria. Vaccine 2008,26:6864-6873.
    12. Dekker C, Uthaipibull C, Calder LJ, Lock M, Grainger M, Morgan WD, Dodson GG, Holder AA:Inhibitory and neutral antibodies to Plasmodium falciparum MSP119 form ring structures with their antigen. Mol Biochem Parasitol 2004,137:143-149.
    13. Uthaipibull C, Aufiero B, Syed SE, Hansen B, Guevara Patino JA, Angov E, Ling IT, Fegeding K, Morgan WD, Ockenhouse C, Birdsall B, Feeney J, Lyon JA, Holder AA: Inhibitory and blocking monoclonal antibody epitopes on merozoite surface protein 1 of the malaria parasite Plasmodium falciparum. J Mol Biol 2001,307:1381-1394.
    14. Nwuba RI, Sodeinde O, Anumudu CI, Omosun YO, Odaibo AB, Holder AA, Nwagwu M: The human immune response to Plasmodium falciparum includes both antibodies that inhibit merozoite surface protein 1 secondary processing and blocking antibodies. Infect Immun 2002,70:5328-5331.
    15. Miura K, Zhou H, Moretz SE, Diouf A, Thera MA, Dolo A, Doumbo O, Malkin E, Diemert D, Miller LH, Mullen GE, Long CA:Comparison of biological activity of human anti-apical membrane antigen-1 antibodies induced by natural infection and vaccination. J Immunol 2008,181:8776-8783.
    16. Morgan WD, Lock MJ, Frenkiel TA, Grainger M, Holder AA:Malaria parasite-inhibitory antibody epitopes on Plasmodium falciparum merozoite surface protein-1(19) mapped by TROSY NMR. Mol Biochem Parasitol 2004,138:29-36.
    17. Morgan WD, Frenkiel TA, Lock MJ, Grainger M, Holder AA:Precise epitope mapping of malaria parasite inhibitory antibodies by TROSY NMR cross-saturation. Biochemistry 2005,44:518-523.
    18. Morgan WD, Birdsall B, Frenkiel TA, Gradwell MG, Burghaus PA, Syed SE, Uthaipibull C, Holder AA, Feeney J:Solution structure of an EGF module pair from the Plasmodium falciparum merozoite surface protein 1. J Mol Biol 1999,289:113-122.
    19. Pizarro JC, Chitarra V, Verger D, Holm I, Petres S, Dartevelle S, Nato F, Longacre S, Bentley GA:Crystal structure of a Fab complex formed with PfMSPl-19, the C-terminal fragment of merozoite surface protein 1 from Plasmodium falciparum:a malaria vaccine candidate. J Mol Biol 2003,328:1091-1103.
    20. Nair M, Hinds MG, Coley AM, Hodder AN, Foley M, Anders RF, Norton RS:Structure of domain III of the blood-stage malaria vaccine candidate, Plasmodium falciparum apical membrane antigen 1 (AMA1). J Mol Biol 2002,322:741-753.
    21. Kohler G, Milstein C:Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975,256:495-497.
    22. Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR:Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 1989,77:51-59.
    23. Bordo D, Argos P:Suggestions for "safe" residue substitutions in site-directed mutagenesis. J Mol Biol 1991,217:721-729.
    24. Chesne-Seck ML, Pizarro JC, Vulliez-Le Normand B, Collins CR, Blackman MJ, Faber BW, Remarque EJ, Kocken CH, Thomas AW, Bentley GA:Structural comparison of apical membrane antigen 1 orthologues and paralogues in apicomplexan parasites. Mol Biochem Parasitol 2005,144:55-67.
    25. Igonet S, Vulliez-Le Normand B, Faure G, Riottot MM, Kocken CH, Thomas AW, Bentley GA:Cross-reactivity studies of an anti-Plasmodium vivax apical membrane antigen 1 monoclonal antibody:binding and structural characterisation. J Mol Biol 2007,366:1523-1537.
    26. Peng H, Hu Y, Zhou A, Jin C, Pan W:Solution structure of a Plasmodium falciparum AMA-1/MSP1 chimeric protein vaccine candidate (PfCP-2.9) for malaria. Malar J 2010, 9:76.
    27. DeLano W:The PyMOL User's Manual. San Carlos,California:DeLano Scientific; 2002.
    28. Dutta S, Haynes JD, Barbosa A, Ware LA, Snavely JD, Moch JK, Thomas AW, Lanar DE: Mode of action of invasion-inhibitory antibodies directed against apical membrane antigen 1 of Plasmodium falciparum. Infect Immun 2005,73:2116-2122.
    29. Dutta S, Haynes JD, Moch JK, Barbosa A, Lanar DE:Invasion-inhibitory antibodies inhibit proteolytic processing of apical membrane antigen 1 of Plasmodium falciparum merozoites. Proc Natl Acad Sci USA 2003,100:12295-12300.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700