用户名: 密码: 验证码:
石墨烯的宏量制备、可控组装及电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石墨烯作为一种新型的二维碳质材料,具有独特的结构特征和优异的电学、力学、光学以及热学性质,在微电子器件、储能、催化、传感器以及功能型复合材料等领域具有广阔的应用前景。然而,目前石墨烯的制备、分散以及精细结构控制还存在很多瓶颈,限制了石墨烯的深入研究以及实用化进程。本论文针对石墨烯的制备以及电化学应用,在材料制备方面重点研究了石墨烯的宏量制备、粉体材料的分散、石墨烯基材料的组装,在应用探索方面重点考察了石墨烯的电化学传感以及电化学储能特性。
     在制备方面,论文提出可实现石墨烯粉体材料宏量制备的低温负压化学解理方法。通过对氧化石墨热行为的分析,提出在含氧官能团集中分解的150~250℃区间创造负压环境,造就足够的内外压力差,实现氧化石墨烯片层的充分剥离以及还原。获得的石墨烯材料具有很好的结构完整性,并且以单层为主;石墨烯具有与高温化学解理法所获得石墨烯不同的表面化学,具有较高的电化学比电容。
     在分散方面,论文提出使用单链DNA作为分散剂,实现了石墨烯片层的高浓度单分散。组装得到的石墨烯/DNA杂化物可以促进电化学反应中的直接电子转移,并且对双氧水具有良好的电化学响应。同时,使用DNA作为分散剂制备了石墨烯/NiO/DNA杂化物,其作为新型的无酶传感器实现了对葡萄糖的高灵敏度检测,具有检测限低、灵敏度高、稳定性好以及响应时间快等优点。
     在二维结构组装方面,论文设计出具有良好离子和电子传输特性,并且具有良好稳定性的石墨烯基层状“三明治”结构。利用石墨烯片层的二维特征以及氧化物纳米颗粒的零维结构特征,通过多步自组装法构建出层状“三明治”结构杂化薄膜;功率以及循环性能测试证明该结构具有很好电化学应用前景。
     本论文发现氧化石墨烯作为一种粘结组分,可以将表面活性剂分散的石墨烯片层连接起来,并且在气液界面组装得到了宏观的石墨烯薄膜材料。通过控制氧化石墨烯的含量可以实现对薄膜导电性的调节。
     在三维结构组装方面,论文提出一步自组装法,化学还原的氧化石墨烯辅以KMnO_4,在温和条件下组装获得具有核壳复合结构的石墨烯宏观体,其壳由石墨烯薄膜组成,而核则为多孔结构。通过调节KMnO_4浓度,可实现对宏观体结构的调控,该材料表现出良好的电化学行为。在后续工作中,通过在组装过程中引入外力干扰,制备出了小尺寸的石墨烯组装体。
Graphene, as a novel carbon material which is characterized by uniquetwo-dimensional structure and fascinating electronic, thermal, mechanical and opticalproperties, shows great potential in many fields, such as nanoelectronics, energystorage and conversion, catalyst, ultrafast laser system, high sensitivite sensors,composites and so on. However, in-depth research and large scale application ofgraphene are still hindered by some key issues, such as large scale preparation,uniform dispersion of graphene nanosheets and precise structure control ofgraphene-based materials. With a purpose to promote the basic research and realapplication of graphene, this thesis focuses on mass-production and electrochemicalapplications, and the main work includes vacuum-promoted exfoliation from graphiteoxide, efficient dispersion in aqueous solution, controlled construction ofgraphene-based nanostructure and their applications in electrochemical sensors andenergy storage devices.
     For the large scale preparation of powdered graphene, a vacuum-promotedexfoliation method at low temperature was for the first time proposed and theobtained graphenes are single-layer dominated and show high quality. Starting withthe investigation of the thermal properties of graphite oxide, we found that most offunctional groups attached to graphite oxide planes were decomposed in a verynarrow range of150~250℃. However, the graphite oxide cannot be fully exfoliatedat such low temperature since the internal force generated by the functional groupsdecomposition is not enough to push the layered strcuture exfoliated. Therefore, weintroduced an outward drawing force at such low temperature and realized fullexfoliation and reduction of graphite oxide layers by creating high vacuumenvironment. Furthermore, the low-temperature exfoliated graphenes show muchhigher capacitance than high-temperature exfoliated ones due to the different surfacechemistry.
     We proposed a facile method to realize the single-layer dispersion of graphenepowder in aqueous solution. By using single-stranded DNA as a high efficientdispersing agent, graphene was well dispersed in aqueous solution in highconcentration while graphene/DNA hybrid was obtained by self-assembly simultaneously. This hybrid promotes the electron transfer in the electrocatalysisprocess and shows good response to H2O2. Graphene/NiO/DNA hybrid, which can beused as a nonenzymatic sensor, was also prepared by self-assembly and showssensitive response to glucose. The above two hybrids demonstrate good sensingability, such as large detection ranges, short response periods, low detection limit andhigh sensitivity and stability.
     For the two-dimensional graphene-based macrostructure fabrication, we designedand fabricated a membrane-like hybrid with layered sandwich structure conbiningtwo-dimensional graphene layers with zero-dimensional nanoparticles. A muti-stepstrategy that was conducted under ‘‘homogenous’’ and ‘‘mild’’ conditions wasdeveloped to fabricate this hybrid membrane. This structure possesses goodconductivity and open ion transportation channel and is an ideal structure forelectrochemical energy storage with excellent cycling and power performance.
     Besides, we found that graphene oxide can be used as a sticking component to linkgraphene sheets together. By introducing graphene oxide in the water dispersedgraphene aided by the surfactant, a macroscopic graphene-based membrane wasfabricated at the liquid-air interface upon heating. The conductivity of suchgraphene-based membrane can be finely tuned by changing the graphene oxidefraction.
     For the construction of three-dimensional graphene-based structure, we proposed aone-pot self-assembly process under mild condition and obtained a novelthree-dimensional graphene-based macroassembly with core–shell hybrid structure.Such a hybrid structure is characterized by a porous core and layered membrane shell,and its macro-morphology and infrastructure can be easily tuned by changing theKMnO_4fraction. The prepared assembly shows good electrochemical performanceand improved Coulombic efficiency than powdered graphene. Furthermore, byintroducing the external turbulent force in the assembly process, the macroassemblywith smaller size is obtained.
引文
[1]Inagaki M, Kang F, Carbon Materials Science and Engineering: FromFundamentals to Applications, Tsinghua University Press,2006.
    [2]王茂章,碳的多样性及碳质材料的开发,新型炭材料,1995,4:1-12.
    [3]王茂章,杨全红,碳的结构及其同素异性体,炭素技术,2001,1:23-28.
    [4]Kroto H W, Heath J R, O'Brien S C, et al., C60: Buckminsterfullerene,1985,318(6042):162-163.
    [5]Novoselov K S, Geim A K, Morozov S V, et al., Electric Field Effect inAtomically Thin Carbon Films, Science,2004,306(5696):666-669.
    [6]Iijima S, Helical Microtubules of Graphitic Carbon, Nature,1991,354(6348):56-58.
    [7]Elias D C, Nair R R, Mohiuddin T, et al., Control of Graphene'S Properties byReversible Hydrogenation: Evidence for Graphane, Science,2009,323(5914):610-613.
    [8]Li G, Li Y, Liu H, et al., Architecture of Graphdiyne Nanoscale Films, ChemCommun,2010,46(19):3256-3258.
    [9]Hirsch A, The Era of Carbon Allotropes, Nature materials,2010,9(11):868-871.
    [10]杨全红,吕伟,杨永岗,等,自由态二维碳原子晶体-单层石墨烯,新型炭材料,2008,23(2):97-103.
    [11]Allen M J, Tung V C, Kaner R B, Honeycomb Carbon: A Review of Graphene,Chem Rev,2010,110(1):132-145.
    [12]Guo S, Dong S, Graphene and its Derivative-Based Sensing Materials forAnalytical Devices, J Mater Chem,2011,21(46):18503-18516.
    [13]Shao Y, Wang J, Wu H, et al., Graphene Based Electrochemical Sensors andBiosensors: A Review, Electroanal,2010,22(10):1027-1036.
    [14]Singh V, Joung D, Zhai L, et al., Graphene Based Materials: Past, Present andFuture, Prog Mater Sci,2011,56(8):1178–1271.
    [15]Choi W B, Lahiri I, Seelaboyina R, et al., Synthesis of Graphene and ItsApplications: A Review, Crit Rev Solid State Mater Sci,2010,35(1):52-71.
    [16]Schedin F, Geim A K, Morozov S V, et al., Detection of Individual GasMolecules Adsorbed On Graphene, Nat Mater,2007,6(9):652-655.
    [17]Sakhaee-Pour A, Ahmadian M T, Vafai A, Potential Application ofSingle-Layered Graphene Sheet as Strain Sensor, Solid State Commun,2008,147(7):336-340.
    [18]Geim A K, Novoselov K S, The Rise of Graphene, Nat Mater,2007,6(3):183-191.
    [19]Geim A K, Graphene: Status and Prospects, Science,2009,324(5934):1530-1534.
    [20]Zhu Y, Murali S, Cai W, et al., Graphene and Graphene Oxide: Synthesis,Properties, and Applications, Adv Mater,2010,22(35):3906-3924.
    [21]Compton O C, Nguyen S B T, Graphene Oxide, Highly Reduced Graphene Oxide,and Graphene: Versatile Building Blocks for Carbon‐Based Materials, Small,2010,6(6):711-723.
    [22]Lee S H, Lee D H, Lee W J, et al., Tailored Assembly of Carbon Nanotubes andGraphene, Adv Funct Mater,2011,21(8):1338-1354.
    [23]Bernal J D, The Structure of Graphite, Proceedings of the Royal Society ofLondon. Series A, Containing Papers of a Mathematical and Physical Character,1924,106(740):749-773.
    [24]Dreyer D R, Ruoff R S, Bielawski C W, From Conception to Realization: AnHistorial Account of Graphene and some Perspectives for its Future, Angew Chem IntEd,2010,49(49):9336-9344.
    [25]Boehm H P, Setton R, Stumpp E, Nomenclature and Terminology of GraphiteIntercalation Compounds, Carbon,1986,24(2):241-245.
    [26]Wallace P R, The Band Theory of Graphite, Phys Rev,1947,71(9):622.
    [27]Boehm H P, Clauss A, Fischer G Oet al., Das Adsorptionsverhalten Sehr DünnerKohlenstoff‐Folien, Zeitschrift für anorganische und allgemeine Chemie,1962,316(3‐4):119-127.
    [28]Kyotani T, Sonobe N, Tomita A, Formation of Highly Orientated Graphite FromPolyacrylonitrile by Using a Two-Dimensional Space Between MontmorilloniteLamellae, Nature,1988,331(6154):331-333.
    [29]Lu X, Yu M, Huang H, et al., Tailoring Graphite with the Goal of AchievingSingle Sheets, Nanotechnology,1999,10:269.
    [30]Zhang Y, Small J P, Pontius W V, et al., Fabrication andElectric-Field-Dependent Transport Measurements of Mesoscopic Graphite Devices,Appl Phys Lett,2005,86:73104.
    [31]Affoune A M, Prasad B, Sato H, et al., Experimental Evidence of a SingleNano-Graphene, Chem Phys Lett,2001,348(1):17-20.
    [32]Chuvilin A, Kaiser U, Bichoutskaia E, et al., Direct Transformation of Grapheneto Fullerene, Nat Chem,2010,2(6):450-453.
    [33]Kosynkin D V, Higginbotham A L, Sinitskii A, et al., Longitudinal Unzipping ofCarbon Nanotubes to Form Graphene Nanoribbons, Nature,2009,458(7240):872-876.
    [34]Jiao L, Wang X, Diankov G, et al., Facile Synthesis of High-Quality GrapheneNanoribbons, Nat Nanotechnol,2010,5(5):321-325.
    [35]Zhang Z, Sun Z, Yao J, et al., Transforming Carbon Nanotube Devices IntoNanoribbon Devices, J Am Chem Soc,2009,131(37):13460-13463.
    [36]Jiao L, Zhang L, Wang X, et al., Narrow Graphene Nanoribbons From CarbonNanotubes, Nature,2009,458(7240):877-880.
    [37]Kawai T, Okada S, Miyamoto Y, et al., Carbon Three-Dimensional ArchitectureFormed by Intersectional Collision of Graphene Patches, Phys Rev B,2005,72(3):35428.
    [38]Fasolino A, Los J H, Katsnelson M I, Intrinsic Ripples in Graphene, Nat Mater,2007,6(11):858-861.
    [39]Avouris P, Chen Z, Perebeinos V, Carbon-Based Electronics, Nat Nanotechnol,2007,2(10):605-615.
    [40]Novoselov K S, Geim A K, Morozov S V, et al., Two-Dimensional Gas ofMassless Dirac Fermions in Graphene, Nature,2005,438(7065):197-200.
    [41]Kane C L, Erasing Electron Mass, Nature,2005,438(168):10.
    [42]Pisana S, Lazzeri M, Casiraghi C, et al., Breakdown of the AdiabaticBorn–Oppenheimer Approximation in Graphene, Nat Mater,2007,6(3):198-201.
    [43]Nair R R, Blake P, Grigorenko A N, et al., Fine Structure Constant DefinesVisual Transparency of Graphene, Science,2008,320(5881):1308.
    [44]Bonaccorso F, Sun Z, Hasan T, et al., Graphene Photonics and Optoelectronics,Nat Photonics,2010,4(9):611-622.
    [45]Kravets V G, Grigorenko A N, Nair R R, et al., Spectroscopic Ellipsometry ofGraphene and an Exciton-Shifted Van Hove Peak in Absorption, Phys Rev B,2010,81(15):155413.
    [46]Wang F, Zhang Y, Tian C, et al., Gate-Variable Optical Transitions in Graphene,Science,2008,320(5873):206-209.
    [47]Xia F, Mueller T, Golizadeh-Mojarad R, et al., Photocurrent Imaging andEfficient Photon Detection in a Graphene Transistor, Nano Lett,2009,9(3):1039-1044.
    [48]Loh K P, Bao Q, Eda G, et al., Graphene Oxide as a Chemically Tunable Platformfor Optical Applications, Nat Chem,2010,2(12):1015-1024.
    [49]Sun Z, Hasan T, Torrisi F, et al., Graphene Mode-Locked Ultrafast Laser, ACSNano,2010,4(2):803-810.
    [50]Bao Q, Zhang H, Wang Y, et al., Atomic‐Layer Graphene as a SaturableAbsorber for Ultrafast Pulsed Lasers, Adv Funct Mater,2009,19(19):3077-3083.
    [51]Park S, Ruoff R S, Chemical Methods for the Production of Graphenes, NatNanotechnol,2009,4(4):217-224.
    [52]Gokus T, Nair R R, Bonetti A, et al., Making Graphene Luminescent by OxygenPlasma Treatment, ACS Nano,2009,3(12):3963-3968.
    [53]Lee C, Wei X, Kysar J W, et al., Measurement of the Elastic Properties andIntrinsic Strength of Monolayer Graphene, Science,2008,321(5887):385-388.
    [54]Lee C, Wei X, Li Q, et al., Elastic and Frictional Properties of Graphene, PhysStat Sol B,2009,246(11‐12):2562-2567.
    [55]Yu T, Ni Z, Du C, et al., Raman Mapping Investigation of Graphene OnTransparent Flexible Substrate: The Strain Effect, J Phys Chem C,2008,112(33):12602-12605.
    [56]Ni Z H, Yu T, Lu Y H, et al., Uniaxial Strain On Graphene: Raman SpectroscopyStudy and Band-Gap Opening, ACS Nano,2008,2(11):2301-2305.
    [57]Ni Z H, Chen W, Fan X F, et al., Raman Spectroscopy of Epitaxial Graphene Ona Sic Substrate, Phys Rev B,2008,77(11):115416.
    [58]Balandin A A, Thermal Properties of Graphene and Nanostructured CarbonMaterials, Nat Mater,2011,10(8):569-581.
    [59]Kim P, Shi L, Majumdar A, et al., Thermal Transport Measurements of IndividualMultiwalled Nanotubes, Phys Rev Lett,2001,87(21):215502.
    [60]Pop E, Mann D, Wang Q, et al., Thermal Conductance of an IndividualSingle-Wall Carbon Nanotube Above Room Temperature, Nano Lett,2006,6(1):96-100.
    [61]Balandin A A, Ghosh S, Bao W, et al., Superior Thermal Conductivity ofSingle-Layer Graphene, Nano Lett,2008,8(3):902-907.
    [62]Seol J H, Jo I, Moore A L, et al., Two-Dimensional Phonon Transport inSupported Graphene, Science,2010,328(5975):213-216.
    [63]Ghosh S, Calizo I, Teweldebrhan D, et al., Extremely High Thermal Conductivityof Graphene: Prospects for Thermal Management Applications in NanoelectronicCircuits, Appl Phys Lett,2008,92:151911.
    [64]Saito K, Nakamura J, Natori A, Ballistic Thermal Conductance of a GrapheneSheet, Phys Rev B,2007,76(11):115409.
    [65]Novoselov K S, Jiang D, Schedin F, et al., Two-Dimensional Atomic Crystals, PNatl Acad Sci Usa,2005,102(30):10451.
    [66]Blake P, Brimicombe P D, Nair R R, et al., Graphene-Based Liquid CrystalDevice, Nano Lett,2008,8(6):1704-1708.
    [67]Hernandez Y, Nicolosi V, Lotya M, et al., High-Yield Production of Graphene byLiquid-Phase Exfoliation of Graphite, Nat Nanotechnol,2008,3(9):563-568.
    [68] Hamilton C E, Lomeda J R, Sun Z, et al., High-yield organic dispersions ofunfunctionalized graphene, Nano Lett,2009,9(10):3460–3462.
    [69]Green A A, Hersam M C, Solution Phase Production of Graphene with ControlledThickness Via Density Differentiation, Nano Lett,2009,9(12):4031-4036.
    [70]Li X, Zhang G, Bai X, et al., Highly Conducting Graphene Sheets andLangmuir–Blodgett Films, Nat Nanotechnol,2008,3(9):538-542.
    [71]Kim K S, Zhao Y, Jang Het al., Large-Scale Pattern Growth of Graphene Filmsfor Stretchable Transparent Electrodes, Nature,2009,457(7230):706-710.
    [72]Li X, Cai W, An J, et al., Large-Area Synthesis of High-Quality and UniformGraphene Films On Copper Foils, Science,2009,324(5932):1312-1314.
    [73]Lee S, Lee K, Zhong Z, Wafer Scale Homogeneous Bilayer Graphene Films byChemical Vapor Deposition, Nano Lett,2010,10(11):4702–4707
    [74]Gao L, Ren W, Xu H, et al., Repeated Growth and Bubbling Transfer ofGraphene with Millimetre-Size Single-Crystal Grains Using Platinum, Nat Commun,2012,3:699.
    [75]Somani P R, Somani S P, Umeno M, Planer Nano-Graphenes From Camphor byCVD, Chem Phys Lett,2006,430(1):56-59.
    [76]Malesevic A, Vitchev R, Schouteden K, et al., Synthesis of Few-Layer GrapheneVia Microwave Plasma-Enhanced Chemical Vapour Deposition, Nanotechnology,2008,19:305604.
    [77]Penuelas J, Ouerghi A, Lucot D, et al., Surface Morphology and Characterizationof Thin Graphene Films On Sic Vicinal Substrate, Phys Rev B,2009,79(3):33408.
    [78]Gilje S, Han S, Wang M, et al., A Chemical Route to Graphene for DeviceApplications, Nano Lett,2007,7(11):3394-3398.
    [79]Stankovich S, Dikin D A, Piner R D, et al., Synthesis of Graphene-BasedNanosheets Via Chemical Reduction of Exfoliated Graphite Oxide, Carbon,2007,45(7):1558-1565.
    [80]Li D, Müller M B, Gilje S, et al., Processable Aqueous Dispersions of GrapheneNanosheets, Nat Nanotechnol,2008,3(2):101-105.
    [81]Stankovich S, Piner R D, Nguyen S B T, et al., Synthesis and Exfoliation ofIsocyanate-Treated Graphene Oxide Nanoplatelets, Carbon,2006,44(15):3342-3347.
    [82]Tung V C, Allen M J, Yang Y, et al., High-Throughput Solution Processing ofLarge-Scale Graphene, Nat Nanotechnol,2008,4(1):25-29.
    [83]Schniepp H C, Li J L, Mcallister M J, et al., Functionalized Single GrapheneSheets Derived From Splitting Graphite Oxide, J Phy Chem B,2006,110(17):8535-8539.
    [84]Wu Z S, Ren W, Gao L, et al., Synthesis of High-Quality Graphene with aPre-Determined Number of Layers, Carbon,2009,47(2):493-499.
    [85]Mcallister M J, Li J L, Adamson D H, et al., Single Sheet FunctionalizedGraphene by Oxidation and Thermal Expansion of Graphite, Chem Mater,2007,19(18):4396-4404.
    [86]Lv W, Tang D M, He Y B, et al., Low-Temperature Exfoliated Graphenes:Vacuum-Promoted Exfoliation and Electrochemical Energy Storage, ACS Nano,2009,3(11):3730-3736.
    [87]Wu Z S, Ren W, Gao L, et al., Synthesis of Graphene Sheets with High ElectricalConductivity and Good Thermal Stability by Hydrogen Arc Discharge Exfoliation,ACS Nano,2009,3(2):411-417.
    [88]Yang X, Dou X, Rouhanipour A, et al., Two-Dimensional Graphene Nanoribbons,J Am Chem Soc,2008,130(13):4216-4217.
    [89]Wang Z, Zhou X, Zhang J, et al., Direct Electrochemical Reduction ofSingle-Layer Graphene Oxide and Subsequent Functionalization with GlucoseOxidase, J Phys Chem C,2009,113(32):14071-14075.
    [90]Ramesha G K, Sampath S, Electrochemical Reduction of Oriented GrapheneOxide Films: An in Situ Raman Spectroelectrochemical Study, J Phys Chem C,2009,113(19):7985-7989.
    [91]Shao Y, Wang J, Engelhard M, et al., Facile and Controllable ElectrochemicalReduction of Graphene Oxide and its Applications, J Mater Chem,2010,20(4):743-748.
    [92]Su C Y, Lu A Y, Xu Y, et al., High-Quality Thin Graphene Films From FastElectrochemical Exfoliation, ACS Nano,2011,5(3):2332–2339.
    [93]Liu N, Luo F, Wu H, et al., One‐Step Ionic‐Liquid‐Assisted ElectrochemicalSynthesis of Ionic‐Liquid‐Functionalized Graphene Sheets Directly From Graphite,Adv Funct Mater,2008,18(10):1518-1525.
    [94]Wang J, Manga K K, Bao Q, et al., High Yield Synthesis of Few-Layer GrapheneFlakes through Electrochemical Expansion of Graphite in Propylene CarbonateElectrolyte, J Am Chem Soc,2011,133(23):8888–8891.
    [95]Ponomarenko L A, Schedin F, Katsnelson M I, et al., Chaotic Dirac Billiard inGraphene Quantum Dots, Science,2008,320(5874):356-358.
    [96]Ritter K A, Lyding J W, The Influence of Edge Structure On the ElectronicProperties of Graphene Quantum Dots and Nanoribbons, Nat Mater,2009,8(3):235-242.
    [97]Li X, Wang X, Zhang L, et al., Chemically Derived, Ultrasmooth GrapheneNanoribbon Semiconductors, Science,2008,319(5867):1229-1232.
    [98]Kim W Y, Kim K S, Prediction of Very Large Values of Magnetoresistance in aGraphene Nanoribbon Device, Nat Nanotechnol,2008,3(7):408-412.
    [99]Bai J, Zhong X, Jiang S, et al., Graphene Nanomesh, Nat Nanotechnol,2010,5(3):190-194.
    [100]Lopata K, Thorpe R, Pistinner S, et al., Graphene Nanomeshes: Onset ofConduction Band Gaps, Chem Phys Lett,2010,498(4-6):334-337.
    [101]Nair R R, Ren W, Jalil R, et al., Fluorographene: A Two‐DimensionalCounterpart of Teflon, Small,2010,6(24):2877-2884.
    [102]Jeon K J, Lee Z, Pollak E, et al., Fluorographene: A Wide BandgapSemiconductor with Ultraviolet Luminescence, ACS Nano,2011,5(2),1042–1046.
    [103]Nair R R, Ren W C, Jalil R, et al., Fluorographene: Mechanically Strong andThermally Stable Two-Dimensional Wide-Gap Semiconductor, Arxiv preprintarXiv:1006.3016,2010.
    [104]Guo S, Dong S, Graphene Nanosheet: Synthesis, Molecular Engineering, ThinFilm, Hybrids, and Energy and Analytical Applications, Chem Soc Rev,2011,40(5):2644-2672.
    [105]Dreyer D R, Park S, Bielawski C W, et al., The Chemistry of Graphene Oxide,Chem Soc Rev,2009,39(1):228-240.
    [106]Huang X, Yin Z, Wu S, et al., Graphene‐Based Materials: Synthesis,Characterization, Properties and Applications, Small,2011,7(14):1876-1902.
    [107]Park S, An J, Jung I, et al., Colloidal Suspensions of Highly Reduced GrapheneOxide in a Wide Variety of Organic Solvents, Nano Lett,2009,9(4):1593-1597.
    [108]Lerf A, He H, Forster M, et al., Structure of Graphite Oxide Revisited, J PhysChem B,1998,102(23):4477-4482.
    [109]Salavagione H J, Go Mez M A, Marti Nez G, Polymeric Modification ofGraphene through Esterification of Graphite Oxide and Poly (Vinyl Alcohol),Macromolecules,2009,42:6331-6334.
    [110]Stankovich S, Piner R D, Nguyen S B T, et al., Synthesis and Exfoliation ofIsocyanate-Treated Graphene Oxide Nanoplatelets, Carbon,2006,44(15):3342-3347.
    [111]Yang H, Shan C, Li F, et al., Covalent Functionalization of PolydisperseChemically-Converted Graphene Sheets with Amine-Terminated Ionic Liquid, ChemCommun,2009,(26):3880-3882.
    [112]Lomeda J R, Doyle C D, Kosynkin D V, et al., Diazonium Functionalization ofSurfactant-Wrapped Chemically Converted Graphene Sheets, J Am Chem Soc,2008,130(48):16201-16206.
    [113]Zhong X, Jin J, Li S, et al., Aryne Cycloaddition: Highly Efficient ChemicalModification of Graphene, Chem Commun,2010,46(39):7340-7342.
    [114]Choi J, Kim K, Kim B, et al., Covalent Functionalization of Epitaxial Grapheneby Azidotrimethylsilane, J Phys Chem C,2009,113(22):9433-9435.
    [115]He H, Gao C, General Approach to Individually Dispersed, Highly Soluble, andConductive Graphene Nanosheets Functionalized by Nitrene Chemistry, Chem Mater,2010,22(17):5054–5064.
    [116]Stankovich S, Piner R D, Chen X, et al., Stable Aqueous Dispersions ofGraphitic Nanoplatelets Via the Reduction of Exfoliated Graphite Oxide in thePresence of Poly (Sodium4-Styrenesulfonate), J Mater Chem,2006,16(2):155-158.
    [117]Patil A J, Vickery J L, Scott T B, et al., Aqueous Stabilization and Self‐Assembly of Graphene Sheets Into Layered Bio‐Nanocomposites Using DNA, AdvMater,2009,21(31):3159-3564.
    [118]Xu Y, Bai H, Lu G, et al., Flexible Graphene Films Via the Filtration ofWater-Soluble Noncovalent Functionalized Graphene Sheets, J Am Chem Soc,2008,130(18):5856-5857.
    [119]Potts J R, Dreyer D R, Bielawski C W, et al., Graphene-Based PolymerNanocomposites, Polymer,2011,52(1):5-25.
    [120]Kuilla T, Bhadra S, Yao D, et al., Recent Advances in Graphene Based PolymerComposites, Prog Polym Sci,2010,35(11):1350-1375.
    [121]Wu Z S, Zhou G, Yin L C, et al., Graphene/Metal Oxide Composite ElectrodeMaterials for Energy Storage, Nano Energy,2012,1(1):107–131.
    [122]Loh K P, Bao Q, Ang P K, et al., The Chemistry of Graphene, J Mater Chem,2010,20(12):2277-2289.
    [123]Lerf A, He H, Forster M, et al., Structure of Graphite Oxide Revisited, J PhysChem B,1998,102(23):4477-4482.
    [124]SzabóT, Berkesi O, ForgóP, et al., Evolution of Surface Functional Groups in aSeries of Progressively Oxidized Graphite Oxides, Chem Mater,2006,18(11):2740-2749.
    [125]Shin H J, Kim K K, Benayad A, et al., Efficient Reduction of Graphite Oxide bySodium Borohydride and its Effect On Electrical Conductance, Adv Funct Mater,2009,19(12):1987-1992.
    [126]Gao W, Alemany L B, Ci L, et al., New Insights Into the Structure andReduction of Graphite Oxide, Nat Chem,2009,1(5):403-408.
    [127]Fan Z, Wang K, Wei T, et al., An Environmentally Friendly and Efficient Routefor the Reduction of Graphene Oxide by Aluminum Powder, Carbon,2010,48(5):1686-1689.
    [128]Fernandez-Merino M J, Guardia L, Paredes J I, et al., Vitamin C is an IdealSubstitute for Hydrazine in the Reduction of Graphene Oxide Suspensions, J PhysChem C,2010,114(14):6426-6432.
    [129]Pei S, Zhao J, Du J, et al., Direct Reduction of Graphene Oxide Films IntoHighly Conductive and Flexible Graphene Films by Hydrohalic Acids, Carbon,2010,48(15):4466-4474.
    [130]Moon I K, Lee J, Ruoff R S, et al., Reduced Graphene Oxide by ChemicalGraphitization, Nat Commun,2010,1:73.
    [131]Zhao J, Pei S, Ren W, et al., Efficient Preparation of Large-Area GrapheneOxide Sheets for Transparent Conductive Films, ACS Nano,2010,4(9):5245-5252.
    [132]Dreyer D R, Murali S, Zhu Y, et al., Reduction of Graphite Oxide UsingAlcohols, J Mater Chem,2011,21(10):3443-3447.
    [133]Fan Z J, Kai W, Yan J, et al., Facile Synthesis of Graphene Nanosheets Via FeReduction of Exfoliated Graphite Oxide, ACS Nano,2011,5(1):191-198.
    [134]Wang G, Yang J, Park J, et al., Facile Synthesis and Characterization ofGraphene Nanosheets, J Phys Chem C,2008,112(22):8192-8195.
    [135]Park S, Dikin D A, Nguyen S B T, et al., Graphene Oxide Sheets ChemicallyCross-Linked by Polyallylamine, J Phys Chem C,2009,113(36):15801-15804.
    [136]Sundaram R S, Gómez Navarro C, Balasubramanian Ket al., ElectrochemicalModification of Graphene, Adv Mater,2008,20(16):3050-3053.
    [137]Zhou M, Wang Y, Zhai Y, et al., Controlled Synthesis of Large‐Area andPatterned Electrochemically Reduced Graphene Oxide Films, Chem-Eur J,2009,15(25):6116-6120.
    [138]Cote L J, Kim J, Tung V C, et al., Graphene Oxide as Surfactant Sheets, PureAppl Chem,2011,83(1):95.
    [139]Kim F, Cote L J, Huang J, Graphene Oxide: Surface Activity and Two‐Dimensional Assembly, Adv Mater,2010,22(17):1954-1958.
    [140]Kim J, Cote L J, Kim F, et al., Graphene Oxide Sheets at Interfaces, J Am ChemSoc,2010,132(23):8180-8186.
    [141]Shao J J, Lv W, Guo Q, et al., Hybridization of Graphene Oxide and CarbonNanotubes at the Liquid/Air Interface, Chem Commun,2012,48:3706-3708.
    [142]魏伟,吕伟,杨全红,高浓度石墨烯水系分散液及其气液界面自组装膜,新型炭材料,2011,26(1):36-40.
    [143]Guo P, Song H, Chen X, Hollow Graphene Oxide Spheres Self-Assembled byW/O Emulsion, J Mater Chem,2010,20(23):4867-4874.
    [144]Lee S H, Kim H W, Hwang J O, et al., Three‐Dimensional Self‐Assembly ofGraphene Oxide Platelets Into Mechanically Flexible Macroporous Carbon Films,Angew Chem Int Ed,2010,122(52):10282-10286.
    [145]Dimitrakakis G K, Tylianakis E, Froudakis G E, Pillared Graphene: A New3-DNetwork Nanostructure for Enhanced Hydrogen Storage, Nano Lett,2008,8(10):3166-3170.
    [146]Fan Z, Yan J, Zhi L, et al., A Three‐Dimensional Carbon Nanotube/GrapheneSandwich and its Application as Electrode in Supercapacitors, Adv Mater,2010,22(33):3723-3728.
    [147]Varshney V, Patnaik S S, Roy A K, et al., Modeling of Thermal Transport inPillared-Graphene Architectures, ACS Nano,2010,4(2):1153-1161.
    [148]Xu L, Wei N, Zheng Y, et al., Graphene-Nanotube3D Networks: IntriguingThermal and Mechanical Properties, J Mater Chem,2011,22(4):1435-1444.
    [149]Li S, Luo Y, Lv W, et al., Vertically Aligned Carbon Nanotubes Grown OnGraphene Paper as Electrodes in Lithium‐Ion Batteries and Dye‐Sensitized SolarCells, Adv Energy Mater,2011,1(4):486-490.
    [150]Chen Z, Ren W, Gao L, et al., Three-Dimensional Flexible and ConductiveInterconnected Graphene Networks Grown by Chemical Vapour Deposition, NatMater,2011,10(6):424-428.
    [151]Kim G, Jhi S H, Lim S, et al., Effect of Vacancy Defects in Graphene On MetalAnchoring and Hydrogen Adsorption, Appl Phys Lett,2009,94(17):173102.
    [152]Vickery J L, Patil A J, Mann S, Fabrication of Graphene–PolymerNanocomposites with Higher‐Order Three‐Dimensional Architectures, Adv Mater,2009,21(21):2180-2184.
    [153]Zhu C, Guo S, Zhai Y, et al., Layer-by-Layer Self-Assembly for Constructing aGraphene/Platinum Nanoparticle Three-Dimensional Hybrid Nanostructure UsingIonic Liquid as a Linker, Langmuir,2010,26(10):7614-7618.
    [154]Dikin D A, Stankovich S, Zimney E J, et al., Preparation and Characterization ofGraphene Oxide Paper, Nature,2007,448(7152):457-460.
    [155]Chen C, Yang Q H, Yang Y, et al., Self‐Assembled Free‐Standing GraphiteOxide Membrane, Adv Mater,2009,21(29):3007-3011.
    [156]Xu Y, Hong W, Bai H, et al., Strong and Ductile Poly (Vinyl Alcohol)/GrapheneOxide Composite Films with a Layered Structure, Carbon,2009,47(15):3538-3543.
    [157]Gwon H, Kim H S, Lee K U, et al., Flexible Energy Storage Devices Based OnGraphene Paper, Energy Environ Sci,2011,4(4):1277-1283.
    [158]Li D, Kaner R B, Graphene-Based Materials, Nat Nanotechnol,2008,3:101.
    [159]Hu W, Peng C, Luo W, et al., Graphene-Based Antibacterial Paper, ACS Nano,2010,4(7):4317-4323.
    [160]Akhavan O, Ghaderi E, Toxicity of Graphene and Graphene Oxide NanowallsAgainst Bacteria, ACS Nano,2010,4(10):5731–5736.
    [161]Park S, Lee K S, Bozoklu Get al., Graphene Oxide Papers Modified by DivalentIons—Enhancing Mechanical Properties Via Chemical Cross-Linking, ACS Nano,2008,2(3):572-578.
    [162]Chen C M, Huang J Q, Zhang Q, et al., Annealing a Graphene Oxide Film toProduce a Free Standing High Conductive Graphene Film, Carbon,2011,50(2)659-667.
    [163]Compton O C, Dikin D A, Putz K W, et al., lectricall Conductive “Alk lated”Graphene Paper Via Chemical Reduction of Amine‐Functionalized Graphene OxidePaper, Adv Mater,2010,22(8):892-896.
    [164]Lv W, You C H, Wu S, et al., pH-Mediated Fine-Tuning of Optical Properties ofGraphene Oxide Membranes, Carbon,2012,50:3233-3239.
    [165]Lv W, Xia Z, Wu S, et al., Conductive Graphene-Based Macroscopic MembraneSelf-Assembled at a Liquid–Air Interface, J Mater Chem,2011,21(10):3359-3364.
    [166]Liu J, Wu S, Yang Q H, et al., Stable Nanosecond Pulse Generation From aGraphene-Based Passively Q-Switched Yb-Doped Fiber Laser, Opt Lett,2011,36(20):4008-4010.
    [167]Tang Z, Shen S, Zhuang J, et al., Noble‐Metal‐Promoted Three‐Dimensional Macroassembly of Single‐Layered Graphene Oxide, Angew Chem IntEd,2010,122(27):4707-4711.
    [168]Xu Y, Sheng K, Li C, et al., Self-Assembled Graphene Hydrogel Via a One-StepHydrothermal Process, ACS Nano,2010,4(7):4324-4330.
    [169]Bai H, Li C, Wang X, et al., A pH-Sensitive Graphene Oxide CompositeHydrogel, Chem Commun,2010,46(14):2376-2378.
    [170]Xu Y, Shi G, Assembly of Chemically Modified Graphene: Methods andApplications, J Mater Chem,2011,21(10):3311-3323.
    [171]Bai H, Li C, Wang X, et al., On the Gelation of Graphene Oxide, J Phys Chem C,2011,115(13):5545–5551.
    [172]Zhang L, Wang Z, Xu C, et al., High Strength Graphene Oxide/PolyvinylAlcohol Composite Hydrogels, J Mater Chem,2011,21(28):10399-10406.
    [173]Wang W C, Li Z L, Wu J J, et al., Graphene Oxide Containing CompositeHydrogel Fabricated by Freeze/Thaw Method, Adv Mater Res,2012,430:1028-1031.
    [174]Xu Y, Wu Q, Sun Y, et al., Three-Dimensional Self-Assembly of GrapheneOxide and Dna Into Multifunctional Hydrogels, ACS Nano,2010,4(12):7358–7362
    [175]Sun S, Wu P, A One-Step Strategy for Thermal-and pH-Responsive GrapheneOxide Interpenetrating Polymer Hydrogel Networks, J Mater Chem,2011,21(12):4095-4097.
    [176]Shao J J, Wu S D, Zhang S B, et al., Graphene Oxide Hydrogel at Solid/LiquidInterface, Chem Commun,201147:5771-5773,.
    [177]Lv W, Tao Y, Ni W,et al., One-Pot Self-Assembly of Three-DimensionalGraphene Macroassemblies with Porous Core and Layered Shell, J Mater Chem,2011,21(33):12352-12357.
    [178]Chen W, Yan L, In Situ Self-Assembly of Mild Chemical Reduction Graphenefor Three-Dimensional Architectures, Nanoscale,2011,3(8):3132-3137.
    [179]Chen W, Li S, Chen C, et al., Self‐Assembly and Embedding of Nanoparticlesby in Situ Reduced Graphene for Preparation of a3D Graphene/Nanoparticle Aerogel,Adv Mater,2011,23(47):5679–5683.
    [180]Liang M, Zhi L, Graphene-Based Electrode Materials for Rechargeable LithiumBatteries, J Mater Chem,2009,19(33):5871-5878.
    [181]Pumera M, Graphene-Based Nanomaterials and their Electrochemistry, ChemSoc Rev,2010,39(11):4146-4157.
    [182]Choi D, Choi M Y, Choi W M, et al., Fully Rollable TransparentNanogenerators Based On Graphene Electrodes, Adv Mater,2010,22(19):2187-2192.
    [183]Guo S, Wang E, Synthesis and Electrochemical Applications of GoldNanoparticles, Anal Chim Acta,2007,598(2):181-192.
    [184]Song Y, Qu K, Zhao C, et al., Graphene Oxide: Intrinsic Peroxidase CatalyticActivity and its Application to Glucose Detection, Adv Mater,2010,22(19):2206-2210.
    [185]Lu J, Do I, Drzal L T, et al., Nanometal-Decorated Exfoliated GraphiteNanoplatelet Based Glucose Biosensors with High Sensitivity and Fast Response,ACS Nano,2008,2(9):1825-1832.
    [186]Shan C, Yang H, Song J, et al., Direct Electrochemistry of Glucose Oxidase andBiosensing for Glucose Based On Graphene, Anal Chem,2009,81(6):2378-2382.
    [187]Liu S, Tian J, Wang L, et al., Self-Assembled Graphene Platelet-GlucoseOxidase Nanostructures for Glucose Biosensing, Biosens Bioelectron,2011,22(11):4491–4496.
    [188]Liu K, Zhang J, Yang G, et al., Direct Electrochemistry and Electrocatalysis ofHemoglobin Based On Poly (Diallyldimethylammonium Chloride) FunctionalizedGraphene Sheets/Room Temperature Ionic Liquid Composite Film, ElectrochemCommun,2010,12(3):402-405.
    [189]Zhou Y, Liu S, Jiang H J, et al., Direct Electrochemistry and Bioelectrocatalysisof Microperoxidase‐11Immobilized On Chitosan‐Graphene Nanocomposite,Electroanal,2010,22(12):1323-1328.
    [190]Wu J F, Xu M Q, Zhao G C, Graphene-Based Modified Electrode for the DirectElectron Transfer of Cytochrome C and Biosensing, Electrochem Commun,2010,12(1):175-177.
    [191]Pumera M, Ambrosi A, Bonanni A, et al., Graphene for Electrochemical Sensingand Biosensing, TrAC Trends Anal Chem,2010,29(9):954-965.
    [192]Du D, Zou Z, Shin Y, et al., Sensitive Immunosensor for Cancer BiomarkerBased On Dual Signal Amplification Strategy of Graphene Sheets and MultienzymeFunctionalized Carbon Nanospheres, Anal Chem,2010,82(7):2989-2995.
    [193]Sato S, Yoshihara K, Moriyama K, et al., Influence of Activated Carbon SurfaceAcidity On Adsorption of Heavy Metal Ions and Aromatics From Aqueous Solution,Appl Surf Sci,2007,253(20):8554-8559.
    [194]Hu X, Mu L, Wen J, et al., Immobilized Smart RNA On Graphene OxideNanosheets to Specifically Recognize and Adsorb Trace Peptide Toxins in DrinkingWater, J Hazard Mater,2012,(213-214):387-392.
    [195]Zhao Z Q, Chen X, Yang Q, et al., Selective Adsorption Toward Toxic MetalIons Results in Selective Response: Electrochemical Studies On aPolypyrrole/Reduced Graphene Oxide Nanocomposite, Chem Commun,2012,48,2180-2182.
    [196]Chandra V, Kim K S, Highly Selective Adsorption of Hg2+by aPolypyrrole–Reduced Graphene Oxide Composite, Chem Commun,2011,47(13):3942-3944.
    [197]Schedin F, Geim A K, Morozov S V, et al., Detection of Individual GasMolecules Adsorbed On Graphene, Nat Mater,2007,6(9):652-655.
    [198]Ao Z M, Yang J, Li S, et al., Enhancement of Co Detection in Al DopedGraphene, Chem Phys Lett,2008,461(4):276-279.
    [199]Zhang H, Lv X, Li Y, et al., P25-Graphene Composite as a High PerformancePhotocatalyst, ACS Nano,2009,4(1):380-386.
    [200]Liu J, Wang Z, Liu L, et al., Reduced Graphene Oxide as Capturer of Dyes andElectrons During Photocatalysis: Surface Wrapping and Capture Promoted Efficiency,Phys Chem Chem Phys,2011,13(29):13216-13221.
    [201]Zhao X H, Kong R M, Zhang X B, et al., Graphene Dnazyme Based Biosensorfor Amplified Fluorescence Turn-On Detection of Pb2+with a High Selectivity, AnalChem,2011,83(13):5062–5066.
    [202]Willemse C M, Tlhomelang K, Jahed N, et al., Metallo-GrapheneNanocomposite Electrocatalytic Platform for the Determination of Toxic Metal Ions,Sensors,2011,11(4):3970-3987.
    [203]Lei J, Lu X, Wang W, et al., Fabrication of MnO2/Graphene Oxide CompositeNanosheets and their Application in Hydrazine Detection, RSC Adv,2012,2:2541-2544.
    [204]Tang L, Feng H, Cheng J, et al., Uniform and Rich-Wrinkled ElectrophoreticDeposited Graphene Film: A Robust Electrochemical Platform for TNT Sensing,Chem Commun,2010,46(32):5882-5884.
    [205]Guo C X, Lei Y, Li C M, Porphyrin Functionalized Graphene for SensitiveElectrochemical Detection of Ultratrace Explosives, Electroanal,2011,23(4):885-893.
    [206]Huang Z H, Zheng X, Lv W, et al., Adsorption of Lead (Ii) Ions From AqueousSolution On Low-Temperature Exfoliated Graphene Nanosheets, Langmuir,2011,27(12):7558–7562.
    [207]Li J, Guo S, Zhai Y, et al., High-Sensitivity Determination of Lead andCadmium Based On the Nafion-Graphene Composite Film, Anal Chim Acta,2009,649(2):196-201.
    [208]Mohanty N, Berry V, Graphene-Based Single-Bacterium Resolution Biodeviceand Dna Transistor: Interfacing Graphene Derivatives with Nanoscale and MicroscaleBiocomponents, Nano Lett,2008,8(12):4469-4476.
    [209]Stine R, Robinson J T, Sheehan P E, et al., Real‐Time Dna Detection UsingReduced Graphene Oxide Field Effect Transistors, Adv Mater,2010,22(46):5297-5300.
    [210]Mao S, Lu G, Yu K, et al., Specific Protein Detection Using Thermally ReducedGraphene Oxide Sheet Decorated with Gold Nanoparticle‐Antibody Conjugates,Adv Mater,2010,22(32):3521-3526.
    [211]Ang P K, Chen W, Wee A T S, et al., Solution-Gated Epitaxial Graphene as PhSensor, J Am Chem Soc,2008,130(44):14392-14393.
    [212]Huang Y, Dong X, Shi Y, et al., Nanoelectronic Biosensors Based On CvdGrown Graphene, Nanoscale,2010,2(8):1485-1488.
    [213]Yavari F, Chen Z, Thomas A V, et al., High Sensitivity Gas Detection Using aMacroscopic Three-Dimensional Graphene Foam Network, Scientific reports,2011,1:166.
    [214]Dong H, Gao W, Yan F, et al., Fluorescence Resonance Energy TransferBetween Quantum Dots and Graphene Oxide for Sensing Biomolecules, Anal Chem,2010,82(13):5511-7.
    [215]Zhou Y G, Chen J J, Wang F, et al., A Facile Approach to the Synthesis ofHighly Electroactive Pt Nanoparticles On Graphene as an Anode Catalyst for DirectMethanol Fuel Cells, Chem Commun,2010,46(32):5951-5953.
    [216]Dong L, Gari R R S, Li Z, et al., Graphene-Supported Platinum andPlatinum-Ruthenium Nanoparticles with High Electrocatalytic Activity for Methanoland Ethanol Oxidation, Carbon,2010,48(3):781-787.
    [217]Guo S, Dong S, Wang E, Three-Dimensional Pt-On-Pd BimetallicNanodendrites Supported On Graphene Nanosheet: Facile Synthesis and Used as anAdvanced Nanoelectrocatalyst for Methanol Oxidation, ACS Nano,2009,4(1):547-555.
    [218]Liu C, Alwarappan S, Chen Z, et al., Membraneless Enzymatic Biofuel CellsBased On Graphene Nanosheets, Biosens Bioelectron,2010,25(7):1829-1833.
    [219]Wang L, Lee K, Sun Y Y, et al., Graphene Oxide as an Ideal Substrate forHydrogen Storage, ACS Nano,2009,3(10):2995-3000.
    [220]Liu C, Li F, Ma L P, et al., Advanced Materials for Energy Storage, Adv Mater,2010,22(8): E28-62.
    [221]Simon P, Gogotsi Y, Materials for Electrochemical Capacitors, Nat Mater,2008,7(11):845-854.
    [222]Stoller M D, Park S, Zhu Y, et al., Graphene-Based Ultracapacitors, Nano Lett,2008,8(10):3498-3502.
    [223]Zhu Y, Murali S, Stoller M D, et al., Carbon-Based Supercapacitors Producedby Activation of Graphene, Science,2011,332(6037):1537.
    [224]Liu C, Yu Z, Neff D, et al., Graphene-Based Supercapacitor with an UltrahighEnergy Density, Nano Lett,2010,10(12):4863–4868.
    [225]Wang Y, Shi Z, Huang Y, et al., Supercapacitor Devices Based On GrapheneMaterials, J Phys Chem C,2009,113(30):13103-13107.
    [226]Wang D W, Li F, Zhao J, et al., Fabrication of Graphene/Polyaniline CompositePaper Via in Situ Anodic Electropolymerization for High-Performance FlexibleElectrode, ACS Nano,2009,3(7):1745-1752.
    [227]Yu G, Hu L, Vosgueritchian M, et al., Solution-Processed Graphene/MnO2Nanostructured Textiles for High-Performance Electrochemical Capacitors, Nano Lett,2011,11(7):2905–2911.
    [228]Fan Z, Yan J, Wei T, et al., Asymmetric Supercapacitors Based OnGraphene/MnO2and Activated Carbon Nanofiber Electrodes with High Power andEnergy Density, Adv Funct Mater,2011,21(12):2366-2375.
    [229]Wu Z S, Ren W, Wang D W, et al., High-Energy MnO2Nanowire/Graphene andGraphene Asymmetric Electrochemical Capacitors, ACS Nano,2010,4(10):5835–5842.
    [230]Wang H, Casalongue H S, Liang Y, et al., Ni(OH)2Nanoplates Grown OnGraphene as Advanced Electrochemical Pseudocapacitor Materials, J Am Chem Soc,2010,132(21):7472-7477.
    [231]Wu Z S, Wang D W, Ren W, et al., Anchoring Hydrous RuO2On GrapheneSheets for High‐Performance Electrochemical Capacitors, Adv Funct Mater,2010,20(20):3595-3602.
    [232]He Y S, Bai D W, Yang X, et al., A Co(OH)2-Graphene Nanosheets Compositeas a High Performance Anode Material for Rechargeable Lithium Batteries,Electrochem Commun,2010,12(4):570-573.
    [233]Sun Y, Wu Q, Shi G, Graphene Based New Energy Materials, Energy EnvironSci,2011,4(4):1113-1132.
    [234]Yoo E J, Kim J, Hosono E, et al., Large Reversible Li Storage of GrapheneNanosheet Families for Use in Rechargeable Lithium Ion Batteries, Nano Lett,2008,8(8):2277-2282.
    [235]Wu Z S, Ren W, Xu L, et al., Doped Graphene Sheets as Anode Materials withSuperhigh Rate and Large Capacity for Lithium Ion Batteries, ACS Nano,2011,5(7):5463–5471.
    [236]Zhou G, Wang D W, Li F, et al., Graphene-Wrapped Fe3O4Anode Material withImproved Reversible Capacity and Cyclic Stability for Lithium Ion Batteries, ChemMater,2010,22(18):5306–5313.
    [237]Wang H, Yang Y, Liang Y, et al., Graphene-Wrapped Sulfur Particles as aRechargeable Lithium-Sulfur-Battery Cathode Material with High Capacity andCycling Stability, Nano Lett,2011,11(7):2644–2647.
    [238] oo, hou H, Li Air echargeable Batter Based On Metal-Free GrapheneNanosheet Catalysts, ACS Nano,2011,5(4):3020–3026.
    [239]Ding Y, Jiang Y, Xu F, et al., Preparation of Nano-Structured Lifepo4/GrapheneComposites by Co-Precipitation Method, Electrochem Commun,2010,12(1):10-13.
    [240]Zhou X, Wang F, Zhu Y, et al., Graphene Modified Lifepo4Cathode Materialsfor High Power Lithium Ion Batteries, J Mater Chem,2011,21(10):3353-3358.
    [241]Kim H, Kim S W, Hong J, et al., Graphene-Based Hybrid Electrode Material forHigh-Power Lithium-Ion Batteries, J Electrochem Soc,2011,158: A930.
    [242]Su F Y, You C, He Y B, et al., Flexible and Planar Graphene ConductiveAdditives for Lithium-Ion Batteries, J Mater Chem,2010,20(43):9644-9650.
    [243]Su F, He Y, Li B, et al., Could Graphene Construct an Effective ConductingNetwork in a High-Power Lithium Ion Battery? Nano Energy,2012,1(3):429-439.
    [244]Ramanathan T, Abdala A A, Stankovich S, et al., Functionalized GrapheneSheets for Polymer Nanocomposites, Nat Nanotechnol,2008,3(6):327-331.
    [245]Khan U, May P, O'Neill A, et al., Development of Stiff, Strong, Yet ToughComposites by the Addition of Solvent Exfoliated Graphene to Polyurethane, Carbon,2010,48(14):4035-4041.
    [246]Shahil K M F, Balandin A A, Graphene–Multilayer Graphene Nanocompositesas Highly Efficient Thermal Interface Materials, Nano Lett,2012,12(2):861-867.
    [247]Nair R R, Wu H A, Jayaram P N, et al., Unimpeded Permeation of Waterthrough Helium-Leak–Tight Graphene-Based Membranes, Science,2012,335(6067):442-444.
    [248]Hummers Jr W S, Offeman R E, Preparation of Graphitic Oxide, J Am ChemSoc,1958,80(6):1339.
    [249]Boehm H P, Clauss A, Fischer G O, et al., Das Adsorptionsverhalten SehrDünner Kohlenstoff‐Folien, Zeitschrift für anorganische und allgemeine Chemie,1962,316(3‐4):119-127.
    [250]Boehm H, chol, er erpuffungspunkt” Des Graphitoxids, Zeitschriftfür anorganische und allgemeine Chemie,1965,335(1‐2):74-79.
    [251]Chung D, Exfoliation of Graphite, J Mater Sci,1987,22(12):4190-4198.
    [252]Chung G C, Kim H J, Yu S I, et al., Origin of Graphite Exfoliation anInvestigation of the Important Role of Solvent Cointercalation, J Electrochem Soc,2000,147:4391.
    [253]Chung D, Intercalate Vaporization During the Exfoliation of GraphiteIntercalated with Bromine, Carbon,1987,25(3):361-365.
    [254]Viculis L M, Mack J J, Mayer O M, et al., Intercalation and Exfoliation Routesto Graphite Nanoplatelets, J Mater Chem,2005,15(9):974-978.
    [255]Meyer J C, Geim A K, Katsnelson M I, et al., The Structure of SuspendedGraphene Sheets, Nature,2007,446(7131):60-63.
    [256]Gardner S D, Singamsetty C S K, Booth G L, et al., Surface Characterization ofCarbon Fibers Using Angle-Resolved XPS and ISS, Carbon,1995,33(5):587-595.
    [257]Zhao B, Liu P, Jiang Y, et al., Supercapacitor Performances of ThermallyReduced Graphene Oxide, J Power Sources,2012,198:423-427.
    [258]Vivekchand S R C, Rout C S, Subrahmanyam K S, et al., Graphene-BasedElectrochemical Supercapacitors, J Chem Sci,2008,120(1):9-13.
    [259]Zhang L L, Zhou R, Zhao X S, Graphene-Based Materials as SupercapacitorElectrodes, J. Mater. Chem.,2010,20(29):5983-5992.
    [260]Zhou Y, Hu L, Grüner G, A Method of Printing Carbon Nanotube Thin Films,Appl Phys Lett,2006,88:123109.
    [261]Cai C, Chen J, Direct Electron Transfer and Bioelectrocatalysis of Hemoglobinat a Carbon Nanotube Electrode, Anal Biochem,2004,325(2):285-292.
    [262]Zheng M, Jagota A, Semke E D, et al., DNA-Assisted Dispersion and Separationof Carbon Nanotubes, Nat Mater,2003,2(5):338-342.
    [263]Yang Q H, Wang Q, Gale N, et al., Loosening the DNA Wrapping AroundSingle-Walled Carbon Nanotubes by Increasing the Strand Length, Nanotechnology,2009,20:195603.
    [264]Yang Q H, Gale N, Oton C J, et al., A Raman Probe for Selective Wrapping ofSingle-Walled Carbon Nanotubes by DNA, Nanotechnology,2007,18:405706.
    [265]Xiang D, Su Z, Zhao Z, et al., Preparation of a SWCNT-DNA ModifiedElectrode and its Electrochemical Detection Property, New Carbon Mater,2009,2:183-186.
    [266]Guo M, Lv W, Zhang S, et al., Ultrathin Carbon Nanotube–DNA HybridMembrane Formation by Simple Physical Adsorption Onto a Thin Alumina Substrate,Nanotechnology,2010,21:285601.
    [267]Staii C, Johnson Jr A T, Chen M, et al., DNA-Decorated Carbon Nanotubes forChemical Sensing, Nano Lett,2005,5(9):1774-1778.
    [268]Robinson J T, Perkins F K, Snow E S, et al., Reduced Graphene OxideMolecular Sensors, Nano Lett,2008,8(10):3137-3140.
    [269]Zoski C G, Handbook of Electrochemistry, Elsevier Science,2007.
    [270]Tang Z, Wu H, Cort J R, et al., Constraint of DNA On Functionalized GrapheneImproves its Biostability and Specificity, small,2010,6(11):1205-1209.
    [271]Zhang J, Zhang F, Yang H, et al., Graphene Oxide as a Matrix for EnzymeImmobilization, Langmuir,2010,26(9):6083-6085.
    [272]Zeng Q, Cheng J, Tang L, et al., Self‐Assembled Graphene–EnzymeHierarchical Nanostructures for Electrochemical Biosensing, Adv Funct Mater,2010,20(19):3366-3372.
    [273]Tang H, Chen J, Yao S, et al., Amperometric Glucose Biosensor Based OnAdsorption of Glucose Oxidase at Platinum Nanoparticle-Modified Carbon NanotubeElectrode, Anal Biochem,2004,331(1):89-97.
    [274]Luo X, Killard A J, Smyth M R, Reagentless Glucose Biosensor Based On theDirect Electrochemistry of Glucose Oxidase On Carbon Nanotube‐ModifiedElectrodes, Electroanal,2006,18(11):1131-1134.
    [275]Liu Y, Teng H, Hou H, et al., Nonenzymatic Glucose Sensor Based OnRenewable Electrospun Ni Nanoparticle-Loaded Carbon Nanofiber Paste Electrode,Biosensors and Bioelectronics,2009,24(11):3329-3334.
    [276]Kang X, Mai Z, Zou X, et al., A Sensitive Nonenzymatic Glucose Sensor inAlkaline Media with a Copper Nanocluster/Multiwall Carbon Nanotube-ModifiedGlassy Carbon Electrode, Anal Biochem,2007,363(1):143-150.
    [277]Jiang L C, Zhang W D, A Highly Sensitive Nonenzymatic Glucose SensorBased On Cuo Nanoparticles-Modified Carbon Nanotube Electrode, Biosensors andBioelectronics,2010,25(6):1402-1407.
    [278]Zhang W D, Chen J, Jiang L C, et al., A Highly Sensitive NonenzymaticGlucose Sensor Based On Nio-Modified Multi-Walled Carbon Nanotubes, MicrochimActa,2010,168(3):259-265.
    [279]Mu Y, Jia D, He Y, et al., Nano Nickel Oxide Modified Non-Enzymatic GlucoseSensors with Enhanced Sensitivity through an Electrochemical Process Strategy atHigh Potential, Biosens Bioelectron,2011,26(6):2948-2952.
    [280]Rahman M M, Ahammad A J, Jin J H, et al., A Comprehensive Review ofGlucose Biosensors Based On Nanostructured Metal-Oxides, Sensors,2010,10(5):4855-4886.
    [281]Sun J Y, Huang K J, Fan Y, et al., Glassy Carbon Electrode Modified with aFilm Composed of Ni (Ii), Quercetin and Graphene for Enzyme-Less Sensing ofGlucose, Microchim Acta,2011,:1-6.
    [282]Willander M, Ul Hasan K, Nur O, et al., Recent Progress On Growth and DeviceDevelopment of Zno and Cuo Nanostructures and Graphene Nanosheets, J MaterChem,2012,22(6):2337-2350.
    [283]Baby T T, Aravind S S, Arockiadoss T, et al., Metal Decorated GrapheneNanosheets as Immobilization Matrix for Amperometric Glucose Biosensor, SensorActuat B-Chem,2010,145(1):71-77.
    [284]Wu H, Wang J, Kang X, et al., Glucose Biosensor Based On Immobilization ofGlucose Oxidase in Platinum Nanoparticles/Graphene/Chitosan Nanocomposite Film,Talanta,2009,80(1):403-406.
    [285]Zhou K, Zhu Y, Yang X, et al., Electrocatalytic Oxidation of Glucose by theGlucose Oxidase Immobilized in Graphene‐Au‐Nafion Biocomposite, Electroanal,2010,22(3):259-264.
    [286]Shan C, Yang H, Han D, et al., Graphene/Aunps/Chitosan Nanocomposites Filmfor Glucose Biosensing, Biosens Bioelectron,2010,25(5):1070-1074.
    [287]Mu Y, Jia D, He Y, et al., Nano Nickel Oxide Modified Non-Enzymatic GlucoseSensors with Enhanced Sensitivity through an Electrochemical Process Strategy atHigh Potential, Biosens Bioelectron,2011,26(6):2948-2952.
    [288]Pumera M, Graphene-Based Nanomaterials for Energy Storage, Energy EnvironSci,2011,4(3):668-674.
    [289]Wang X, Tabakman S M, Dai H, Atomic Layer Deposition of Metal Oxides OnPristine and Functionalized Graphene, J Am Chem Soc,2008,130(26):8152-8153.
    [290]Lotya M, Hernandez Y, King P J, et al., Liquid Phase Production of Grapheneby Exfoliation of Graphite in Surfactant/Water Solutions, J Am Chem Soc,2009,131(10):3611-3620.
    [291]Addadi L, Moradian J, Shay E, et al., A Chemical Model for the Cooperation ofSulfates and Carboxylates in Calcite Crystal Nucleation: Relevance toBiomineralization, Proc Natl Acad Sci,1987,84(9):2732.
    [292]Reddy A L M, Shaijumon M M, Gowda S R, et al., Coaxial MnO2/CarbonNanotube Array Electrodes for High-Performance Lithium Batteries, Nano Lett,2009,9(3):1002-1006.
    [293]Chen S, Zhu J, Wang X, From Graphene to Metal Oxide Nanolamellas: APhenomenon of Morphology Transmission, ACS Nano,2010,4(10):6212–6218

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700