用户名: 密码: 验证码:
单/双基ISAR高分辨成像算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
逆合成孔径雷达(ISAR, Inverse Synthetic Aperture Radar)是一种重要的微波探测工具,在国土防御、空间探测等领域发挥着越来越重要的作用。可以全天候、全天时、远距离的获取非合作目标的图像,具有重要的军事和民用价值。随着应用需求的不断发展,使得ISAR成像技术的研究也不断的深入。本论文针对单/双基地ISAR高分辨成像处理中的若干新技术进行了较为详细的研究。
     1.介绍了本文工作的研究背景和意义,描述了ISAR成像的发展历史和研究现状。
     2.介绍了ISAR成像的距离高分辨和方位高分辨的原理,给出了平动补偿和ISAR成像的基本方法,对国内外有关ISAR成像算法方面的研究成果进行了评述。
     3.对低信噪比下线性调频步进信号的带宽合成处理进行了研究。首先给出了线性调频步进信号的形式及目标平动产生相位误差给频域带宽合成带来的问题,然后给出了适用于低信噪比下基于高阶累积量的回波信号带宽相参化处理方法,并给出了成像流程,最后用仿真与实测数据的处理结果进行了本章所提算法有效性的验证。
     4.针对传统超分辨ISAR成像中用能量进行判断距离单元中的散射点数目可能会引起虚假点或散射点漏检的问题,提出了一种统计RELAX超分辨ISAR成像方法,该方法充分将目标所处环境的背景噪声与杂波的统计信息用于散射点的提取中,对所有的距离单元的回波信号进行高斯性能检测,按照期望的虚警概率设置检测门限,确定存在散射点的距离单元,利用统计RELAX超分辨技术进行散射点的提取,最后给出的仿真和实测数据结果验证了本方法的有效性。
     5.针对低信噪比下基于压缩感知CS(Compressive Sensing)的ISAR成像方法性能下降甚至失效的问题,提出了一种改进CS的成像方法,首先分离含目标的距离单元和噪声单元,同时在方位向上用相干投影来提高观测数据的信噪比,下来利用权值迭代重置法进行1-范数的优化以增强真实散射点能量并且抑制噪声。改进CS算法适用于强噪声的环境下的ISAR成像,并可利用较少脉冲数获得高分辨的目标像。实测数据处理验证了该方法可以有效克服强噪声与杂波。同时,仅用有限个较少的回波脉冲就可得到高分辨ISAR图像,验证了该方法在非常有限脉冲条件下的稳健性。
     6.针对双基地雷达中两极区由于双基地角的时变特性,传统的ISAR成像方法无法获取高分辨的目标像,提出了一种Radon变换结合TCDS (Time Chirp-ratedistribution-Search)的超分辨成像算法。首先给出了双基地ISAR的信号模型,分析了两极区双基地角的时变性及对距离包络和方位的影响,就两极区目标运动模型中目标方位高次项相位提出了Radon-TCDS-Relax超分辨成像算法,对每个距离单元进行调频率和调频率变化率搜索,并补偿其所对应的方位高次项相位误差,用Radon-TCDS-RELAX提取散射点,然后进行TCD-RID成像。最后用仿真数据与传统的RID成像方法进行了比较,验证了本文方法的有效性。
     7.针对利用线性调频步进信号(LMSF)超宽带带宽合成进行了研究,首先分析了由于目标运动产生的相位误差给频域带宽合成带来的问题,下来给出了一种基于最小图像熵的超宽带线性调频步进信号脉组内子脉冲间的运动参数精确估计方法,并且分析了超宽带ISAR成像中的MTRC (migration through resolution cell)现象,并给出了解决方法,最后由实验仿真结果验证了本章方法的对于线性调频步进信号超宽带ISAR高分辨成像的有效性。
As an important tool for microwave detection, ISAR (Inverse synthetic apertureradar) plays an increasingly significant role in many fields, e.g. territory defense andspace detection. Due to the capability of obtaining images of non-cooperated targetsunder the condition of all weather, all day and far distance, it has great value for militaryand civil application. The increased development of requirements also leads to furtherstudy on ISAR imaging techniques. This dissertation makes a detailed research on thenew techniques in high-Resolution Imaging processing for Mono-and Bistatic Radar.
     1. This dissertation introduces the research background and significance of thisdissertation, and describes the history and present situation of ISAR imaging.
     2. This dissertation demonstrates the principle of high range and azimuthresolution in ISAR imaging, provides the basic method for translational motioncompensation and ISAR imaging, and reviews the research results about ISAR imagingmethods at home and abroad.
     3. This dissertation makes a study on the frequency synthesis processing oflinearly modulated stepped frequency signals. Firstly, the form of linearly modulatedstepped frequency signals is presented, as well as the problem of frequency bandwidthsynthesis caused by the phase error of target translational motion. Then it illustrates abandwidth coherence processing method of echoed signals with low SNR based on highorder cumulants technique, and also lists the imaging flow. Simulation and the real dataexperiment both demonstrate the effectiveness of the method proposed in this chapter.
     4. This dissertation considers the problem that it may result in artifacts andscatterers omission to judge scatterers number in a range cell with energy in traditionalsuper-resolution ISAR imaging. It proposes a statistical RELAX for super-resolutionISAR imaging. To extract the scatterers, this scheme well exploits the statisticsinformation of background noise and clutter of the environment where the target locates.The echoed signals in all the range cells are detected with Gaussian test and thethreshold is set according to the expected false alarm rate. When the range cellscontaining scattererss is determined, scatterers extraction can be implemented viastatistical RELAX super-resolution techniques. The effectiveness of this method isconfirmed by the simulation and real data experiments results.
     5. This dissertation puts forward a modified CS imaging method, with respect tothe problem of performance reduction or even inefficiency for ISAR imaging based onCompressive sensing (CS) with low SNR. The range cells which contain targets and noise are separated by energy threshold, and the SNR of the measured data is increasedby coherent projection in azimuth. With the iterative weighted norm-1optimization, thetrue scatterers energy can be enhanced while the noise is reduced. Since the modifiedCS algorithm utilizes a few pulses to obtain high-resolution image, it is suitable forISAR imaging in the condition of low SNR. Real data experiments indicate that thisapproach is effective to reduce noise and clutter. High-resolution ISAR images can beacquired with limited few echoed pulses, which also verifies the robustness of thismethod in the situation of quite limited pulses.
     6. This dissertation for the time-variant property of bi-static angles in two poles ofbistatic radar, conventional ISAR imaging methods are incapable to achieve highresolution target images. In this chapter, a super-resolution imaging method based onRadon transform combined with TCDS (Time Chirp-rate distribution-Search) isproposed. First of all, the signal model for bistatic ISAR is presented, and it analyzes thetime-variant property of the bistatic angles in two poles areas, as well as its influence onrange envelope and azimuth. A Radon-TCDS-Relax super-resolution imaging algorithmis brought up for the effect from high-order azimuth terms of target motion model inpole areas. This method attempts to search for the frequency modulation rate and its rateof the high-order azimuth terms in each range cell and its error is compensated.Scatterers extracting and imaging are achieved by Radon-TCDS-RELAX and TCD-RIDrespectively. With the comparison between simulated data and traditional RID imagingmethod, the scheme proposed in this chapter shows great advantage and effectiveness.
     7. This dissertation makes a study on bandwidth synthesis of ultra widebandfrequency modulated signals with LMSF. It firstly analyzes the problem of frequencybandwidth synthesis brought by phase error from the target motion. Then it gives anaccurate estimation method for motion parameters within one burst in ultra widebandstepped frequency synthesis based on image entropy minimization. In addition, MTRCphenomenon in ultra wideband ISAR imaging is analyzed, followed by thecorresponding solution. Simulation experiments confirm that the algorithm presented inthis chapter is effective for high-resolution ultra wideband ISAR imaging.
引文
[1]保铮,邢孟道,王彤,雷达成像技术.北京:电子工业出版社,2005.
    [2]张群,干涉式目标三维成像及其三维运动补偿技术,西安电子科技大学博士论文,2001
    [3]张焕颖,张守宏,李强.调频步进雷达目标抽取算法及系统参数设计.电子学报,2007, Vol.35(6):53-58
    [4]张涛,马长征,张守宏.一种新的ISAR-FS成像运动补偿方法.西安电子科技大学学报.2000. Vol.27(1):66-69.
    [5]李眈,龙腾.步进频率雷达目标去冗余算法.电子学报.2000. Vol.28(6).61-67.
    [6] C. C. Chen, H. C. Andrews. Target-Motion-Induced Radar Imaging. IEEETrans on AES.1980, Vol.16(1).2-14.
    [7] Ian G. Cumming,洪文等译,合成孔径雷达成像算法与实现.北京:电子工业出版社,2007.
    [8]张光义,赵玉杰,相控阵雷达技术.北京:电子工业出版社,2006.
    [9]张直中,微波成像技术.北京:科学出版社,1990.
    [10]刘永坦,雷达成像技术.哈尔滨:哈尔滨工业大学出版社,1999.
    [11]张澄波,综合孔径雷达.北京:科学出版社,1989.
    [12]袁孝康.星载合成孔径雷达导论.北京:国防工业出版社,2003.
    [13]S. A. Hovanessian. Introduction to Synthetic Array and Imaging Radar. ArtechHouse,1980.
    [14]J. Patrick Fitch. Synthetic Aperture Radar. Springer-Verlag New York Inc.,1988.
    [15]J. C. Curlander, R. N. McDonough. Synthetic aperture radar: system and signalprocessing, Jone Wiley&Sons, Inc.,1991.
    [16]M. Soumekh. Fourier Array Imaging. Prentice Hall, Inc.,1994.
    [17]W. G. Carrara, R. S. Goodman, and R. M. Majewski. Spotlight SyntheticAperture Radar: Signal Processing Algorithms. Boston: Artech House,1995.
    [18]R. J. Sullivan. Micowave Radar Imaging and Advanced Concepts. Boston:Artech House,2000.
    [19]M. Soumekh. Synthetic Aperture Radar Signal Processing with MATLABAlgorithms. John Wiley&Sons, Inc.1999.
    [20]R. L. Jordan, B. L. Huneycutt, M. Werner. The SIR-C/X-SAR SyntheticAperture Radar System. Proc. IEEE,1991, Vol.79(6),827-838.
    [21]F. H. Wong, T. S. Yeo. New applications of nonlinear chirp scaling in SAR dataprocessing. IEEE Trans. on GRS,2001, Vol.39(5),946-953.
    [22]G. Fronaro. Trajectory deviations in airborne SAR: analysis and compensation.IEEE Trans. on AES,1999, Vol.35(3),997-1009.
    [23]A. Moreira, Y. Huang. Airborne SAR processing of highly squinted data usinga Chirp Scaling approach with integrated motion compensation. IEEE Trans.on GRS,1994, Vol.32(5),1029-1039.
    [24]C. Elahci, T. Bicknell, R. L. Jordan, and C. Wu. Spaceborne synthetic apertureimaging radars: application, techniques, and technology. Proc. Of IEEE.1982,Vol.70(10),1174-1209.
    [25]C. A. Wiley. Synthetic Aperture radar. IEEE Trans. AES.1985, Vol.21(3),440-443.
    [26]V. C. Chen, L. Hao. Time-Frequency Transforms For Radar Imaging AndSignal Analysis. Artech House, Inc.,2002.
    [27]邢孟道,保铮.基于运动参数估计的SAR成像.电子学报,2001, Vol.29(12),1824-1828.
    [28]黄源宝.机载合成孔径雷达成像算法及运动补偿的研究.西安电子科技大学博士学位论文,2005.
    [29]郑义明. SAR/ISAR运动补偿新方法研究.西安电子科技大学博士学位论文,2000.
    [30]M. J. Pricket, C. C. Chen. Principle of inverse synthetic aperture radar (ISAR)imaging. EASCON record,1980,340-345.
    [31]C. C. Chen, H. C. Andrews. Multifrequency imaging of radar turntable data.IEEE Trans on AES. Jan.1980, Vol.16(1),15-22.
    [32]K. K. Eerland. Application of inverse synthetic aperture radar on aircraft. ProcInternational Conference on Radar. Paris,1984,618-623.
    [33]D.J. Klass. Inverse synthetic aperture technology aids radar identification ofships. AE&ST, Sept.1987.
    [34]C. C. Chen and H. C. Andrews. Target-motion-induced Rader Imaging. IEEETrans. Aerospace and Electronic systems. Jan.1980, Vol.(16),2-14.
    [35]W. M. Brown, R. J. Fredericks. Range-Doppler Imaging with Motion ThroughResolution Cells. IEEE Trans. AES. Jan.1969, Vol.5(1),98-102.
    [36]R. Goodman, W, Nagy, Wilelm. A high fidelity ground to air imaging radarsystem. IEEE National Radar Conference Record.1994,29-34.
    [37]D. A. Ausherman, A. Kozma, J.L. Walker, H.M. et al.. Developments in radarimaging. IEEE Trans. AES. July.1984. Vol.20(4).363-399.
    [38]W. M. Brown, R. J. Fredericks. Range-Doppler Imaging with Motion ThroughResolution Cells. IEEE Trans. AES. Jan.1969, Vol.5(1).98-102.
    [39]D. R. Wehner. High-Resolution Radar.2nd Edition, Artech House, Inc.1995.
    [40]M. Soumekh, S. Nugroho. ISAR imaging of an airborne DC-9. Proc ICASSP.1993.465-468.
    [41]R. Goodman, W, Nagy, Wilelm. A high fidelity ground to air imaging radarsystem. IEEE National Radar Conference Record.1994.29-34.
    [42]D.J. Klass. Inverse synthetic aperture technology aids radar identification ofships. AE&ST, Sept.1987.
    [43]Voles R. Resolving revolutions: imaging and mapping by modern radar., IEE-FRadar and Signal Processing Proc, Feb.1993, Vol.140(1).1-11.
    [44]K. K. Eerland. Application of inverse synthetic aperture radar on aircraft. ProcInternational Conference on Radar. Paris,1984.618-623.
    [45]V. C. Chen, S. Qian. Joint Time-Frequency Transform for RadarRange-Doppler Imaging. IEEE Trans. AES.1998, Vol.34(2).486-499.
    [46]V. C. Chen. Adaptive Time-Frequency ISAR Processing. SPIE1996,VOL.2845.133-140.
    [47]V. C. Chen. Analysis of radar micro-Doppler with time-frequency transform.Proc.10th IEEE Workshop on Statistical signal and array processing. PoconoManor, PA, USA, Aug.2000.463-466.
    [48]J. Li and H. Ling. Application of adaptive chirplet representation for ISARfeature extraction from targets with rotating parts. IEE Proc.-Radar SonarNavig. August2003, Vol.150(4).284-291.
    [49]J. F. Li. Model-Based Signal Processing for Radar Imaging of Targets withComplex Motions. The University of Texas at Austin August2002Dissertation.
    [50]V. C. Chen, F. Li. S. Ho. et al.. Micro-doppler effect in radar-phenomenon,model and simulation study. IEEE Trans on AES.2006, Vol.42(1).2-21.
    [51]R.K. Avent, J.D. Shelton, and P. Brown. The ALCOR C-Band Imaging Radar.IEEE Antennas Propag. Mag.1996, Vol.38(3),16–27.
    [52]R. Barvainis, J.A. Ball, R.P. Ingalls, and J.E. Salah. The Haystack Observatoryλ3-mm Upgrade. Publ.Astron. Soc. Pac.1993,105(693),1334–1341.
    [53]史仁杰,雷达反导与林肯实验室.系统工程与电子技术.2007, Vol.29(11).1781-1799.
    [54]Technology in Support of National Security. MIT Lincoln Laboratory Report2010,12-13.
    [55]G Stansberrya, M Matney, Debris families observed by the haystack orbitaldebris radar, Acta Astronautica. July1997,(1), Pages53-56.
    [56]R. Barvainis, J.A. Ball, R.P. Ingalls, and J.E. Salah. The Haystack Observatoryλ3-mm Upgrade. Publ.Astron. Soc. Pac.1993,105(693),1334–1341.
    [57]http://www.esa.int/esapub/bulletin/bullet109/chapter16_bul109.pdf
    [58] http://www.fas.org/spp/military/program/track/shuttle_movie.gif.
    [59]http://www.dailymail.co.uk/news/article-1194368/U-S-beefs-Hawaiis-missile-defence-amid-warnings-North-Korea-rocket-Pacific-islands.html.
    [60]J. Palmer, J, Homer, etc al. ISAR imaging using an emulated multistatic radarsystem. IEEE Trans. on AES,2005, Vol.41(4),1464-1472.
    [61]William P. Delaney and William W. Ward. Radar Development at LincolnLaboratory: An Overview of the First Fifty Years. Lincoln Laboratory Journal.2000, Vol.12(2),147-166.
    [62]http://www.thalesgroup.com.
    [63]保铮,王根原,罗琳.逆合成孔径雷达的距离-瞬时多普勒成像方法.电子学报.1998,Vol.26(12),79-83.
    [64]王根原,保铮.一种基于自适应Chirplet分解的逆合成孔径雷达成像方法.电子学报.1999, Vol.27(3),29-31.
    [65]M. Xing, R. Wu and Z. Bao. High resolution ISAR imaging of high speedmoving targets. IEE Proc.-Radar Sonar Navig. April2005, Vol.152(2),58-68.
    [66]Xueru Bai, Mengdao Xing, Feng Zhou, Guangyue Lu, and Zheng Bao.Imaging of Micromotion Targets With Rotating Parts Based onEmpirical-Mode Decomposition. IEEE Trans. on GRS. Nov.2008, Vol.46(11),3514-3523.
    [67]Qi Wang, Mengdao Xing, Guangyue Lu, Zheng Bao. High-Resolution Three-Dimensional Radar Imaging for Rapidly Spinning Targets. IEEE Trans. onGRS. January2008, Vol.46(1),22-30.
    [68]Bai Xue-ru, Xing Meng-dao, Zhou Feng, Bao Zheng. High-Resolution Three-Dimensional Imaging of Spinning Space Debris. IEEE Trans. on GRS.2009,Vol.47(7),2352-2362.
    [69]Lei Zhang, Mengdao Xing, Cheng-Wei Qiu, Jun Li, and Zheng Bao. AchievingHigher Resolution ISAR Imaging With Limited Pulses via CompressedSampling. IEEE GRS Letters. July2009, Vol.6(3),567-571.
    [70]Xiaolei Lv, Mengdao Xing, Chunru Wan, Shouhong Zhang. ISAR Imaging ofManeuvering Targets Based on the Range Centroid Doppler Technique. IEEETrans. on IP. Jan.2010, Vol.19(1),141-153.
    [71]Zhao-Zhao, G., Ya-Chao, L., Meng-Dao, X., Genyuan, W., Shou-Hong, Z.,Zheng, B.. ISAR imaging of manoeuvring targets with the range instantaneouschirp rate technique. IET Radar, Sonar&Navigation. Oct.2009, Vol.3(5),449–460.
    [72]Qi Wang, Mengdao Xing, Guangyue Lu, Zheng Bao. SRMF-CLEAN ImagingAlgorithm for Space Debris. IEEE Trans. on AP. Dec.2007, Vol.55(12),3524-3533.
    [73]Mengdao Xing, Qi Wang, Genyuan Wang, Zheng Bao. A Match Filter Bank
    Based3D Imaging Algorithm for Targets with High-Speed Spinning. IEEE
    Trans. on GRS.2009, Vol.47(7),2106-2113.
    [1] C. R. Englund, A. B. Crawford, and W. W. Mumford. Some results of a Studyof Ultra-short-wave Transmission Phenomena. Proc. IRE. March1933, vol.21,475-492.
    [2] O. G. Villard. The Ionospheric Sounder and Its Place in the History of RadioScience. Radio Science. November1976, vol.11,847-860.
    [3] G. V. Trunk. Detection Results for Scanning Radars Employing FeedbackIntegration. IEEE Trans. July1970, vol. AES-6,522-527.
    [4] Williams R., Westerkamp J., Gross D. et al.. Automatic Target Recognition ofTime Critical Moving Targets1D High Range Resolution (HRR) Radar. IEEEAES System Magazine.2000,15(4).37-43.
    [5] Miller M.I., Grenander U., OSullivan J.A. et al.. Automatic target recognitionorganized via jump-diffusion algorithms. IEEE Trans. A.P..1997, Vol.6(1).157-173.
    [6] Jacobs S.P.. Automatic target recognition using high-resolution radar rangeprofiles. Washington University.1999.
    [7]保铮,邢孟道,王彤.雷达成像技术.北京:电子工业出版社,2005.
    [8]刘永坦.雷达成像技术.哈尔滨:哈尔滨工业大学出版社,1999.
    [9]张直中.微波成像技术.北京:科学出版社,1990.
    [10] C. C. Chen, H. C. Andrews. Target-Motion-Induced Radar Imaging. IEEETrans on AES.1980, Vol.16(1).2-14.
    [11] D. A. Ausherman, A. Kozma, J. L. Walker, et al.. Developments in RadarImaging. IEEE Trans on AES. July1984, Vol.20(4).363-399.
    [12] W. M. Brown, R. J. Fredericks. Range-Doppler Imaging with Motion ThroughResolution Cells. IEEE Trans on AES. Jan.1969, Vol.5(1).98-102.
    [13] M. Soumekh. Fourier Array Imaging. Englewood Cliffs, NJ: Prentice-Hall.1994.
    [14] R. P. Perry, R. C. Dipietro, and R. L. Fante. SAR imaging of moving targets.IEEE Trans on AES. Jan.1999, Vol.35.188–199.
    [15] M. Xing, Z. Bao. Imaging algorithm for steadily flying and maneuvering bigtargets. Proc.SPIE.4382.182-190.
    [16]陈文驰,保铮,邢孟道.基于Keystone变换的低信噪比ISAR成像.西电学报.2003, Vol.30(2).155-159.
    [17] C. Chen and H. C. Andrews. Target-motion-induced Radar Imaging. IEEETrans. on Aerospace and Electronic systems. Jan.1980, Vol.16.2-14.
    [18] G. Y. Delise, H. Wu. Moving target imaging and trajectory computation usingISAR. IEEE Trans on AES,1994, Vol.30(3).887~889.
    [19]王琨,罗琳. ISAR成像中包络对齐的幅度相关全局最优法.电子科学学刊.1998, Vol.20(3).369-373.
    [20]王根原,保铮.逆合成孔径雷达运动补偿中包络对齐的新方法.电子学报.1998, Vol.26(6).5-8.
    [21]邢孟道,保铮.一种逆合成孔径雷达成像包络对齐的新方法.西安电子科技大学学报.2000, Vol.27(1).93-96.
    [22] G. Wang, Z. Bao. The Minimum Entropy Critertion of Range Alignment inISAR Motion Compeasation. Proceeding Conference Radar’97. Edinburgh UK,October1997.14-16.
    [23] J. Wang, D. Kasilingam. Global Range Alignment for ISAR. IEEE trans onAES. Jan2003, Vol.39(1).351-357.
    [24]邬小青,朱兆达.同时运动补偿和雷达成像,电子学报,1991, Vol.19(1):123-125.
    [25] K. K. Eerland, Application of ISAR on aircraft, IEEE Int. Radar Conf., Paris,May1984,618-623.
    [26] B. D. Steinberg, Microwave imaging of aircraft, Proc. IEEE.1988, Vol.76(12):1578-1592.
    [27] B. D. Steinberg,“Radar imaging from a distorted array: the radio cameraalgorithm and experiments”, IEEE Trans. on AP,1981, Vol.29(5):740-748.
    [28]保铮,邓文彪,杨军, ISAR成像处理中的一种运动补偿方法,电子学报,1992, Vol.20(6):1-6。
    [29] M. J. Pricket, C. C. Chen,“Principle of inverse synthetic aperture radar(ISAR)imaging”, EASCON record,1980, pp:340-345.
    [30] R. Xu, Z. Cao,Y. Liu,“A new method of motion compensation for ISAR”,Proc. IEEE Int. Radar Conf., Paris,1990, pp:234-237.
    [31]毛引芳,吴一戎,以散射质心为基准的ISAR成像的运动补偿,电子科学学刊,1992, Vol.14(5):532-536。
    [32] M. Martorella, F. Berizzi, B. Haywood,“Contrast maximization basedtechnique for2-D ISAR autofocusing”, IEE Proceedings on Radar, Sonar andNavigation,2005, Vol.152(4):253-262.
    [33] D. E. Wahl, P. H. Eichel, D. C. Ghiglia,“Phase gradient autofocus-A robusttool for high resolution SAR phase correction”, IEEE Trans. on AES,1994,Vol.30(3):827-835.
    [34] L. Xi, L. Guosui, J. Ni,“Autofocusing of ISAR Imaging based on EntropyMinimization”, IEEE Trans. on AES,1999, Vol.35(4):1240-1252.
    [35] Y. Wang, Yi C. Jiang. ISAR Imaging of Ship Target with ComplexMotionBased on New Approach of Parameters Estimation for Polynomial PhaseSignal. EURASIP Journal on Advances in Signal Processing, Volume2011,Article ID425203,9pages
    [36]徐刚,杨磊,等,一种加权最小熵的ISAR自聚焦算法. Aug,2011, Vol.33(8),1809–1815.
    [37] C. E. Mancill. Enhancement of radar imagery by maximum entropyprocessing. Proceedings of the21st annual meeting of Human Factors Society,Santa, Monica, CA,1977.241-243.
    [38] S. L. Borison, S. B. Bowling, and K. M. Cuomo. Super-resolution methodsfor wideband radar. Lincoln Laboratory Journal.1992, Vol.5(3).441-461.
    [39] R. M. Nuthalapati. High resolution reconstruction of SAR image. IEEE Transon Aerospace and Electronic System. April1992, Vol.8(2).462-472.
    [40] I. J. Gupta. High-resolution radar imaging using2-D linear prediction. IEEETrans on Antennas and Propagation. Jan.1994, Vo.42(1).31-37.
    [41] J. W. Odendaal, E. Barnard, and C. W. I. Pistorius. Two-dimensionalsuperresolution radar imaging using the MUSIC algorithm. IEEE Trans onAntennas and Propagation. Oct.1994, Vol.42(10).1386-1391.
    [42] S. Barbarossa, L. Marsili, and G. Mungari. SAR super-resolution imaging bysignal subspace projection techniques. Proceedings of EUSAR'96,Konigswinter, Germany.1996.267-270.
    [43] Y. B. Hua. High resolution imaging of continuously moving target usingstepped frequency radar. Signal Processing.1994, Vol.35(1).33-40.
    [44] S. R. DeGraaf. SAR imaging via modern2-D spectral estimation methods.SPIE Proceedings on Optical Engineering in Aerospace Sensing, Orlando, FL,April,1994,2230.36-49.
    [45] J. Li and P. Stoica. An adaptive filtering approach to spectral estimation andSAR imaging. IEEE Trans on Signal Processing.1996, Vol.44(6).1469-1484.
    [46] J. Li, P. Stoica. Efficient mixed-spectrum estimation with applications totarget feature extraction. IEEE Trans on Signal Processing.1996, Vol.44(2).281-295.
    [47] M. W. Tu, I. J. Gupta, and E. K. Walton. Application of maximum likelihoodestimation to radar imaging. IEEE Trans on Antennas and Propagation. Jan,1997, Vol.45(1).20-27.
    [48] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad. Orthogonal matching pursuit:Recursive function approximation with applications to wavelet decompositionProc.27th Annu. Asilomar Conf. Signals Syst., Comput.. Nov.1993,40–44.
    [49] D. Needell and J. A. Tropp. CoSaMP: Iterative signal recovery fromincomplete and inaccurate samples. Appl. Comput. Harmon. Anal.,2008, vol.26,301–321.
    [50] M. R. McClure and L. Carin. Matching pursuits with a wave-based dictionary.IEEE Trans. SP.1997, vol.45,2912–2927.
    [51] J.L.Walker,"Range-Doppler of rotating objects", IEEE Trans. On AES, Jan1980, Vol.16(1):23-52
    [52] D. A. Ausherman, A. Kozma, J.L. Walker, H.M. et al.. Developments inradar imaging. IEEE Trans. AES. July.1984. Vol.20(4).363-399.
    [53] A.W.Doerry,"Synthetic aperture radar processing with polar formattersubapertures",1994IEEE Conference on Signals, Systems and Computer,Vol.2, Oct.1994,.1210-1215.
    [54] D.L.Mensa, S.Halevy, G.Wade, Coherent Doppler tomography formicrowave imaging, Proc. IEEE,71(2), Aug.1983,.254-261.
    [55] D.C.Muson, J.D.Jr.O'Brien, W.K.Jenkins, A tomographic formulation ofspotlight mode synthetic aperature radar, Proc. IEEE, Vol.71(8).1983,917-925.
    [56] WALKER J. L.. Range-Doppler imaging of rotating objects. IEEE Trans.AES.1980, Vol.16(1),670-677.
    [57] Qi Wang, Mengdao Xing, Guangyue Lu, Zheng Bao. SRMF-CLEANImaging Algorithm for Space Debris. IEEE Trans. on AP. Dec.2007, Vol.55(12),3524-3533.
    [58] Qi Wang, Mengdao Xing, Guangyue Lu, Zheng Bao. High-ResolutionThree-Dimensional Radar Imaging for Rapidly Spinning Targets. IEEE Trans.on GRS. January2008, Vol.46(1),22-30.
    [59] Bai Xue-ru, Xing Meng-dao, Zhou Feng, Bao Zheng. High-ResolutionThree-Dimensional Imaging of Spinning Space Debris. IEEE Trans. on GRS.2009, Vol.47(7),2352-2362.
    [60] D. Needell and J. A. Tropp. CoSaMP: Iterative signal recovery fromincomplete and inaccurate samples. Appl. Comput. Harmon. Anal.,2008, vol.26,301–321.
    [61] M. R. McClure and L. Carin. Matching pursuits with a wave-based dictionary.IEEE Trans. SP.1997, vol.45,2912–2927.
    [62] J.L.Walker,"Range-Doppler of rotating objects", IEEE Trans. On AES, Jan1980, Vol.16(1):23-52
    [63] D. A. Ausherman, A. Kozma, J.L. Walker, H.M. et al.. Developments inradar imaging. IEEE Trans. AES. July.1984. Vol.20(4).363-399.
    [64] A.W.Doerry,"Synthetic aperture radar processing with polar formattersubapertures",1994IEEE Conference on Signals, Systems and Computer,Vol.2, Oct.1994,.1210-1215.
    [65] D.L.Mensa, S.Halevy, G.Wade, Coherent Doppler tomography formicrowave imaging, Proc. IEEE,71(2), Aug.1983,.254-261.
    [66] D.C.Muson, J.D.Jr.O'Brien, W.K.Jenkins, A tomographic formulation ofspotlight mode synthetic aperature radar, Proc. IEEE, Vol.71(8).1983,917-925.
    [67] L. Du and G. Su. Adaptive Inverse Synthetic Aperture Radar Imaging forNonuniformly Moving Targets. IEEE GRS letter. July2005, Vol.2(3),247-249.
    [68] G. Wang, Z. Bao. Inverse synthetic aperture radar imaging ofmaneuveringtargets based on chirplet decomposition. Optical Engineering.1999, Vol.38(9).1534-1541.
    [69]王勇,姜义成.一种新的信号分解算法及其在机动目标ISAR成像中的应用.电子学报. Mar2007, Vol.35(3).445-449.
    [70]邹虹,保铮.一种有效的基于Chirplet自适应信号分解算法.电子学报.2001, Vol.29(4).515-517.
    [71]邢孟道,保铮,冯大政.基于调幅-线性调频信号参数估计的机动目标成像方法.现代雷达.2000, Vol.22(6).44–48.
    [72]郑义明,邢孟道,保铮.基于多分量多项式信号参数估计的机动目标成像.西安电子科技大学学报.2000, Vol.27(4).471–475.
    [73]王勇,成萍,姜义成等.变加速旋转目标ISAR成像距离-瞬时多普勒法.现代雷达. May2005, Vol.27(5).25-27.
    [74]马长征,雷达目标三维成像技术,西安电子科技大学博士论文,1999.
    [75]李强,单脉冲雷达目标三维成像与识别研究,西安电子科技大学博士论文,2007.
    [76] Genyuan Wang, Xiang-Gen Xia, Victor C.Chen, Three-Dimensional ISARImaging of Maneuvering Targets Using Three Receivers, IEEE Trans. Imag.Proc., Mar.2001, Vol.10(3),436-447
    [77]张群,马长征,张涛,张守宏,干涉式逆合成孔径雷达三维成像技术研究,电子与信息学报, Sept.2001, Vol.23(9),890-898.
    [78] Qun Zhang, Tat Soon Yeo, Gan Du, Shouhong Zhang, Estimation of theThree-Dimensional Motion Parameters in Interferometric ISAR Imaging, IEEETrans. Geosc. Remote Sensing, Feb,2004, Vol.42(2),292-300
    [79]罗斌凤,张群,袁涛,张守宏,InISAR三维成像中的ISAR像失配准分析及其补偿方法,西安电子科技大学学报, Dec.2003, Vol.30(6),739-743.
    [80]李军,刘亚波,邢孟道,李亚超,基于窄带步进频率的旋转目标三维ISAR成像,电子信息学报,2010,Vol.32(7),1674-1678.
    [1] Wehner D R. High Resolution Radar.2nd Edition, Artech House,1995:3-5.
    [2]马长征,雷达目标三维成像技术,西安电子科技大学博士论文,1999.
    [3] Chen H, Liu Y, Li X. Mathematics of synthesizing range profile. IEEE Trans.Signal Processing,2007, Vol.55(5):1950-1955
    [4]毛二可,龙腾,韩月秋.频率步进雷达数字信号处理.航空学报.2001.22(Sup.): S16-S25.
    [5] R. T. Lord and M. R. Inggs. High Resolution SAR Processing UsingStepped-frequencies. Proc. IEEE Geoscience Remote Sensing Symposium1997,490-492.
    [6] P.Berens. SAR with Ultra-High Range Resolution Using Synthetic Bandwidth,IEEE Geoscience Remote Sensing Symposium1999, IGARSS’99Proceedings,1752-1754.
    [7] Andrew J. Wilkinson, Richard T. Lord and Michael R. Inggs.Stepped-Frequency Processing by Reconstruction of Target ReflectivitySpectrum. IEEE Communications and Signal Processing,1998. COMSIG '98.Proceedings of the1998South African Symposium on,101-104.
    [8] Nel, W. Tait, J. Lord, R. Wilkinson, A. The use of a frequency domain steppedfrequency technique to obtain high range resolution on the CSIR X band SARsystem. IEEE AFRICON.6th,2002,327-332.
    [9]张焕颖,张守宏,李强.调频步进雷达目标抽取算法及系统参数设计.电子学报,2007, Vol.35(6):53-58.
    [10]李眈,龙腾.步进频率雷达目标去冗余算法.电子学报.2000. Vol.28(6):61-67.1950-1955.
    [11]高昭昭.高分辨ISAR成像新技术研究.西安电子科技大学博士论文,2009.
    [12]罗贤全,于久恩,何强,等.基于参数估计的步进频ISAR成像运动补偿方法.系统工程与电子技术.2007, Vol.29(9).1464-1468.
    [13]刘峥,张守宏.跳频脉冲ISAR成像运动补偿的最小波形熵方法.西安电子科技大学学报.2000. Vol.27(6):691-695.
    [14]张涛,马长征,张守宏.一种新的ISAR-FS成像运动补偿方法.西安电子科技大学学报.2000. Vol.27(1):66-69.
    [15]刘峥,张守宏.步进频率雷达目标的运动参数估计,电子学报,2000, Vol.28(3):43-45.
    [16] Z Gao, M Xing, S Zhang, et al. Experimental results on ISAR imaging withstepped frequency waveforms[J]. IET Electronics Letters,2009,45(1):77-79.
    [17]Wang, K., Luo, L., and Bao, Z., Global optimum method for motioncompensation in ISAR imagery. Proc. Radar Conference,14-16Oct.1997,Edinburgh, UK,.233-235.
    [18]Ye W, Yeo T S, Bao Z. Weighted Least-Squares Estimation of Phase Errors forSAR/ISAR Autofocus. IEEE Trans. On Geoscience and Remote Sensing.1999, Vol.37(5),2487–2494.
    [19] Bao Z, Wang G Y, Luo L. Inverse Synthetic Aperture Radar Imaging ofManeuvering Targets. Optical Engineering,1998, Vol.37(5),1582-1588.
    [20] R. Xu, Z. Cao,Y. Liu,“A new method of motion compensation for ISAR”,Proc. IEEE Int. Radar Conf., Paris,1990, pp:234-237.
    [21]毛引芳,吴一戎,“以散射质心为基准的ISAR成像的运动补偿”,电子科学学刊,1992,14(5):532-536。
    [22] Z She, Y Liu. Autofocus for ISAR imaging using higher order statistics[J].IEEE Geoscience Remote Sensing Letters,2008,5(2),299-302.
    [23]J. M. Mendel, Tutorial on higher-order statistics (spectra) in signal processingand system theory: Theoretical results and some applications, Proc. IEEE,Mar.1991.79(3),278–305,
    [24]张贤达.时间序列分析-----高阶统计量方法,清华大学出版社.1996年。
    [25]唐建红,司锡才,彭巧乐.快速四阶累积量旋转不变子空间算法.西安交通大学学报,2009,Vol.43(6),88-92.
    [26]邢孟道,保铮,冯大政.基于调幅-线性调频信号参数估计的机动目标成像方法.现代雷达.2000, Vol.22(6),44-48.
    [27]邢孟道,保铮,“外场实测数据的舰船目标ISAR成像”,电子与信息学报,2001,23(12):1271-1277。
    [28]郑义明,邢孟道,保铮.基于多分量多项式信号参数估计的机动目标成像.西安电子科技大学学报.2000, Vol.27(4).471–475.
    [29]Ian G. Cumming,洪文等译,合成孔径雷达成像算法与实现.北京:电子工业出版社,2007.
    [30]苏军海.宽窄带雷达目标检测与成像研究.西安电子科技大学博士论文,2009.
    [31]L. Xi, L. Guosui, J. Ni. Autofocusing of ISAR Imaging based on EntropyMinimization. IEEE Trans On AES. Oct1999, Vol.35(4),1240-1252.
    [32]G. Wang, Z. Bao. The Minimum Entropy Critertion of Range Alignment inISAR Motion Compeasation. Proceeding Conference Radar’97. EdinburghUK, October1997,14-16.
    [33]F. Berizzi and G. Cosini. Autofocus of inverse synthetic aperture radar imagesusing contrast optimization[J]. IEEE Trans. on Aerosp. Electro. Syst.1996,32(3):1185-1191.
    [34]D Y Zhu, L Wang,et al. Robust ISAR Range Alignment via Minimizing theEntropy of the Average Range Profile. IEEE GRS letter. April2009,Vol.6(2).204-208.
    [35]H R Jeong, H T Kim, et.al. Application of Subarray Averaging and EntropyMinimization Algorithm to Stepped-Frequency ISAR Autofocus. IEEE Trans.on Antennas and Propagation,2008,56(4),1144-1154.
    [36]丁玉美,高西全.数字信号处理(第二版),西安电子科技大学出版社,2000.
    [1] C. C. Chen, H. C. Andrews. Target-Motion-Induced Radar Imaging. IEEE Transon AES.1980, Vol.16(1).2-14.
    [2] Lu, G. Y., and Bao Z. Compensation of scattererser migration through resolutioncell in inverse synthetic aperture radar imaging, IEE Proc., Radar, Sonar Navig.,2000, Vol.147(2),80–85.
    [3] D. A. Ausherman, A. Kozma, J. L. Walker, et al.. Developments in Radar Imaging.IEEE Trans on AES. July1984, Vol.20(4).363-399.
    [4] E. F. Knott, et.al. Radar Cross Section. Dedham: Artech House.1985.
    [5]保铮,孙长印,邢孟道.机动目标的逆合成孔径雷达成像原理与算法.电子学报.2000, Vol.28(6).24-28.
    [6]李亚超,邢孟道,张龙,保铮.一种高机动目标的宽带信号检测、参数估计及成像方法.中国科学信息科学,2009,39(8),875–885.
    [7]张贤达,保铮.非平稳信号分析与处理.北京:国防工业出版社,1998.
    [8] V. C. Chen. Analysis of radar micro-Doppler with time-frequency transform. Proc.10th IEEE Workshop on Statistical signal and array processing. Pocono Manor, PA,USA, Aug.2000,463-466.
    [9] V. C. Chen, S. Qian. Joint Time-Frequency Transform for Radar Range-DopplerImaging. IEEE Trans. AES.1998, Vol.34(2),486-499.
    [10] Z. Bao, G. Wang, L. Luo. Inverse Synthetic Aperture Radar Imaging ofManeuvering Targets. Optical Engineering.1998, Vol.37(5),1582-1588.
    [11]卢光跃,保铮.基于瞬时谱估计的ISAR距离瞬时多普勒成像算法.西安电子科技大学学报.1998, Vol.25(5).593-597.
    [12] L. Du and G. Su. Adaptive Inverse Synthetic Aperture Radar Imaging forNonuniformly Moving Targets. IEEE GRS letter. July2005, Vol.2(3),247-249.
    [13]孙晓兵,保铮.分数阶Fourier变换及其应用.电子学报,1996, Vol.24(12):60-65.
    [14] G. Wang, Z. Bao. Inverse synthetic aperture radar imaging of maneuvering targetsbased on chirplet decomposition. Optical Engineering.1999, Vol.38.
    [15]孙长印,保铮.雷达成像的近似二维模型及其超分辨算法.电子学报.1999,27(12).84-87.
    [16]邢孟道,保铮,冯大政.基于瞬时幅度和调频率估计的机动目标成像方法.西安电子科技大学学报,2001.Vol.28(1),22-26.
    [17] W. Yang, C. Jainwen, L. Zhong, Research on radar imaging of maneuvering targets.in Proc. Int. Radar Conf.,2003,.42–44.
    [18] Giannakis, G. B., and Tsatsanis, M. K.(1994) Time-domain tests for Gaussianityand time-reversibility. IEEE Transactions on Signal Processing, Dec,1994,42(12)3460—3472.
    [19] J. B. Billingsley, A. Farina, F. Gini, M. V. Greco, and L. Verrazzani,“Statisticalanalyses of measured radar ground clutter data,” IEEE Trans.Aerosp. Electron.Syst., Apr.1999.35(2),579–593,
    [20]李亚超,苏军海等.利用时间调频率分布特性的复杂运动目标ISAR成像研究.西安电子科技大学学报,2008,35(1),1-7.
    [21]邢孟道,保铮,一种逆合成孔径雷达成像包络对齐的新方法,西安电子科技大学学报,2000.Vol.27(1),93-97.
    [22]邢孟道,保铮,郑义明,用整体最优准则实现ISAR成像的包络对齐,电子学报.2001,29(12).1807-1811.
    [23] Jian Li, Dunming Zheng, Angle and Waveform Estimation Via RELAX[J]. IEEETrans on AES,1997,33(3),1077-1086.
    [24] Sun Changyin and Bao Zheng, Super-resolution algorithm for instantaneous ISARimaging. Electronics letters Feb,2000.36(3),253-255.
    [25] Marco Martorella, Nicola Acito, and Fabrizio Berizzi, Statistical CLEANTechnique for ISAR Imaging, IEEE Trans on GRS,2007,45(11).3552-3560.
    [26]张贤达.时间序列分析-----高阶统计量方法,清华大学出版社.1996年。
    [27] Giannakis, G. B., and Tsatsanis, Time-domain tests for Gaussianity andtime-reversibility. IEEE Transactions on Signal Processing, Dec.1994.42,(12),3460—3472.
    [28] J. M. Mendel, Tutorial on higher-order statistics (spectra) in signal processing andsystem theory: Theoretical results and some applications, Proc. IEEE, Mar.1991.79(3),278–305.
    [29] Z She, Y Liu. Autofocus for ISAR imaging using higher order statistics. IEEEGeoscience Remote Sensing Letters,2008,5(2),299-302.
    [1] Li H J, Farhat N, Shen Y. A New Iterative Algorithm for Extrapolation of Data Available inMultiple Restricted Regions with Application to Radar Imaging. IEEE Trans on AP,1987,Vol.35(5),581–588.
    [2] S. D. Cabrera, and T. W. Parks. Extrapolation and Spectral Estimation with IterativeWeighted Norm Modification. IEEE Transaction On Signal Processing. April1991, Vol.39(4).842-851.
    [3] Potter L C, Arun K S. Energy Concentration in Band-Limited Extrapolation. IEEE Trans.on Acoustics Speech and Signal Processing,1989, Vol.37(7),1027–1041.
    [4] A. E. Brito, S. H. Chan,and S. D. Cabrera. SAR Image Formation Using2-D Re-WeightedMinimun Norm. SPIE Conference on Algorithms for Synthetic Aperture Radar Imagery6Oriando,Florida. April1999,78-91.
    [5] Cuomo K M, Piou J E, Mayhan J T. Ultrawide-band coherent processing. IEEE Trans.Antennas Propag.,1999, Vol.47(6),1094–1107.
    [6] Qi Wang, Renbiao Wu, Mengdao Xing, Zheng Bao. A New Algorithm for SparseAperture Interpolation. IEEE GRS Letter.2007, Vol.4(3),480-484.
    [7] David L. Donoho. Compressed Sensing. IEEE Trans. on Info. Theory,2006, Vol.52(4),1289–1306.
    [8] Chenwei Zhu. Stable Recovery of Sparse Signals Via Regularized Minimization. IEEETrans. on Info. Theory,2008, Vol.54(7),3364–3367.
    [9] Holger Rauhut, Karin Schnass, Pierre Vandergheynst. Compressed Sensing andRedundant Dictionaries. IEEE Trans. on Info. Theory.2008, Vol.54(5),2210-2219.
    [10] Jarvis Haupt, Robert Nowak. Signal Reconstruction from Noisy Random Projections.IEEE Trans. on Info. Theory.2006, Vol.52(9),4036-4048.
    [11] Lei Zhang, Mengdao Xing, Chenwei Qiu. Achieving Higher Resolution ISAR ImagingWith Limited Pulses via Compressed sampling. IEEE GRS Letter,2009, Vol.6(3),567–571.
    [12] Q. Zhang, T. S. Yeo,“Estimation of Three-Dimensional Motion Parameters inInterferometric ISAR Imaging,” IEEE Trans. Geosci Remote Sens., vol.42,292-300,Feb.2004.
    [13] W.Ye, T. S. Yeo, and Z. Bao,“Weighted Least-Squares estimation of phase errors forSAR/ISAR autofocus,” IEEE Trans. on Geosic and Remote Sens., Sep,1999.37(5)2487-2494.
    [14] T. Thayaparan, L. Stankovic, C. Wernik, and M. Dakovic,“Real-Time MotionCompensation, Image Formation and Image Enhancement of Moving Targets in ISAR andSAR Using S-method Based Approach”, IET Signal Processing,2008.2(3).247-264.
    [15] Y. Wang, H. Ling, V. C. Chen:"ISAR motion compensation via adaptive jointtime-frequency techniques", IEEE Trans. Aerosp. Electron. Syst., April,1998.34(2),670-677,
    [16] J. Wang and D. Kasilingam,“Global range alignment for ISAR,” IEEE Trans. Aerosp.Electron. Syst., Jan.2003.39(1),351–357.
    [17] M.Xing, R.Wu, and J.Lan. Migration Through Resolution Cell Compensation in ISARImaging. IEEE GRS letter. April2004, Vol.1(2).141-144.
    [18] M. Xing, R. Wu, J. Lan, and Z. Bao,“High resolution ISAR imaging of high speedmoving targets,” IEE Proc.-Radar Sonar Navig, April,2005.152,(2),58-67.
    [19] E. Candès, J. Romberg, and T. Tao, Robust uncertainty principles: Exact signalreconstruction from highly incomplete frequency information, IEEE Trans. Inf. Theory,Feb.2006.52(2),489–509.
    [20] Thomas Blumensath and Mike E. Davies. Stagewise weak gradient pursuits. Part I:Fundamentals and numerical studies. IEEE Transactions on Signal Processing, Theoreticalproperties. http://www.see.ed.ac.uk/~tblumens/papers/BDSWCGP_II.pdf.2008.
    [21] Thomas Blumensath and Mike E. Davies. Stagewise weak gradient pursuits. Part II:Theoretical properties. IEEE Transactions on Signal Processing, Jun.2008,56(6), pp.2370–2382.
    [22] M. Grant, S. Boyd, and Y. Ye, in CVX: Matlab Software for Disciplined, ConvexProgramming.
    [23] M. Grant, S. Boyd, and Y. Ye, cvx: Matlab software for disciplined convex programming,[online]. Available: http://www.stanford.edu/~boyd/cvx/.
    [24] E. Candès, J. Romberg, and T. Tao, Stable signal recovery from incomplete and inaccuratemeasurements. Comm. Pure Appl. Math. Aug.2006,59,(8),1027-1223.
    [25] Gaussion Test: Hinich, M.J, Testing for Gaussianity and linearity of a stationary timeseries, J. Time Series Analysis, Vol.3, pp.169-76,1982.
    [26] Marco Martorella, Nicola Acito, and Fabrizio Berizzi,Statistical CLEAN technique forISAR Imaging, IEEE Trans. Geosic. Remote Sens, Nov.2007.45(11),3552-3560.
    [27] Maria S. Greco, and Fulvio Gini,“Statistical analysis of high-resolution SAR groundclutter data,” IEEE Trans. Geosic. Remote Sens. Mar,2007.45,(3).579-593.
    [28] E. Candès, J. Romberg, and T. Tao,“Near-optimal signal recovery from randomprojections: universal encoding strategies?,” IEEE Trans on Information Theory, Feb.2006.52(2).489–509.
    [29] E. Candès, M.Wakin, and S. Boyd, Enhancing sparsity by reweightedl1minimization,Dec.2008.J. Fourier Anal. Appl.14(5),877–905.
    [30] J. A. Tropp and A. C. Gilbert, Signal recovery from random measurements via orthogonalmatching pursuit, IEEE Trans. Inf. Theory, Apr.2007.53(12),4655–4666.
    [1]汤子跃,张守融.双站合成孔径雷达系统原理.北京:科学出版社,2003.
    [2]张亚标,朱振波,汤子跃,等.双站逆合成孔径雷达成像理论研究.电子与信息学报,2006, Vol.28(6):969-972.
    [3] J.Palmer, J.Homer, I.D.Longstaff, et al. ISAR imaging using an emulatedmultistatic radar system. IEEE Transactions on AES.,2005, Vol.41(4),1464-1472.
    [4] R. J. Burkholder, I. J. Gupta, and J. T. Johnson. Comparison of Monostatic andBistatic Radar Images. IEEE Antennas and Propagation Magazine, June2003,45(3),41-50.
    [5] Griffiths, H.D. From a different perspective: principles, practice and potentialof bistatic radar. Proceedings of the International Radar Conference.2003,1-7.
    [6] G. Yates, A. M. Horne, A. P. Blake, et al. Bistatic SAR image formation. Proc.EUSAR, Ulm, Germany,2004:581–584.
    [7] M. Wendler, G. Krieger, R. Horn, et al. Results of a bistatic airborne SARexperiment Proc. Int. Radar Symp., Dresden, Germany,2003:247–253.
    [8] Walterscheid, A. Brenner, and J. Ender. Geometry and system aspects for abistatic airborne SAR experiment. Proc. EUSAR, Ulm, Germany,2004:567–570.
    [9] J. Klare, I. Walterscheid, A. Brenner, et al. Evaluation and optimisation ofconfigurations for a hybrid SAR experiment between TerraSAR-X and PAMIR.IGARSS2006, Denver, Colorardo, USA,2006.
    [10]张振华.双/多基成像算法研究.西安电子科技大学博士论文,2007.
    [11] J.Palmer, J.Homer, I.D.Longstaff, et al. ISAR imaging using an emulatedmultistatic radar system. IEEE Transactions on AES.,2005, Vol.41(4),1464-1472.
    [12] T.Tsao, M.Slamani, P.Varshney, et al. Ambiguity Function for a Bistatic Radar.IEEE Transactions on AES.,1997, Vol.33(3):1041-1051.
    [13]郭强,李伟锋,陶然,等.双基地雷达沿基线目标模型的建立及零多普勒区的划分.兵工学报,2007, Vol.28(6),661-666.
    [14]高昭昭,梁毅,邢孟道.双基地逆合成孔径雷达成像分析,系统工程与电子技术.2009,Vol.31(5),1055-1059.
    [15]高昭昭.高分辨ISAR成像新技术研究.西安电子科技大学博士论文,2009.
    [16]邢孟道,保铮,冯大政.基于调幅-线性调频信号参数估计的机动目标成像方法.现代雷达.2000, Vol.22(6),44-48.
    [17]邢孟道,保铮,“外场实测数据的舰船目标ISAR成像”,电子与信息学报,2001,23(12):1271-1277。
    [18]保铮,叶炜. ISAR运动补偿聚焦方法的改进.电子学报.1996, Vol.24(9).83-88.
    [19]保铮,邓文彪,杨军. ISAR成像处理中的一种运动补偿方法.电子学报.1992, Vol.20(6).1-6.
    [20] M.Xing, R.Wu, and J.Lan. Migration Through Resolution Cell Compensationin ISAR Imaging. IEEE GRS letter. April2004, Vol.1(2).141-144.
    [21] Lu, G. Y., and Bao Z. Compensation of scattererser migration throughresolution cell in inverse synthetic aperture radar imaging, IEE Proc., Radar,Sonar Navig.,2000, Vol.147(2),80–85.
    [22]李军,高分辨二维和三维ISAR成像方法研究.西安电子科技大学博士论文,2009.
    [23] O’Neill J.C., Flandrin P. Virtues and Vices of Quartic Time-FrequencyDistributions, IEEE Trans. Signal Processing,2000, Vol.48(9),2641-2650
    [24]李亚超,苏军海,邢孟道,保铮.利用时间-调频率分布特性的复杂运动目标ISAR成像研究.西安电子科技大学学报,2008,35(1):1-7.
    [25] Z. Z G, Y. C L, M D Xing. ISAR imaging of manoeuvring targets with therange instantaneous chirp rate technique, IET Radar Sonar Navig.,2009,3(5),449–460
    [26]邢孟道,保铮,郑义明,“用整体最优准则ISAR成像的包络对齐”,电子学报,2001,29(12):1807-1811.
    [27]李亚超,周峰,邢孟道,保铮.一种直升机的舰船Dechirp实测数据SAR成像方法.电子与信息学报,2007, Vol.29(8):1794-1798.
    [28] Xing, M., Wu, R., and Bao, Z.:‘High resolution ISAR imaging of highspeed moving targets’, IEE Proc. Radar Sonar Navig.,2005,152,(2),.58–67
    [29]陈文驰,保铮,邢孟道.基于Keystone变换的低信噪比ISAR成像西安电子科技大学学报,April,2003,30(2).155-159.
    [30] D. Zhu, Y. Li, Z. Zhu,“A Keystone Transform Without Interpolation for SARGround Moving-Target Imaging”, IEEE Trans. on GRSL,2007,4(1):18-22.
    [31]邢孟道,保铮,郑义明,冯大政,“适合于大型平稳和机动目标的成像算法”,信号处理,2001,17(1):47-55。
    [32] J. Li, P. Stoica. Efficient mixed-spectrum estimation with applications to targetfeature extraction. IEEE Trans on Signal Proc.1996, Vol.44(2),281-295.
    [33] Jian Li, Dunming Zheng, Angle and Waveform Estimation Via RELAX[J].IEEE Trans on AES,1997,33(3),1077-1086.
    [34] Sun Changyin and Bao Zheng, Super-resolution algorithm for instantaneousISAR imaging. Electronics letters Feb,2000.36(3),253-255.
    [1] Kevin M. Cuomo, Jean E. Piou, and Joseph T. Mayhan. Ultra-WidebandCoherent Processing. Lincoln Laboratory Journal,1997, Vol.10(2),203-222.
    [2]毛二可,龙腾,韩月秋.频率步进雷达数字信号处理.航空学报.2001.22(Sup.): S16-S25.
    [3]于飞,马红星,席泽敏,线性调频子脉冲频率步进雷达信号分析,雷达科学与技术,2004,Vol.2(2),77-81.
    [4] Chen H, Liu Y, Li X. Mathematics of synthesizing range profile. IEEE Trans.Signal Processing,2007, Vol.55(5):1950-1955
    [5] R. T. Lord and M. R. Inggs. High Resolution SAR Processing UsingStepped-frequencies. Proc. IEEE Geoscience Remote Sensing Symposium1997,490-492.
    [6] P.Berens. SAR with Ultra-High Range Resolution Using Synthetic Bandwidth,IEEE Geoscience Remote Sensing Symposium1999, IGARSS’99Proceedings,1752-1754.
    [7] Andrew J. Wilkinson, Richard T. Lord and Michael R. Inggs.Stepped-Frequency Processing by Reconstruction of Target ReflectivitySpectrum. IEEE Communications and Signal Processing,1998. COMSIG '98.Proceedings of the1998South African Symposium on,101-104.
    [8] Nel, W. Tait, J. Lord, R. Wilkinson, A. The use of a frequency domain steppedfrequency technique to obtain high range resolution on the CSIR X band SARsystem. IEEE AFRICON.6th,2002,327-332.
    [9]高昭昭.高分辨ISAR成像新技术研究.西安电子科技大学博士论文,2009.
    [10]张涛,马长征,张守宏.一种新的ISAR-FS成像运动补偿方法.西安电子科技大学学报.2000. Vol.27(1):66-69.
    [11]D Y Zhu, L Wang,et al. Robust ISAR Range Alignment via Minimizing theEntropy of the Average Range Profile. IEEE GRS letter. April2009,Vol.6(2).204-208.
    [12]H. R. JEONG, H. T. KIM, K. T. KIM. Application of subarray averaging andentropy minimization algorithm to stepped-frequency ISAR autofocus. IEEETrans. on AP.2008, Vol.56(4),1144-1154.
    [13]Kragh, T.J., Kharbouch, A.A, Monotonic Iterative Algorithms for SAR ImageRestoration. IEEE International Conference on Image Processing.2006,645–648.
    [14]M Iwamoto, T Fujisaka.Autofocus Algorithm of Inverse Synthetic ApertureRadar Using Entropy. Electronics and Communications in Japan, Part1, Vol.83, No.2,2000,83(2)97-106.
    [15]X H Qiu,Y Zhao. Investigation on Consistency Problem between Two ISARImaging Methods: Minimum Entropy Auto-focusing and PhaseCompensation, IEEE Antennas and Propagation Society InternationalSymposium2006,2006,2689-2692
    [16]峁晓军,王军锋.基于梯度下降法的ISAR最小熵相位校正算法.现代雷达.2008,Vol.30(1),40-43.
    [17]徐刚,杨磊,张磊.一种加权最小熵的ISAR自聚焦算法,电子与信息学报.Aug,2011, Vol.33(8),1809–1815.
    [18]陈宝林.最优化理论与算法.北京:清华大学出版社,2005.
    [19]G. Lu, Z. Bao. Compensation of scattererss migration through resolution cell ininverse synthetic aperture radar imaging. IEEE Proceeding, Radar SonarNavigate.2000, Vol.147(2),80-85.
    [20]李亚超,周峰,邢孟道,保铮,一种直升机的舰船Dechirp实测数据SAR成像方法,电子与信息学报,2007,Vol.29(8):1794-1798.
    [21]李军.高分辨二维和三维ISAR成像方法研究.西安电子科技大学博士论文,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700