用户名: 密码: 验证码:
超微粉碎豆粕的理化营养特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文共设计四个试验,采用机械物理学方法、光谱分析技术、电泳技术和动物生长代谢试验等方法或手段研究了不同粒径豆粕粉体的基本物理性质、化学性质和营养特性,重点探明超微粉碎豆粕的理化营养特性,为饲料工业挖掘豆粕等蛋白质饲料加工营养潜力提供导向性的基础实验支持。
     试验一豆粕微米化过程对其基本物理特性的影响
     自备不同粒度(平均目标粒径为800,400,100,50,25,10,5,2.5,1μm)豆粕粉体为试验材料,应用机械物理的方法和技术,分别研究了不同豆粕粉体的粒径及分布、比表面积、容重、振实密度、休止角、滑动角、吸水性与吸油性特性、白度、水分活度和单位质量粉体能耗及其变化规律。结果表明:
     豆粕粉体粒子越小,比表面积越大,比量变化显著呈负指数函数关系(y=19.082x-1.0499,r2=0.9669,p=0.003,y代表比表面积,x代表粒径)。豆粕粒径由100μm降至10μ m比表面积增大2444.4%,由10μm降至1μm比表面积增大442.8%。
     豆粕粉体粒度小到微米级(0.1-30μ m),容重、振实密度显著减小,分别与粒径呈正相关(y1=71.283Ln(x)+173.5r2=0.9311,p=0.032和y2=81.017Ln(x)+868.3r2=0.9413,p=0.017,y1代表容重,y2代表振实密度,x代表粒径)。豆粕粒度越小粒子休止角和滑动角的比量变化幅度越大(y,=48.039X-0066r2=0.9715,p=0.007和y2=57.211x-0.0821,r2=0.9541,p=0.047,y1代表休止角,y2代表滑动角,x代表粒径),粉体粒子流动性显著降低。
     豆粕粉体粒度细到微米级(0.1-30μ m),吸水率、吸油率、水可溶物含量显著增加,与粒径均显著呈比量函数关系(分别为y,=2.3662x-0.0406r2=0.9751,p=0.027;y2=2.9302x-0.0879r2=0.973,p=0.005和y3=61.406x-0.2032r2=0.969,p=0.013。y1代表吸水率,y2代表吸油率,y3代表水可溶物含量,x代表粒径)。
     微米豆粕粉体颜色显著比常规粉碎豆粕更淡,其白度与粒径呈显著比量关系(y=89.768x-0.1193r2=0.9661,p=0.008,y代表白度,x代表粒径)。
     微米化豆粕不影响豆粕水分活度。
     单位质量不同粒径豆粕粉体的能量消耗随粒径的降低而增大,呈现比量函数变化关系:y=15601x-0.8162(r2=0.9162,p=0.031,y代表单位质量粉体能耗,x代表粒径)。
     试验二豆粕微米化过程中的机械力化学效应研究
     本试验以不同粒径豆粕粉体和常规粉碎豆粕为研究对象,采用荧光分析、热差分析和超微弱光分析等技术手段,探讨了超微粉碎豆粕粉体的机械力化学效应,研究了蛋白质高级结构的降解程度和所产生自由基效应的强弱。试验结果表明:
     豆粕粉体粒度越小,巯基含量越高,超微D501.09μm豆粕粉体中巯基数量比常规粉碎的D50635.13μm豆粕粉体增加34.1%。超细豆粕粉体疏水基团破损率增加36.37%,蛋白质三级结构在一定程度上被打破,球蛋白部分变性,超微D501.09μm豆粕粉体变性温度比常规粉碎的D50635.13μm豆粕升高10.65℃,热稳定性增强。超微弱光强度检测证明,超微豆粕粉体中自由基数量增加。
     试验三豆粕微米化过程对其体外消化率与酶解特性的影响
     采用体外胃胰蛋白酶酶解法和SDS-PAGE电泳技术,以常规粉碎豆粕为对照,研究了不同超细粒度豆粕粉体的体外消化率和酶解特性变化,试验结果表明:
     超微D502.63μm豆粕粉体的胃蛋白酶消化率比D50621μm常规粉碎豆粕提高48.0%,胃胰蛋白酶消化率提高42.2%,超微粉碎提高豆粕可消化蛋白数量。微米豆粕粉体较常规粉碎豆粕能更有效提高胃蛋白酶消化率。胃蛋白酶对微米豆粕粉体中抗原蛋白的消化速度高于常规粉碎豆粕粉体。
     试验四微米级豆粕粉体对断奶仔猪生产成绩和养分消化率的影响
     本试验选用80头26-30日龄的杜X长X大断奶仔猪(公母各半,体重7.9±0.7kg),随机平分成4个处理,每处理5个猪圈,每圈4头,饲养研究了四种不同粒度豆粕日粮(对照日粮750μ m豆粕,试验1,2,3处理日粮分为150,30,6μm豆粕)对断奶仔猪生产成绩和养分消化代谢的影响。试验结果表明:
     微米级豆粕粉体日粮显著提高断奶仔猪日增重(1-28d,p=0.037),明显提高采食量(1-28d,p=0.106),显著降低料重比(1-28d,p=0.048),显著降低断奶仔猪的腹泻率(1-14d,p=0.047)。微米豆粕粉体显著提高日粮氮(p=0.047)、EAA(p<0.001,p=0.009)和NEAA(p=0.028,p=0.017)的表观和回肠末端消化率,不影响能量消化率和利用率(p=0.063,p=0.055),不影响日粮有机物表观消化率(p=0.082),显著提高磷表观消化率(p=0.042)。
     综上所述,饲料豆粕超微粉碎,显著增加豆粕作营养源利用的理化适合性。超微制备豆粕粉体过程的机械力化学效应,降低了豆粕大分子蛋白结构的营养负效应,提高营养效率。
Four experiments were conducted to investigate the nutritional and physicochemical properties of soybean meal powder with different particle size by the methods and technique of mechano-physics, spectroscopic analysis, electrophoresis and animal feeding trials. The nutritional and physicochemical characteristics of micronized soybean meal were especially studied, which could provide basal and oriented experimental support to the development of artifactitious nutritional potential in protein feedstuff such as soybean meal.
     Exp.1Effect of the process of micronization on basal physical properties of soybean meal.
     The trail was conducted to study particle size and its distribution, specific surface area, bulk density, tap density, repose angle, slide angle and water-or oil-absorbing property of soybean meal powder self-produced with different objective average particle sizes (800,400,100,50,25,10,5.0,2.5,1.0μm). The results were as follows.
     The soybean meal powder had more specific surface area with less particle size, and that the specific surface area of soybean meal powder was significantly negative relation with the particle size as exponential function (y=19.082x-1.0499, r2=0.9669, p=0.003, y is specific surface area, x is particle size). The Particle size of soybean meal powder was from100to10μm, the specific surface area of the sample with10μm particle size was2444.4%bigger than that of the. sample100μm particle size. And the particle size from10to1μm, the specific surface area of the sample with1μm particle size was442.8%bigger than that of the.sample10μm particle size.
     Bulk density and tap density of the soybean meal powder were significantly reduced when the particle size was in the micro-meter range from0.1to30μm, which were significantly positive relationship with the particle size, respectively (y1=71.283Ln(x)+173.5 and y2=81.017Ln(x)+868.3, y1is bulk density, y2is tap density, x is particle size). Repose angle and slide angle of soybean meal powder had prominent increase as specificflow function (y1=48.039x-0.066 and y2=57.211x-0.0821, y1is repose angle, y2is slide angle, x is particle size), and the fluidity of powder was markedly reduced.
     Water-or oil-absorbing properties and water-soluble substance content of the soybean meal powder were significantly enhanced, when the particle size was in the micro-meter range from0.1to30μm, as exponential functions (y1=2.3662x-0.0406; y2=2.9302x-0.0879 and y3=61.406x-0.2032. y1is water-absorbing ratio, y2is oil-absorbing ratio, y3is water-soluble substance content, x is particle size),
     The colour of soybean meal powder in the micro-meter range from0.1to30μm was lighter than that of soybean meal powder ground in conventional condition, and the whiteness was in negative correlation to particle size as exponential function (y=89.768x-0.1493, r2=0.9661, p=0.008, y is the whiteness, x is particle size). And soybean meal powder in the micro-meter range from0.1to30μm had no effects on water activity of it.
     Exp2Studies on mechanochemical effects in the micronizing process of soybean meal
     The experiment was conducted to investigate the mechanochemical effects in the ultrafine process of soybean meal by the methods of fluorescence analysis, differential thermal analysis and ultra-weak photon emission, with different micro-meter-grade soybean meal powder and general ground soybean meal as research objects. The degradation of advanced protein structure, and the intensity of radical ion effect were investigated. The results were as follows.
     There was the higher content of-SH with smaller particle size of soybean meal powder, and the content of-SH was increased34.1%in soybean meal powder of D501.09μm than D50635.13μm. The breakage of oelophilic group was enhanced36.37%for D501.09μm soybean meal powder. Three dimensional structure of protein was destroyed at a certain extent, and globulin was partly denaturation. The denatural temperature of D501.09μm soybean meal powder was higher10.65℃than that of D50635.13μm soybean meal powder. The ultra-weak photon emission analysis proved that the content of radical ion was improved.
     Exp.3Effect of the micronizing process on digestibility and enzyme hydrolyzed characteristics of soybean meal powder in vitro
     In this trail, the digestibility in vitro and the enzyme hydrolyzed characteristics of soybean meal powder with different particle size were studied by the methods in vitro, the general ground soybean meal as control. The results indicated that the pepsin digestibility of micronized soybean meal was48.0%higher with26.65percents than that of the control. And the pepsin-trypsin digestibility of micronized soybean meal was enhanced42.2%with26.86percents than that of the control. The very superfine soybean meal improved the pepsin digestibility with higher efficiency than the control. The digestible velocity of pepsin in the very superfine soybean meal was higher than that in control.
     Exp.4Effects of very superfine soybean meal on the productivity and nutrients digestibilities of piglets
     A total of64piglets (Duroc×Landrace×Yordshire),26-30-day age and7.9±0.7kg body weight (BW), were selected the day of weaning. Piglets were ear-tagged, weighed and allotted to the experimental units according to sex and BW. There were four treatments and four replicates of four piglets per treatment. Effects of soybean meal with four particle sizes of750,150,30,6μ m on the productivity and nutrients digestibilities of piglets were studied,750μ m soybean meal as control. The results showed that The ADG of weaned piglets fed with a ration with very ultrafine soybean meal powder was markedly increased (p<0.05), the ADFI was enhanced (p>0.05), F/G was improved significantly (p<0.05), and the diarrhoea incidence was reduced markedly (p<0.01). The micronized soybean meal powder increased the coefficient of total tract and ilea apparent digestibility of dietary nitrogen, EAA, NEAA, and P, but the coefficient of total tract and ilea apparent digestibility of dietary GE and O.M were not affected.
     Therefore, The agreement of physicochemical properties as nutrients of soybean meal after micronization was improved significantly. The mechanochemica effects in the micronizing processs of soybean meal have functions of reducing the negative effects of macromolecule protein and improving the efficiency of nutrients.
引文
[1]刘祥,唐洪峰,郑明立,2005,豆粕的品质鉴定与掺假识别[J].河南畜牧兽医,26(7):31-32.
    [2]姜建阳,2006,高蛋白豆粕营养价值评定与方法学研究[D].北京.中国农业大学博士论文
    [3]侯永清等.1996.早期断奶仔猪日粮中添加不同类型酸化剂的效果[J].中国畜牧杂志.(6):8-10.
    [4]Wondra, K. J., J. D. Hancock, K. C. Behnke, R. H. Hines, and C. R. Stark.1995. Effects of particle size and pelleting on growth performance, nutrient digestibility, and stomach morphology in finishing pigs[J]. J. Anim. Sci.73:757.
    [5]Wondra, K. J., J. D. Hancock, K. C. Behnke, and C. R. Stark.1995. Effects of mill type and particle size uniformity on growth performance, nutrient digestibility, and stomach morphology in finishing pigs[J]. J. Anim. Sci.73:2564.
    [6]Wondra, K. J., J. D. Hancock, G A. Kennedy, K. C. Behnke, and K. R. Wondra.1995. Effect of reducing particle size of corn in lactation diets on energy and nitrogen metabolism in second-parity sows[J]. J. Anim. Sci.73:427-432.
    [7]Cromwell, G. L., T. S. Stahly, and H. J. Monegue.1984. Effects of processing (grinding versus rolling) of normal and mutant corn hybrids on performance of growing pigs[J]. J. Anim. Sci.59: 875.
    [8]Lawrence, T. L. J.1983. The effects of cereal particle size and pelleting on the nutritive value of oat-based diets for the growing pig[J]. Anim. Feed Sci Tech.8:91.
    [9]Keith C.Behnke. Robert Gooddand. Joe D.Hancock.2006. Particle size reduction nutritional impact vs cost[J].饲料与养殖.(转载)2:(18-20).
    [10]Lawrence, K.R., Hastad, C.W., Goodband, R.D., Tokach, M.D., Dritz, S.S., Nelssen, J.L. DeRouchey, J.M.,Webster, M.J.,2003. Effects of soybean meal particle size on growth performance of nursery pigs[J]. J. Anim. Sci.81,2118-2122.
    [11]李清晓等.2006.豆粕粉碎粒度对肉鸡日粮养分利用率的影响[J].家畜生态学报.27(5):20-25.
    [12]袁涛.2004.我国几种蛋白质饲料资源现状[J].2:25-28.
    [13]张子仪.2000.从我国人民膳食结构演变谈三元结构农业的内涵性改造[J].中国工程学.2(8):35-39.
    [14]Wang Y.J.,Physical properties of soybean meal[J]. Cereal Chem.72(6):523-526.
    [15]Appel,W.B.1985.Physical properties of feed ingredients[M]. Feed manufacturing Technology, III.R.R.McEllhiney,ed.Am.Feed Mfg. Assoc:Arlington, VA
    [16]李德发等.2003.大豆抗营养因子[M].中国农业出版社.
    [17]Karr-Lilienthal, L.K.2005. Chemical and nutritional properties of soybean carbohydrates as related to nonruminants:A review[J]. Livestock production Science 97(2005) 1-12.
    [18]Liener, I.E.,1996. The Feeding value of soybeans fed to rats, chickens, catfish and dairy cattle is not altered by genetic incorporation of glyphosate tolerance[J]. J.Nutri.,126:717-72.
    [19]Birk.Y.1985.The Bowman-Birk inhibitor. Trypsin and Chymotrypsin inhibitor from soybean[J]. Int. J.Pept.,Res.,25:113-131.
    [20]米振海,郑茂松.1998.饲料粉体粒度对蛋白质消化吸收率影响[J].中国饲料.11:26.
    [21]饲料粉碎机试验方法GB6971-86[S].中华人民共和国国家标准.
    [22]沈长山.2000.饲料粉碎粒度的经济性粉碎[J].中国饲料.16:21-22.
    [23]沈慧乐等.1999.豆粕质量与脲酶活性和蛋白质溶解度[J].ASA.
    [24]唐仁勇.2004.饲料不同形态、状态对早期断奶仔猪生产性能及消化生理的影响[D].雅安:四川农业大学.硕十学位论文.
    [25]Cabrera, M. R., J. D. Hancock, R. H. Hines, K. C. Behnke, and P. J. Bramel-Cox.1994. Sorghum genotype and particle size affect milling characteristics, growth performance, nutrient digestibility, and stomach morphology in finishing pigs[J]. J. Anim. Sci.72:55-64.
    [26]Cera.K.R. Mahan D C, R.F. Cross et al.1988. Effect of age Weaning and Postwesrning diet on Small intestinal lumial lipase response in young swine[J]. J. Anim. Sci.66:574-584.
    [27]Cera.K.R. MahanD C. Rciharl GC.1990. Effect of weaning week postweaning and diet composition on pancreatic and small intestinal lumial lipase response in young swine[J]. J. Anim. Sci.68:384-391.
    [28]Champ, M., Colonna, P.,1993. Importance de rendommagement de 1'amidon dans les aliments pour animaux. INRA Prod. Anim.6:185-198.
    [29]CorringT,C Juste, E flhoste.1989. Nutritional regulation of pancreatic and biliaty secretions[J]. Nutrilion.64:190-208.
    [30]熊易强1999.加工温度和保温时间对热处理全脂大豆的脲酶活性、胃蛋酶消化率和瘤胃可降解蛋白(体外测定)的影响[J].饲料技术讲座文集.美国大豆协会
    [31]Efird R C, W D Armstrong, L Herman.1982. The development of digestive capacity in young pigs effects of weaning regimen and dietary treatment[J]. Journal of Animal Science.55:1370-1379.
    [32]EP Shronts.1993. Basic concepts of immunology and its application to clinical nutrition. Nutr Clin Pract,8:177-183.
    [33]Funderburke, D. W. and R. W. Seerly.1990. The effects of postweaning stressors on pig weight change, blood, liver and digestive tract characteristics[J]. J.Anim.Sci.68:155-162.
    [34]Giersting,D.W., and R .A.Easter.1985. Response of starter pigs to supplementation of corn-soybean meal diets with acids[J]. J. Anim.Sci.60:1288-1294.
    [31]Giesemann, M. A., A. J. Lewis, J. D. Hancock, and E. R. Peo, Jr.1990. Effect of particle size of com and grain sorghum on growth and digestibility of growing pigs[J]. J. Anim. Sci.68 (Suppl.1): 104(Abstr.).
    [32]Goodband, R. D., and R. H. Hines.1988. An evaluation of barley in starter diets for swine[J]. J. Anim. Sci.66:3086.
    [33]Guillou D, Landeau E.2000. Granulometriet nutrition porcine[J]. INRA Prod Anim.13:137-145.
    [34]Hancock, J. D., R. H. Hines, B. T. Richert, and T. L. Gugle.1993. Extrusion of corn, sorghum, wheat, and barley affects growth performance and nutrient digestibility in finishing pigs [J]. J. Anim. Sci.71(1):13-23.
    [35]Hampson D J.1986. Alterations in piglets small intestinal structure at weaning[J]. Res. Vet. Sci.. 40:32.
    [36]Healy, J. D. Hancock, G. A. Kennedy, P. J. Bramel-Cox et al.1994. Optimum Particle Size of Corn and Hard and Soft Sorghum for Nursery Pigs[J]. J. Anim.Sci.72:2227-2236.
    [37]Hedde, R. D., T.0. Lindsey, R. C. Parish, H. D. Daniels, E. A.Morgenthien, and H. B. Lewis.1985. Effect of diet particle size and feeding of Ha-receptor antagonists on gastric ulcers in swine[J]. J. Anim. Sci.61:179-185.
    [38]Jensen M S, S K Jensen, and K Jakogscn.1997. Development of digestive enzymes in pigs with conpilasis on lipidytic activity in the stomach and pancreas[J]. J. Anim Sci.75:437-445.
    [39]Kelley, K. W, F. Blecha, and J. A. Regnier.1982. Cold exposure and absorption of colostral Immu noglobulisim by neonatal pigs[J], J. Anim.Sci.55:363-368.
    [40]杨全明.1999.仔猪消化道酶活和组织器官生长发育规律的研究[D].北京:中国农业大学博十论文.
    [41]Kidder, D.E.and M.J.Manners.1978. Digestion in the pig[J]. Kingston Press, Bath, U K.
    [42]K. J. Wondra, J. D. Hancock, K. C. Behnke and C. R. Stark..1995 Effects of Mill Type and Particle Size Uniformity on Growth Performance, Nutrient Digestibility, and Stomach Morphology in Finishing Pigs[J]. J. Anim. Sci.73:2564-2573.
    [43]King, R. H., and I. H. Williams.1984. The effect of nutrition on the reproductive performance of first-litter sows. Protein and energy intakes during lactation[J]. Anim. Prod.38:249.
    [44]Kirchgessner, M., B.Gedeck, S.Wiehler, A.Bott, U.Eidelsburger, F.X.. Roth.1993. Influence of formic acid, calcium formate, sodium hydrogen carbonate on the microflora in diferent segments of the gastrointestional tract. Invenstigations about the nutritive efficacy of organic acid in the rearing of piglets[J]. Pig News and Information.14(1):77.
    [45]K. R. Cera, D. C. Mahan, and G A. Reinhart.1990. Effect of weaning, week post weaning and diet composition on pancreatic and small intestinal luminal lipase response in young swine [J].J Anim Sci.68:384-394.
    [46]K. R. Lawrence, C. W. Hastad, R. D. Goodband, M. D. Tokach, S. S. Dritz, J. L. Nelssen.2003. Effects of soybean meal particle size on growth performance of nursery pigs[J]. J Anim Sci.81: 2118-2128.
    [47]Brown, P. J. and F.J.Bourne.1976. Development of immunoglobulin-containing cell populations in intestine, spleen, and mesenteric lymph node of the young pig, as demonstrated by peroxidase conjugated antiserums[J]. Am.J. Vet. Res.37:1309-1314.
    [48]Lene Lind Mikkelsen, Patrick J. Naughton,Mette et al.2004. Effects of Physical Properties of Feed on Micro-bial Ecology and Survival of Salmonella enterica Sero-var Typhimurium in the Pig Gastrointestinal Tract[J]. Appled and Environmental Microbiology.56:3485-3492.
    [49]L.H.Kim, K.N.Hero, J.Odle. I. K. Hant, and R.J.Harrell.2001. Liquid diets accelerate the growth of early-weaned pigs and the effects are maintained to market weight. J.Anim. Sci.79:427-434.
    [50]Li,D.F., J.L.Nelssen, P.G. Reddy, E. Blencha, R.Klemn, and R.D.Googband.1991.Inter relationship between hypersensitivity to soybean proteins and growth performance in early-weaned pigs[J]. J.Anim.Sci.69:4062-4069.
    [51]Lindemann M D, Cornelius S G, E I Kandelgy S M, Moser R L,Pettigrew J E.1986. Effect of age. weaning and diet on digestive enzyme level in the piglet[J]. Journal of Animal Science.62: 1298-1307.
    [521 Ludovic Lahaye, Philippe Ganier, Jean-Noel Thibault and Bernard Seve.2004. Technological processes of feed manufacturing affect protein endogenous losses and amino acid availability for body protein deposition in pigs[J]. Animal Feed Science and Technology.113:141-156.
    [53]M. Araba, N. M. Dale.1999. Evaluation of protein solubility as an indicator of overprocessing soybean meal[J]. ASA.
    [54]MacBain, R. Pelleting Animal Feed.1966. American Feed Manufacturers[J]. Association, Arlington, VA.
    [55]Mahan, D. C., R. A. Pickett, T. W. Perry, T. M. Curtin, W. R. Featherston, and W. M. Beeson.1966. Influence of various nutritional factors and physical form of feed on esophagorgastric ulcers in swine[J]. J. Anim. Sci.25:1019-1023.
    [56]Martin, S. A.1984. Comparison of hammermill and roller mill grinding and the effect of particle size reduction on mixing and pelleting[J]. M.S. Thesis. Kansas State Univ., Manhattan.
    [57]Maswaure,S.M. and Mandisodza. K.T.1995. An evaluation of the performance of weaned pigs fed diets incorporating fresh sweet liquid whey[J]. Animal Feed Science and Technolog.54:193-201.
    [58]Mavromichalis, J. D. Hancock, B. W. Senne, T. L. Gugle, G. A. Kennedy, R. H. Hines, and C. L. Wyatt.2000. Enzyme supplementation and particle size of wheat in diets for nursery and finishing pigs[J]. J Anim Sci.78:3086-3095.
    [59]Maxwell, C. V., E. M. Reimann, W. G. Hoekstra, T. Kowal czyk, N. J. Benevenga, and R. H. Grummer.1972. Use of tritiated water to assess, in vivo, the effect of dietary particle size on the mixing of stomach contents of swine[J]. J. Anim. Sci.34:212.
    [60]Maxwell, C. V., E. M. Reimann, W. G. Hoekstra, T. Kowalczyk, N. J.Benevenga, and R. H. Grummer.1970. Effect of dietary particle size on lesion development and on the contents of various regions of the swine stomach[J]. J. Anim. Sci.30:911.
    [61]M S Hedemann; L L Mikkelsen; P J Naughton; B B Jensen.2005. Effect of feed particle size and feed processing on morphological characteris in the small and large intestine of pigs and on adhesion of Salmonella enterica serovar Typhimrium DT12 in the ileum in vitro[J]. Journal of Animal Science.83:1154-1162.
    [62]N. D. Fastinger. D. C. Mahan.2003. Effect of soybean meal particle size on amino acid and energy digestibility in grower-finisher swine [J]. J. Anim. Sci.81:697-704.
    [63]Nirl, Shefet G, AaroniY.1994. Effect of corn particle size on performance[J]. Poult Sci.73:45-49.
    [64]O'Doherty.I.V, McGlynn.S.G and Murplly.D.2000. The effect of expander processing and pelleting on the nutritive value of feed for growing and finishing pigs[J]. J.Sci. Food. Agri.81: 135-141.
    [65]Ohh, S. J., G. Allee, K. C. Behnke, and C. W. Deyoe.1983. Effect of particle size of corn and sorghum grain on performance and digestibility of nutrients for weaned pigs[J]. J. Anim. Sci. 57(Suppl.1):260 (Abstr.).
    [66]Owsley W.F, Orr D E, Tribble L,P.1986. Effect of age and diet on Ilue development of the sythesis and secretion of development of the pancreatic enzymes in the young pig[J]. J.Anim.Sci.63: 497-504.
    [67]Ranjit Kumar Chandra.1992. Protein-Energy Malnutrition and Immunological Responses[J. J. Nutr., Mar 1992; 122:597-600.
    [68]Park W Waldroup.1997. Linking feed particles and poultry performance searching for the optimum Particle size[J].Feed Management.12:30-36.
    [69]Reece FN, Lot BD, Deaton JW.1986. Effects of environmental temperature and corn particle size on response of broilers to pelleted feed[J]. Poult Sci.65:636-641.
    [70]Rothkoter,H J, H.Ulbrich, and R.Pabst.1991. The postnatal development of gut lamina propria lymphocytes:number, proliferation, and T and B cell subsets in conventional and germ-free pigs[J]. Pediatr. Res.29:237-242.
    [71]Shields R G, K E Ekstrom, D C Mohan.1980. Effect of Weaning age and feeding method in digestive enzyme development in smine from birth to weeks[J]. J. Anim. Sci.50:257-265.
    [72]Skoch.E.R, Binder.S.F, Deyoe.C.W et al.1983. Efects of pelleting on growth performance of pigs fed a corn-soyabean mealdiet[J]. J. Anim. Sci.38:513-526.
    [73]Sudhagar Mani, LG LopeG Tabil, Shahab Sokhansan.2004. Grinding performance and physical properties of wheat and barley straws, cornstover and switchgrass[J]. Biomass and Bioenergy. 27(4):339-352.
    [74]Taverner. M.R., Reale.T.A. and Campbell.R.G.1987. Nutrition of the young pig[J]. In Recent Advances in Animal Nutrition in Australia.University of New England. Armidalc. NSW. Aaistndin. 338-346.
    [75]WF Owsley, DA Knabe, and TD Tanksley Jr.1981. Effect of sorghum particle size on digestibility of nutrients at the terminal ileum and over the total digestive tract of growing-finishing pigs[J]. J Anim Sci.52(3):557-566.
    [76]Wondra, K. J., J. D. Hancock, K. C. Behnke, and R. H. Hines.1995. Effects of dietary buffers on growth performance, nutrient digestibility, and stomach morphology in finishing pigs[J]. J. Anim. Sci.73:414.
    [77]杨富林,杨琳,张宏福等.2000.仔猪消化道内酸度的发育[J].饲料博览.4:10-13.
    [78]张宏福,李长忠,.顾宪红.1998.断奶日龄对仔猪肠道中乳糖酶活性的影响[J].动物代谢研究农业部动物营养重点开放实验室资料.87-93.
    [79]张军民,高振川.2002.谷氨酰胺对饲喂生大豆仔猪肠道通透性和消化吸收能力的影响[J].中国兽医学报.22:96-98.
    [80]Wondra, K. J., J. D. Hancock, G. A. Kennedy, R. H. Hines, and K. C. Behnke.1995. Reducing particle size of corn in lactating diets from 1200 to 400 micrometers improves sow and litter performance[J]. J. Anim. Sci.73:421-426.
    [81]Wu, J. F.1985. Effects of particle size of corn, sorghum grain, and wheat on pig performance and nutrient digestibility[J]. Ph.D. Dissertation. Kansas State Univ. Manhattan.
    [82]Xu R,h P D Cranwell.1992. Gastin melaolisn in neonatal pigs and grower-pigs[J]. Comparative Biochemistry and physiology.101:177-182.
    [83]Young, L. R.1962. Mechanical durability of feed pellets[J]. M.S. Thesis. Kansas State Univ., Manhattan.
    [84]Association of Official Analytical Chemists,2000. In:Horwitz, W. (Ed.), Official Methods of Analysis,17th ed. AOAC, Gaithersburg, MA, USA.
    [85]Ayles, H.L., Friendship, R.M., Bubenik, G.A., Ball, R.O.,1999. Effect of particle size and dietary melatonin supplementation on gastric ulcers in swine. Can. J. Anim. Sci.79.179-185.
    [86]Boletin Oficial Estado,1995. Real Decreto Espa-nol 2257/1994 por el que se aprueban los m'etodos oficiales dean'alisis de piensos o alimentos para animales y sus primeras materias. BOE 52,7161-7237.
    [87]Bolet'in Oficial Estado,2005. Real Decreto Espanol 1201/2005 sobre la protecci'on de los animales utilizados para experimentacion y otros fines cientificos. BOE 252,34367-34391.
    [88]Fastinger, N.D., Mahan, D.C.,2003. Effect of soybean meal particle size on amino acid and energy digestibility in grower-finisher swine. J. Anim. Sci.81,697-704. Friesen, K.G., Nelssen, J.L.
    [89]Goodband, R.D., Behnke, K.C., Kats, L.J.,1993. The effect of moisture extrusion of soy products on growth performance and nutrient utilization in the early-weaned pig. J. Anim. Sci.71, 2099-2109.
    [90]Healy, B.J., Hancock, J.D., Kennedy, G.A., Bramel-Cox, P.J., Behnke, K.C., Hines, R.H.,1994. Optimum particle size of corn and hard and soft sorghum for nursery pigs. J. Anim. Sci.72, 227-2236.
    [91]Hedemann, M.S., Mikkelsen, L.L., Naughton, P.J., Jensen, B.B.,2005. Effect of feed particle size and feed processing on morphological characteristics in the small and large intestine of pigs and on adhesion of Salmonella enterica serovar Typhimurium DTI 2 in the ilum in vitro. J. Anim. Sci. 83,1554-1562.
    [92]Herkelman, K.L., Cromwell, G.L., Stahly, T.S., Pfeiffer, T.W., Knabe, D.A.,1992. Apparent digestibility of amino acids in raw and heated conventional and low trypsin inhibitor for pigs. J. Anim. Sci.70,818-826.
    [93]Heuer, M., Leschonski, K.,1985. Results obtained with a new instrument for the measurement of particle size distributions from diffraction patterns. Part. Charact.2,7-13.
    [94]Hsu, J.T., Satter, L.D.,1995. Procedures for measuring the quality of heat-treated soybeans. J. Dairy Sci.78,1353-1361.
    [95]Huisman, J., Jansman, A.J.M.,1991. Dietary effects and some analytical aspects of antinutritional factors in peas (Pisum sativum) common beans (Phaseolus vulgaris) and soyabeans (Glycine max L.) in monogastric farm animals. A literature review. Nutr. Abstr. Rev. B 61, 901-921.
    [96]Huisman, J., van Der Poel, A.F.B., van Leeuwen, P., Verstegen, M.W.A.,1990. Comparison of growth, nitrogen metabolism and organ weights in piglets and rats fed on diets containing Phaseolus vulgaris beans. Br. J. Nutr.64,743-753.
    [97]Kaankuka, F.G., Balogun,T.F.,Tegbe,T.S.B.,1996. Effects of duration of cooking of full-fat soybeans on proximate analysis, levels of antinutritional factors, and digestibility by weanling pigs. Anim. Feed Sci. Technol.62,229-237.
    [98]Lahaye, L., Ganier, P., Thibault, J.N., S'eve, B.,2004. Technological processes of feed manufacturing affect protein endogenous losses and amino acid availability for body protein deposition in pigs. Anim. Feed Sci. Technol.113,141-156.
    [99]Laurinen, P., Siljander-Rasi, II., Karhunen, J., Alaviuhkola, T., N"asi, M., Tuppi,K.,2000. Effects of different grinding methods and particle size of barley and wheat on pig performance and digestibility. Anim. Feed Sci. Technol.83,1-16.
    [101]Lawrence, T.L.J.,1983. The effects of cereal particle size and pelleting on the nutritive value of oat-based diets for the growing pig. Anim. Feed Sci. Technol.8,91-97.
    [102]Marty, B.J., Chavez, E.R., de Lange, C.F.M.,1994. Recovery of amino acids at the distal ileuni for determining apparent and true ileal amino acid digestibilities in growing pigs fed various heat-processed full-fat soybean products. J. Anim. Sci.72,2029-2037.
    [103]Mateos, G.G., L'opez, E., Latorre, M.A., Vicente, B., L'azaro, R.P.,2007. The effect of inclusion of oat hulls in piglet diets based on raw or cooked rice and maize. Anim. Feed Sci. Technol.135,100-112.
    [104]Mateos, G.G., Mart'in, F., Latorre, M.A., Vicente, B., L'azaro, R.,2006. Inclusion of oat hulls in diets for young pigs based on cooked maize or cooked rice. Anim. Sci.82,57-63.
    [105]Mavromichalis, I., Hancock, J.D., Senne, B.W., Gugle, T.L., Kennedy, G.A., Hines, R.H., Wyatt, C.L.,2000. Enzyme supplementation and particle size of wheat in diets for nursery and finishing pigs. J. Anim. Sci.78,3086-3095.
    [106]Medel, P., Gracia, M., L'azaro, R., De Bias, C., Mateos, G.G.,2000. Particle size and heat treatment of barley in diets for early-weaned piglets. Anim. Feed Sci. Technol.84,13-21.
    [107]O este, R.E., Dahlqvist, A., Sjostrom, H., Noren, O., Miller, R.,1986. Effect of Maillard reaction products on protein digestion. In vitro. J. Agric. Food Chem.34,355-358.
    [108]Owsley, W.F., Knabe, D.A., Tanksley Jr., T.D.,1981. Effect of sorghum particle size on digestibility of nutrients at the terminal ileum and over the total digestive tract of growing-finishing pigs. J. Anim. Sci.52,557-566.
    [109]Quin, G., ter Elst, E.R., Bosch, M.W., van der Poel, A.F.B.,1996. Thermal processing of whole soya beans:Studies on the inactivation of antinutritional factors and effects on ileal digestibility in piglets. Anim. Feed Sci. Technol.57,313-324.
    [110]Schulze, H., Huisman, J., Verstegen, M.W.A., van Leeuwen, P.,1993. Physiological effects of isolated soya trypsin inhibitors (sTIs) on pigs. In:Boyazoglu, J., Renaud, J., Korver, S. (Eds.), Recent Advances of Research in Antinutritional Factors in Legume Seeds. Proceedings of the 2nd International Workshop on Antinutritional Factors (ANFs) in Legume Seeds. Wageningen, The Netherlands, pp.191-194.
    [111]Seerley, R.W., Vandergrift, W.L., Hale, O.M.,1988. Effect of particle size of wheat on performance of nursery growing and finishing pigs. J. Anim. Sci.66,2484-2489.
    [112]Sohn, K.S., Maxwell, C.V., Buchanan, D.S., Southern, L.L.,1994. Improved soybean protein sources for earlyweaned pigs. I. Effects on performance and total tract amino acid digestibility. J. Anim. Sci.72,622-630.
    [113]Statistical Analysis Systems Institute,1990. SAS User's Guide:Statistics. Version 6,4th ed. Cary, NC, USA. Statistical Analysis Systems Institute,1992. SAS Technical Report P-229, SAS Statistics Software:Changes and Enhancements, Release 6.07, Cary, NC, USA.
    [114]Van der Poel, A.F.B.,1989. Effects of processing on anti-nutritional factors (ANF) and nutritional value of legume seeds for non-ruminant feeding. In:Huisman, J., Van der Poel, T.F.B., Liener, I.E. (Eds.), Recent Advances of Research in Anti-nutritional Factors in Legume Seeds. Pudoc, Wageningen, pp.213-229.
    [115]Van Eys, J.E., Offner, A., Bach, A.,2004. Manual of Quality Analyses for Soybean Products in the Feed Industry. American Soybean Association, Brussels, Belgium.
    [116]Vicente, B.,Valencia, D.G., Serrano,M.P.,L'azaro, R., Mateos, G.G,2008. The effects of feeding rice in substitution of corn and the degree of starch gelatinization of rice on nutrient digestibility and productive performance of young pigs. J. Anim. Sci.86,119-126.
    [117]Vogtmann, H., Frirter, P., Prabuck, A.L.,1975. A new method of determining metabolizability of energy and digestibility of fatty acids in broiler diets. Br. Poult. Sci.16,531-534.
    [118]Wondra, K.J., Hancock, J.D., Behnke, K.C., Hines, R.H., Stark, C.R.,1995. Effects of particle size and pelleting on growth performance, nutrient digestibility, and stomach morphology in finishing pigs. J. Anim. Sci.73,757-763.
    [119]Zarkadas, L.N., Wiseman, J.,2005a. Influence of processing of full fat soya beans included in diets for piglets. I. Performance. Anim. Feed Sci. Technol.118,109-119.
    [120]Zarkadas, L.N.,Wiseman, J.,2005b. Influence of processing of full fat soya beans included in diets for piglets. Ⅱ. Digestibility and intestinal morphology. Anim. Feed Sci. Technol.118, 121-137.
    [121]Fan, M.Z., Sauer,W.C., de Lange, C.F.M.,1995. Amino acid digestibility in soybean meal, extruded soybean and full-fat canola for early-weaned pigs. Anim. Feed Sci. Technol.52, 189-203.
    [122]张振斌,蒋宗勇等.1999.超早期断奶应激对仔猪消化酶活性的影响初报[J].中国畜牧杂志.35(6):6-8.
    [123]Baker, R. J.1960. Factors that affect the granulation and capacity in grinding of corn, oats, and sorghum grain with a hammermill[J]. M. S. Thesis. Kansas State Univ., Manhattan.
    [124]Bolduan.C, H.Sung, E.Schneider.1988. Recent advances in the nutrition of weanerpiglets[J]. Pig News and Information.9(4):381-385.
    [125]Braude. R. and Newport. M.J.1977. A note on a comparison of two systems Ior rearing pigs weaned at 21 days of age involving either a liquid or a pelleted diet. Animal Production.24: 271-274.
    [126]Brendemuhl, J. H., A. J. Lewis, and E. R. Peo, Jr.1987. Effect of protein and energy intake by primiparous sows during lactation on sow and litter performance and sow serum thyroxin and urea concentrations[J]. J. Anim. Sci.64:1060.
    [127]Brooks, P. H., and D. J. A. Cole.1972. Studies in sow reproduction. The effect of nutrition between weaning and remating on the reproductive performance of primiparous sows[J]. Anim. Prod.15:259.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700