用户名: 密码: 验证码:
混沌预测理论及其在VBR视频业务中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着混沌理论和应用技术研究的不断深入,混沌时间序列分析及预测不仅已成为混沌信号处理研究领域的前沿研究热点,且能够解决工程实践中遇到难以用线性信号处理方法解决的大量非线性信号处理问题。
     宽带网络及数字压缩技术的不断发展致使多媒体业务逐渐成为ATM网业务的主要来源,其大部分都采用变比特率方式(VBR)进行传输。近来研究表明VBR视频业务不仅具有短相关性,而且还具有长相关性,因此传统VBR视频业务模型在描述VBR视频业务存在不足之处,而分形模型能够很好地模拟VBR视频业务,分形中的自相似行为常常预示着混沌特性的存在,因此用混沌理论研究VBR视频业务,将有可能揭示用传统的分析方法发现不了的内在规律,有着非常重要的理论和实际意义。
     本文主要围绕混沌时间序列预测方法及其在VBR视频业务中的应用展开研究,主要内容包括:(1)混沌时间序列分析与局域预测方法;(2)混沌时间序列的非线性自适应预测;(3)VBR视频业务的混沌特性分析及混沌方法预测。主要研究成果包括:
     1、分析了三种局域零阶预测法的预测性能及其抗噪声性能;研究了混沌时间序列基于维纳解的局域一阶预测法:提出了一种基于离散余弦变换域的局域二次多项式预测法,仿真结果表明该方法不仅能准确地预测一些低维混沌时间序列,且实现简单。
     2、在分析现有多项式非线性自适应预测法的基础上,提出了混沌时间序列预测的DCT域二次实时自适应滤波预测法;研究了自适应幅度的神经自适应滤波预测法对混沌时间序列预测的可行性及预测性能;并构造了收敛速度快、网络结构简单的时延Chebyshev正交多项式自适应滤波预测模型;研究结果表明三种预测模型均能够有效地预测一些低维混沌时间序列。这些均进一步发展了混沌时间序列非线性自适应预测结构及算法。
     3、用Wolf法计算得到VBR视频业务在任何时间标度上均具有正的最大李亚谱诺夫指数,表明VBR视频业务具有混沌特性;在此基础上,用混沌局域一阶预测法对两条典型的VBR视频业务流进行了预测,预测结果表明混沌局域预测法能够对VBR视频业务进行有效预测,相比自适应线性预测法具有更高的预测精度且不存在时间延迟。
With the development of chaos theory and application technology study, analysis and prediction of chaotic time series have become the emphasis of chaotic signal precessing research domain, and can solve a lot of nonlinear signal process questions in engineering practice, which are difficult to be done by linear signal processing methods.
    Multimedia traffic has become the chief source of ATM network gradually with the development of broadband network and digital compression technology, and most of them are transmitted through variable bit rate (VBR) mode. Recent researches indicate that VBR video traffic not only has short-term dependence, but also has long-term dependence. Consequently traditional models of variable bit rate video traffic are deficient in depicting variable bit rate video traffic, but fractal models can do it well. Gernerally, self-similar behaviors of fractal mean the existence of chaos, thereby analyzing variable bit rate video traffic through chaos theory will be likely to reveal intrinsic laws, which are not founded by traditional analysis method.
    Research works focus on prediction methods of chaotic time series and its application in VBR video traffic in this dissertation, which mainly include analysis and local prediction method of chaotic time series, nonlinear adaptive prediction of chaotic time series, chaotic characteristics analysis and chaotic prediction of VBR video traffic. The main research fruits are as follows:
    1 . Prediction capability and anti-noise performance of three kinds of local zero-order prediction methods are analysed completely. Local first-order prediction of chaotic time series based on Wiener solution is studied. DCT domain local quadratic polynomial prediction is presented, and simulation results indicate that this method not only can predict some low-dimension chaotic time series efficiently, but also can be implemented simply.
    2. Based on the analysis of polynomial nonlinear adaptive prediction methods existed already, a DCT domain quadratic predictor for real-time prediction of low-dimension chaotic time series is proposed. The feasibility and prediction performance of chaotic time series with neural adaptive prediction method with adaptive amplitude are studied. Time-delay neural Chebyshev
    
    
    
    orthogonal polynomial adaptive nonlinear prediction model is constructed. Experimental results indicate that three kinds of prediction models can predict some low-dimension chaotic 'time series efficiently. Moreover nonlinear adaptive prediction structure and algorithm of chaotic time series are developed further.
    3. The positive maximum Lyapunov exponents of variable bit rate video traffic are calculated on any time scale using Wolfs algorithm, which indicates that variable bit rate video traffic has chaotic characteristics. Furthermore, chaotic local first-order prediction method is used to predict two typical variable bit rate video traffics. The prediction results show that chaotic local prediction methods can predict the variable bit rate video traffic efficiently, and are more accurate than adaptive linear prediction method without time delay.
引文
[1] Kantz H, Schreiber T. Nonlinear time series analysis. Cambridge University Press, 1997.
    [2] 陈士华,陆君安.混沌动力学初步.武汉水利大学出版社,1998.
    [3] 吕金虎.混沌时间序列分析及其应用.武汉大学出版社,2002.
    [4] 王东升,曹磊.混沌、分形及其应用.中国科学技术出版社,1995.
    [5] Haykin S, Xiao B L. Detection of signals in chaos. Proceedings of the IEEE. 1995,83(1):95-122.
    [6] Grassberger P, Procaccia I. Measuring the strangeness of strange attractors. Physica D. 1983,9:189-208.
    [7] Wolf A, Swift J B, Swinney H L, Vastano J A. Determining Lyapunov exponent from experimental. Physica D. 1985,16:285-317.
    [8] Grassberger P, Procaccia I. Estimation of the Kolmogorov entrop from a chaotic signal. Physical Review Letters. 1983,50:2591-2593.
    [9] Casdagli M. Nonlinear prediction of chaotic time series. Physica D.1989,35:335-356.
    [10] Theiler J, Eubank S, Longtin A, Galdrikian B, Farmer J D. Testing for nonlinearity in time series: the method of surrogate data. Physica D. 1992,58:77-94.
    [11] Palus M. Testing for nonlinearity using redundancies: quantitative and qualitative aspects. Physica D. 1995,80: 186-205.
    [12] Liang Y C, Yi G H, Hai P F, Guo W H. Predicting chaotic time series using wavelet network. Physica D. 1995,85:225-238.
    [13] Maguire L P, Roche B, McGinnnity T M, McDaid L J. Predicting a chaotic time series with a fuzzy neural network. Information Science. 1998,112:137-142.
    [14] Zhang J S, Xiao X C. Predicting chaotic time series with recurrent neural networks. Chinese Physics Letter. 2000,17(2):88-90.
    [15] Zhang J S, Xiao X C. Fast evoving multi-layer perceptrons for modeling and prediction of noisy chaotic time series. Chinese
    
    Physics. 2000,9(6):408-413.
    [16] Farmer J D, Sidorowich J J. Predicting chaotic time series. Physical Review Letters. 1987,59(8):845-848.
    [17] 甘建超,肖先赐.基于相空间邻域的混沌时间序列自适应预测滤波器(Ⅰ)线性自适应滤波.物理学报.2003,52(5):1096-1101.
    [18] 甘建超,肖先赐.基于相空间邻域的混沌时间序列自适应预测滤波器(Ⅱ)非线性自适应滤波.物理学报.2003,52(5):1102-1107.
    [19] Zhang J S, Li H C, Xiao X C. DCT domain local volterra prediction of chaotic time series. Chinese Physics.已通过审稿在修改.
    [20] 张家树,肖先赐.混沌时间序列的Volterra自适应预测.物理学报.2000,49(3):403-408.
    [21] 张家树,肖先赐.混沌时间序列的自适应高阶非线性滤波预测.物理学报.2000,49(7):1220-1226.
    [22] 张家树,肖先赐.用一种少参数非线性自适应滤波器自适应预测低维混沌时间序列.物理学报.2000,49(12):2333-2339.
    [23] 张家树,肖先赐.用于混沌时间序列自适应预测的一种少参数二阶Volterra滤波器.物理学报.2001,50(7):1248-1254.
    [24] 张家树,肖先赐.用于低维混沌时间序列的一种非线性自适应预测滤波器.通信学报.2001,22(10):93-98.
    [25] 张家树,李恒超,肖先赐.连续混沌信号的DCT域二次实时滤波预测。物理学报.2004,53(3):710-716.
    [26] 张家树,李恒超,邓晓红,肖先赐.时延神经Chebyshev正交多项式自适应预测器.物理学报.已通过审稿在修改.
    [27] 韦保林,罗晓曙,汪秉宏等.一种基于三阶Volterra滤波器的混沌时间序列自适应预测方法.物理学报.2002,51(10):2205-2210.
    [28] 任晓林,胡光锐,徐雄.混沌时间序列局域线性预测方法.上海交通大学学报.1999,33(1):19-21.
    [29] 郭双冰,肖先赐.混沌时间序列的Volterra自适应预测滤波器定阶.电子与信息学报.2002,24(10):1334-1340.
    [30] Zhang J S, Xiao X C. Nonlinear adaptive prediction of chaotic time series with sine-function-based Volterra adaptive predictors. Chinese Physics Letter. 2001,18(5):337-340.
    [31] Beran J, Sherman R, Taqqu M S, Willinger W. Long-range dependence in variable-bit-rate video traffic. IEEE Transactions on
    
    Communications. 1995,43(2/3/4):1566-1579.
    [32] Skelly P, Schwarz M, Dixit S. A histogram-based model for video traffic behavior in an ATM multiplexer. IEEE/ACM Transations on Networking. 1993,1(4):446-459.
    [33] Shroff N, Schwartz M. Video modeling within networks using deterministic smoothing at the source. Proceedings of the Infocom' 94.1994,342-349.
    [34] Maglaris B, Anastassiou D, Sen P, Karlsson G, Robbins J D. Performance models of statistical multiplexing in packet video communications. IEEE Transactions on Communications. 1988,36(7):834-844.
    [35] Sen P, Marlaris B, Rikli N E, Anatassiou D. Models for packet switching of variable-bit-rate video sources. IEEE Journal In Selected Areas in Communications. 1989,7(5):865-869.
    [36] Rodriguez-Dagnino R M, Leon-Garcia A. Broadband traffic characterization. Proceedings of the Canadian Conference on Electrical and Computer Engineering. 1992,不详.
    [37] Pancha P, Zarki M E. MPEG coding for variable bit rate video transmission. IEEE Communications Magazine. 1994,32(5):54-66.
    [38] Coelho R, Tohme S. Video coding mechanism to predict video traffic in ATM networks. Proceedings of the Globecom' 93. 1993,447-451.
    [39] Leduc J P. Digital Moving Pictures: Coding and Transmission on ATM Networks. Elsevier, Amsterdam, 1994.
    [40] Numura M, Fujii T, Ohta N. Basic characteristics of variable bit rate video coding in ATM environment. IEEE Journal In Selected Areas in Communications. 1989,7(5):752-760.
    [41] Yegenoglu F, Jabbari B, Zhang Y. Motion-classified autoregressive modeling of variable bit rate video. IEEE Transations on Circuits and Systems for Video Technology. 1993,3(1):42-53.
    [42] Heyman D P, Lakshaman T V. Statistical analysis and simulation study of video teleconference traffic in ATM networks. IEEE Transations on Circuits and Systems for Video Technology.
    
    1992,2(1):49-59.
    [43] Corte L A, Lombardo A, Palazzo S, Zinna S. Modeling activity in VBR video sources. Signal Processing: Image Communication. 1991,3:167-178.
    [44] Shim C, Ryoo I, Lee J, Lee S. Modeling and call admission control algorithm of variable bit rate video in ATM networks. IEEE Journal In Selected Areas in Communications. 1994,12(2):332-344.
    [45] Pancha P, Zarki M E. MPEG coding for variable bit rate video transmission. IEEE Communications Magazine. 1994;32(5):54-66.
    [46] Lucantoni D M, Neuts M F, Reibman A R. Methods for performance evaluation of VBR traffic models. IEEE/ACM Transactions on Networking. 1994,2(2):176-180.
    [47] 徐树公,黄载禄.一种新的ATM网VBR视频业务模型.电子学报.1997,25(1):102-105.
    [48] Xu S G, Huang Z L. A Gamma autoregressive video model on ATM networks. IEEE Transactions on Circuits and Systems for Video Technology. 1998,8(2):138-142.
    [49] Grunenfelder R, Cosmas J, Manthorpe S, Odinma-Okafor A. Characterization of video codecs as autoregressive moving average precesses and related queueing system performance. IEEE Journal on Selected Areas in Communications. 1991,9(3):284-293.
    [50] Melamed B, Hill J R, Goldsman D. The TES methodology: Modeling empirical stationary time series. Proceeding of the 92' Winter Simulation Conference. 1992,135-144.
    [51] Melamed B. An overview of TES processes and modeling methodology. Performance Evaluation of Computer and Communications Systems. 1993,15:359-393.
    [52] Lee D S, Melamed B, Reibman A R, Sengupta B. TES modeling for analysis of a video multiplexer. Performance Evaluation of Computer and Communication Systems. 1994,16:21-34.
    [53] Reininger D, Melamed B, Raychaudhuri D. Variable bit rate MPEG video: characteristics, modeling and multiplexing. Proceedings of the 14th International Teletraffic Congress. 1994:295-306.
    [54] Ismail M R, Lambadaris I E, Devetsikiotis M, Kaye A R. Modeling
    
    prioritized MPEG video using TES and a frame spreading strategy for transmission in ATM networks. Proceedings of the Infocom' 95. 1995,762-770.
    [55] Choe J, Shroff B. Queuing analysis of high-speed multiplexers including long-range dependent arrival processes. Proceedings of IEEE Infocom' 99.1999,617-624.
    [56] Coelho R, Decreusefond L. Fractional Brownian motion usage for smoothed video traffic bandwidth allocation. Proceedings of IEEE GLOBECOM' 97.1997,1027-1031.
    [57] Parulekar M, Makowski A M. Tail probabilities for a multiplexer with self-similar, traffic. Proceedings of IEEE Infocom' 96. 1996,1452-1459.
    [58] Garrett M W, Willinger W. Analysis, modeling and generation of self-similar VBR video traffic. Proceedings of ACM SIGCOMM' 94. 1994,269-280.
    [59] Ma S, Ji C. Modeling video traffic using wavelets. IEEE Communications Letters. 1998,2(4):100-103.
    [60] Adas AM. Using adaptive linear prediction to support real-time VBR video under RCBR network service model. IEEE/ACM Transactions on Networking. 1998,6(5):635-644.
    [61] Adas A M. Supporting real-time VBR video using dynamic reservation based on linear prediction. Proceedings of the Infocom' 96. 1996,1476-1483.
    [62] Sang J Y. Efficient traffic prediction scheme for real-time VBR MPEG video transmission over high-speed networks. IEEE Transactions on Broadcasting. 2002,48(1):10-18.
    [63] 李永利,刘贵忠,阎晓红,侯兴松,蔡毓.面向RCBR网络的变比特率MPEG视频流的自适应预测.计算机学报.2002,25(10):1052-1058.
    [64] Randhawa T S, Hardy R H S. Proactive management of MPEG traffic in ATM networks using time sequenced RLS filters. 2nd IEEE International Conference on ATM, ICATM'99.1999,507-511.
    [65] Wang X Y, Jung S, Meditch J S. VBR broadcast video traffic modeling-A wavelet decomposition approach. Proceedings of IEEE GLOBECOM' 97.1997,1052-1056.
    
    
    [66] Wang X Y, Meditch J S. Adaptive wavelet predictor to improve bandwidth alloation efficiency of VBR video traffic. Computer Communications. 1999,22:40-45.
    [67] Wang X Y, Jung S, Meditch J S. Dynamic bandwidth allocation for VBR video traffic using adaptive wavelet prediction. Proceedings of the ICC' 98.1998,549-553.
    [68] Zhao H, Ansari N, Shi Y Q. A fast nonlinear adaptive algorithm for video traffic prediction. Proceedings of the ITCC' 02.2002,
    [69] Zhao H, Ansari N, Shi Y Q. Efficient predictive bandwidth allocation for real time videos. IEICE Transactions on Communications. 2003, E86-B(1):443-450.
    [70] Chong S, Li S Q, Ghosh J. Predictive dynamic bandwidth allocation for efficient transport of real-time VBR video over ATM. IEEE Journal on Selected Areas in Communications. 1995,13(1):12-23.
    [71] Doulamis A D, Doulamis N D, Kollias S D. Traffic prediction and network resources estimation of VBR MPEG-2 sources using adaptively trained neural networks. 10th Mediterranean Electrotechnical Conference. 2000,717-720.
    [72] 熊思敏,杨志民,雷振明.RBF神经网络在视频业务建模及预测中的应用.通信学报.2000,21(4):18-24.
    [73] Zhang Y, Zheng J L, Chen W X. Chaotic neural network method to control ATM traffic. Proceedings of the ICCT' 98. 1998,S21(4):1-5.
    [74] Bhattacharya A, Parlos A G, Atiya A F A. Prediction of MPEG-coded video source traffic using recurrent neural networks. IEEE Transactions on Signal Processing. 2003,51(8):2177-2190.
    [75] Chang P R, Hu J T. Optimal nonlinear adaptive prediction and modeling of MPEG video in ATM networks using pipelined recurrent neural networks. IEEE Journal on Selected Areas in Communications. 1997, 15(8): 1087-1100.
    [76] 林刚,刘泽民.ATM 网中视频码流的非线性自适应预测.电子学报.1999,27(10):1-3.
    [77] Packard N H, Crutchfield J P, Farmer J D, Shaw R S. Geometry from
    
    a time series. Physical Review Letter. 1989,45(9):712-716.
    [78] Takens F. Detecting strange attractors in turbulence. Dynamic Systems and Turbulence. 1981,366-381.
    [79] 叶中行,龙如军.混沌时间序列的区间预测.上海交通大学学报.1997,12:291-309.
    [80] Casdagli M. Chaos and deterministic versus stochastic and nonlinear modeling. Journal of the Royal Statistical Society Sereis B. 1992,54(2):303-328.
    [81] Pawelzik J. Schuster H G. Unstable periodic orbits and prediction. Physical Review A. 1991,43(4):1808-1812.
    [82] Giona M, Lentini F, Cimagalli V. Functional reconstruction and local prediction of chaotic time series. Physical Review A. 1991,44(6):3496-3502.
    [83] McDonnell J R, Waagen D. Evolving recurrent perceptrons for time series modeling. IEEE Transactions on Neural Networks. 1994,5(1):24-38.
    [84] Chellapilla K, Rao S. Optimization of bilinear time series models using fast evolutionary programming. IEEE Signal Processing Letters. 1998,5(2):39-42.
    [85] Lapedes A, Farber R. How neural nets work. Neural Information Processing Systems. 1987,442-456.
    [86] Chng E S, Chen S, Mulgew B. Gradient radial basis function networks for nonlinear and nonstationary time series prediction. IEEE Transactions on Neural Networks. 1996,7(1):190-194.
    [87] Yee P, Haykin S. A dynamic regularized radial basis function network for nonlinear, nonstationary time series prediction. IEEE Transactions on Signal Processing. 1999,47(9):2503-2521.
    [88] Rojas I, Gonzalez J, Canas A, Diaz A F, Rojas F J, Rodriguez M. Short-term prediction of chaotic time series by using RBF network with regression weights. International Journal of Neural Systems, 2000, 10(5):353-364.
    [89] 杨杰,卢凌.基于RBF径向神经网络的混沌时间序列预测.交通与计算机.1999,17(1):37-39.
    [90] 李东梅,王正欧.基于RBF网络的混沌时间序列的建模与多步预测.系
    
    统工程与电子技术.2002,24(6):81-83.
    [91] 沈谦,王涛.基于改进的RBF网络的混沌时间序列预测.微机发展.2003,13(1):3-4.
    [92] Cao L Y, Hong Y G, Fang H P, He G. Predicting chaotic time series with wavelet networks. Physica D. 85:225-238.
    [93] David A, Matthew W, Alistair I M. Wavelet reconstruction of nonlinear dynamics. International Journal of Bifurcation and Chaos. 1998,8(11):2191-2201.
    [94] 江亚东,申江涛,杨炳儒.基于小波神经网络的混沌时间序列预测.微机发展.2001,11(3):37-39.
    [95] 陈哲,冯天瑾.基于小波神经网络的混沌时间序列分析与相空间重构.计算机研究与发展.2001,38(5):591-596.
    [96] Conner J T, Douglas R, Atlas L E. Recurrent neural networks and robust time series prediction. IEEE Transactions on Neural Networks. 1994,5(2):240-253.
    [97] Maguire L P, Roche B, McMinnity T M, McDaid L J. Predicting a chaotic time series using a fuzzy neural network. Information Science. 1998,112:125-136.
    [98] 谭文,王耀南,周少武,刘祖润.混沌时间序列的模糊神经网络预测.物理学报.2003,52(4):795-801.
    [99] Park D C, Zhu Y. Bilinear recurrent neural network. Proceedings of the ICNN' 94.1994,3:1459-1464.
    [100] Saad E W, Prokhorov D V, Wunsch D C. Comparative study of stock trend predicton using time delay, recurrent and probabilistic neural networks. IEEE Transactions on Neural Networks. 1998,9(6):1456-1469.
    [101] Lin D T, Dayhoff J E, Ligomenides P A. Adaptive time-delay neural network for temporal correlation and prediction. Proceedings of the SPIE. 1992,1826:170-181.
    [102] Greenwood G W. Training multiple-layer percetrons to recognize attractors. IEEE Transactions on Evolutionary Computation. 1997, 1(4):244-248.
    [103] Grabec I. Modeling of chaos by a self-organizing neural networks. Proceedings of the ICANN' 91.1991,151-161.
    
    
    [104] Linsay P S. An efficient method of forecasting chaotic time series using linear interpolation. Physics Letters A.1991,153(6,7):353-356.
    [105] Navone H D, Ceccatto H A. Forecasting chaos from small data sets: a comparison of different nonlinear algorithms. Journal of Physics A: Mathematical and General. 1995,28(12):3381-3388.
    [106] He X D, Lapedes A. Nonlinear modeling and prediction by successive approximation using radial basis functions. Physica D.1993,70:289-301.
    [107] Kugiumtzis D, Lingjaerde O C, Christophersen N. Regularized local linearprediction of chaotic time series. Physica D. 1998,112(3/4):334-360.
    [108] Sugihara G, May R M. Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature. 1990,344:734-741.
    [109] Badel A E, GueganD, Mercier L. Michel O. Comparison of several methods to predict chaotic time series. Proceedings of the ICASSP' 97.1997,3793-3796.
    [110] Dudani S A. The distance-weighted k-nearest-neighbor rule. IEEE Transactions on System, Man and Cybernetics. 1975,6(4):325-327.
    [111] 梁志珊,王丽敏,付大鹏,张化光.基于Lyapunov指数的电力系统短期负荷预测.中国电机工程学报.1998,18(5):368-371.
    [112] 梁志珊,王丽敏,付大鹏.应用混沌理论的电力系统短期负荷预测.控制与决策.1998,13(1):87-90.
    [113] Zhang J, Man K F, Ke J Y. Time series prediction using lyapunov exponents in embedding phase space. IEEE International Conference on Systems, Man and Cybernetics. 1998,1750-1755.
    [114] Rosenstein M T, Collins J J, Deluca D J. Apractical method for calculating largest Lyapunov exponents from small data sets. Physica D. 1993,65:117-134.
    [115] Albano A M, Muench J, Schwartz. SVD and Grassberger-Procaccia algorithm. Physical Review A. 1988,38:3017-3026.
    [116] Fraser A M. Information and entropy in strange attractors. IEEE Transactions on Information Theory. 1989,35(2):245-262.
    
    
    [117] Kim H S, Eykholt R, Salas J D. Nonlinear dynamics, delay times, and embedding windows. Physica D. 1999,127:48-59.
    [118] Rosenstein M T. Reconstruction expansion as a geometry-based framework for choosing proper delay time. Physica D. 1994,73:82-89.
    [119] Kember G, Fowler A C. A correlation function for choosing time delays in phase portrait reconstructions. Physics Letters A. 1993,179:72-80.
    [120] Buzug T, Pfister G. Optimal delay time and embedding dimension for delay-time coordinates by analysis of the global static and local dynamical behavior of strange attractors. Physical Review A. 1992,45:7073-7084.
    [121] 王海燕,盛昭翰.混沌时间序列相空间重构参数的选取方法.东南大学学报.2000,30(5):113-117.
    [122] 孙海云,曹庆杰.相空间重构延迟时间的确定.山东工业大学学报.2000,30(2):107-110.
    [123] 林嘉宇,王跃科,黄芝平,沈振康.语音信号相空间重构中时间延迟的选择—复自相关法.信号处理.1999,15(3):220-225.
    [124] Sauer T D, Tempkin J A, Yorke J A. Spurious Lyapunov exponents in attractor reconstruction. Physical Review Letters. 1998,81 81(20):4341-4344.
    [125] Kennel M B, Brown R, Abarbanel H D I. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Physical Review A. 1992,45(6):3403-3411.
    [126] Barana G, Tsuda I. A new method for computing Lyapunov exponents. Physics Letters A. 1993,175:421-427.
    [127] Rosenstein M T, Collins J J, Deluca D J. A practical method for calculating largest Lyapunov exponents from small data sets. Physcia D. 1993,65:117-134.
    [128] Grassberger P, ProcacciaI. Estimation of theKolmogoroventrop from a chaotic signal. Physical Review Letters. 1983,50: 2591-2593.
    [129] Theiler J, Eubank S, Longtin A, Galdrikian B, Farmer J D. Testing for nonlinearity in time series: the method of surrogate data.
    
    Physica D. 1992,59:77-94.
    [130] Palus M. Testing for nonlinearity using redundancies: quantitative and qualitative aspects. Physica D. 1995,80:186-205.
    [131] Osborne A R, Provenzale A. Finite correlation dimension for stochastic systems with power-law spectra. Physica D. 1989, 35:357-381.
    [132] Rapp P E. Chaos in the neurosciences: Cautionary tales from the frontier. Biologist. 1993,40:89-94.
    [133] Bertram C D, Tian X. Correlation of local stretchings as a way of characterizing chaotic dynamics amid noise. Physica D. 1992,58:469-481.
    [134] Sivakumar B. A phase-space reconstruction approach to. prediction of suspended sediment concentration in rivers. Journal of Hydrology. 2002,258:149-162.
    [135] Sivakumar B, Jayawardena A W, Fernando T M K G. River flow forecasting: using of phase-space reconstruction and artificial neural networks approaches. Journal of Hydrology. 2002,265: 225-245.
    [136] Haykin S. Adaptive Filter Theory. 电子工业出版社,1998.
    [137] Haykin S, Liang L. Nonlinear adaptive prediction of nonstationary signals. IEEE Transactions on Signal Processing. 1995,43(2):526-535.
    [138] Raz G M, Veen B D. Baseband Volterra filters for implementing carrier based nonlinearities. IEEE Transactions on Signal Processing. 1998,46(1):103-114.
    [139] Nowak R D, Van Veen B D. Volterra filter equalization: A fixed point approach. IEEE Transactions on Signal Processing. 1997, 45(2):377-388.
    [140] 张永平,郑南宁,李翠华.图像边缘提取的自适应Volterra滤波器设计.电子学报.1999,27(4):75-78.
    [141] BernsteinR, Moore M, Mitra S. Adjustable quadratic filters for image enhancement. Proceedings of the ICIP' 97.1997,287-290.
    [142] 张家树,郭双冰,肖先赐.对频率捷变雷达频率的预测.电子对
    
    抗.2001,1:21-32.
    [143] 张家树,郭双冰,肖先赐.混沌调频通信的非线性自适应预测对抗.信号处理.2001,17(3):205-209.
    [144] Yao L. Genetic algorithm based identification of nonlinear systems by sparse Volterra filters. IEEE Transactions on Signal Processing. 1999,47(12):3433-3435.
    [145] Roy E,. Srewart R W, Durrani T S. Higher-order system identification with an adaptive recusive second-order polynomial filter. IEEE Signal Processing Letters. 1996,3(10):276-279.
    [146] Koh T, Powers E J. Second-order Volterra filtering and its application to nonlinear system identification. IEEE Transactions on Acoustics, Speech, and Signal Processing. 1984, 33(4):1445-1455.
    [147] Mandic D P, Chambers J A. Relations between the a priori and aposteriori errors in nonlinear adaptive neural filters. Neural Computation. 2000,12(6):1285-1292.
    [148] Mandic D P. NNGD algorithm for neural adptive filters. IEE Electronics Letters. 2001,8(11):295-297.
    [149] Hanna A I, Mandic D P. Nonlinear FIR adaptive filters with a gradient adaptive amplitude in the nonlinearity. IEEE Signal Processing Letters. 2002,9(8):253-255.
    [150] Akritas P, Antoniu I, Ivanov V V. Identification and prediction of chaotic maps applying a Chebyshev neural networks. Chaos, Solitions and Fractals, 2000,11:337-344.
    [151] BasiosV, Bonushkina A Y, Ivanov V V. A method for approximating one-dimensional functions. Computers and Mathematics with Applications, 1997,34(7-8):687-693.
    [152] Adas A M, Mukherjee A. On resource management and QoS guarantees for long range dependent traffic. Proceedings of the Infocom' 95, 1995,2:779-787.
    [153] Gao J B, Rubin I. Multifractal analysis and modeling of VBR video traffic. IEEE Electronics Letters, 2000,36(3):287-288.
    [154] http://www3.informatik.uni-wuerzburg.de/~rose/
    [155] 李恒超,张家树,王建英.VBR视频业务的混沌特性研究.铁道学报.
    
    2003,25(6):56-60.
    [156] 李恒超,张家树.变比特率视频业务的混沌局域预测.铁道学报.2004,已录用.
    [157] Palus M, Albrecht V, Dvorak I. Information-theoretic test for nonlinearity in time series. Physics Letters A. 1993,175(3): 203-209.
    [158] Fraser A M, Swinney H L. Independence coordinates for strange attractors from mutual information. Physical Review A. 1986, 33 (2):1134-1150.
    [159] Tanaka N, Okamoto H, Naito M. Detecting and evaluating intrinsic nonlinearity present in the mutual dependence between two variable. Physica D. 2000,147(1):1-11.
    [160] 钟义信.信息科学原理.北京邮电大学出版社,1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700