用户名: 密码: 验证码:
WiMAX无线网络QoS测量及优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
WiMAX(全球微波互联接入)无线通信技术在近几年里发展迅速,在全球建立了多个实验网络。IEEE 802.16协议标准里定义了五种不同的服务流,每种连接都有不同的业务流与之相对应。标准针对不同业务流定义了详细的QoS(Quality of Service)参数,但是对业务流的接纳控制、调度算法和拥塞控制缺乏具体说明。完善的QoS保证是WiMAX系统的一大亮点,有效的上行链路和下行链路调度算法、接入控制算法和拥塞控制算法对QoS的保证具有重大意义。基于测试获得网络的各种状态参数及其动态变化趋势,本论文研究了如何在无线通信网络中提升用户的服务质量的问题。论文主要研究工作及成果如下:
     (1)研究了实时流媒体业务低包头开销的调度问题。实时流媒业务调度过程中,子包头的大小随着基站调度每帧的用户数目增多而增大,包头占据大量开销。本文提出一种有效的调度算法来最大程度减少上行链路调度过程中包头的开销。本文首先使用最早截止时间调度算法对用户进行调度;对于剩余带宽的分配,本文采用批量马尔科夫到达过程来预测实时流媒体的业务到达速率,并运用牛顿插值法预测基站响应时间;基于预测值和实际值的不同,提出的调度算法能自适应调节误差,从而准确地预测应为用户分配的带宽,并预分配带宽给用户。提出的调度算法减少了在一帧中调度用户的数量,以降低在WiMAX上行链路调度的开销。仿真结果显示,该算法与现有算法相比不仅能提供QoS保证,而且也能大幅减少包头开销。
     (2)研究了上行链路调度问题。通过对现有的调度算法进行分析,本文依据不同业务的QoS需求提出了分层调度算法。在对实时流媒体上行链路调度中,本文提出紧急差额轮循调度算法。该算法考虑了对网络层和视频应用层的支持,修改和拓展了差额轮循调度算法,对差额轮循调度算法进行延迟紧急程度的加权。与传统轮循调度算法和加权轮循算法相比,紧急差额轮循调度算法能够在一定程度上降低实时突发视频业务的端对端延时和延时抖动,提升系统的吞吐量,从而进一步满足实时传输的要求。
     (3)研究了WiMAX网络中的用户接入控制和拥塞控制问题。通过对业务流进行实时测量,动态估计相应的QoS参数,本文提出一种基于QoS参数测量值的动态接纳控制算法。同时,考虑到实际无线链路的差错控制对上层的影响,本文提出一种拥塞控制算法。该算法通过运用基于(M,N)统计测量方式的端到端丢包区分算法来判断网络中的拥塞程度,以进一步减缓链路拥塞。仿真结果显示,提出的接入控制算法和拥塞控制算法能够有效改善用户的服务质量和提升系统的性能。
     (4)研究了下行链路调度问题。加权比例公平调度算法的性能在实时流媒体数据突发到达时存在一定的局限性。为此,本文提出一种基于测量的WFQ调度算法。测试结果表明,基于测量的加权比例公平算法具有一定的抗流媒体突发能力,其性能在实时流媒体突发下载情况下优于加权比例公平算法。
The WiMAX (Worldwide Interoperability for Microware Access System) industry has seen rapid growth in recent years, and many experimental networks have been established around the world. The IEEE 802.16 standard suite has defined five types of service flows, and each connection has the corresponding user flows. The standard has defined detailed QoS parameters for different user flows, but it does not specify the algorithms for admission control, scheduling, and congestion control. A distinguishing feature of WiMAX system is its perfect QoS guarantee, and the algorithms for scheduling, admission control, and congestion control have significant impact on QoS guarantees. Based on measurement of a variety of parameters and their dynamic trends, this dissertation studies how to improve user QoS in wireless communication networks. The main contributions of this dissertation are as follows:
     (1) The research on low header-overhead scheduling for real-time media flows. In the scheduling for real-time media flows, subheader overheads grow with the number of active SS (subscribe stations), thus introducing significant amount of header overhead. To address this issue, this dissertation proposes an effective, low-overhead scheduling algorithm to reduce uplink header-overhead. Low-overhead scheduling algorithm first schedules SSs with the earlier-deadline-first (EDF) algorithm. For the remaining bandwidth, this dissertation uses a Batch Markovian Arrival Process (BMAP) to predict the arrive rate of real time media flows, and it uses Newton's interpolation polynomial function to predict the response time from BS; based on the difference between the predicted and actual values, Low-overhead scheduling algorithm adaptively adjusts errors, and it precisely predicts the bandwidth that should be allocated to uers and pre-allocate the bandwidth for users. Low-overhead scheduling algorithm reduces the number of users in a frame, thus reducing the overhead in WiMAX uplink scheduling. Simulation results have demonstated that, compared with the existing algorithms, a Low-overhead scheduling algorithm not only ensures QoS but also significantly reduces IP header overheads.
     (2) The research on uplink scheduling problems. By analyzing existing scheduling algorithms and based on the QoS requirements of different user flows, this dissertation proposes a hierarchical scheduling algorithm. For uplink scheduling of real-time media flows, this dissertation proposes the urgent-DRR (UDRR) scheduling algorithm; the UDRR scheduling algorithm modifies and extends the DRR scheduling algorithm by considering mechanisms that have been employed by the network and the video applications and by adding weight to delay urgencies of service flows. Compared with the traditional RR and WRR algorithms, UDRR scheduling algorithm can reduce end-to-end delay and delay jitter and improve system through for bursty video services, thus further meeting the requirements of real-time transmissions.
     (3) The research on user admission control and congestion control in WiMAX networks. Based on real-time measurement of user flows and the dynamically estimated QoS parameters, this dissertation proposes a dynamic admission control algorithm based measured QoS parameters. In the mean time, this dissertation proposes a congestion control algorithm based on the impact of wireless link errors on upper-layer performance. This algorithm reduces congestion by determining the degree of network congestion through a (M, N) statistical measurement algorithm based end-to-end data loss classification. The simulation results have shown that the proposed admission and congestion control algorithms can effectively improve user QoS and system performance.
     (4) The research on scheduling problems. The WFQ scheduling algorithm has limitation in the presence of bursty real-time media data. To address the limitations, this dissertation proposes a measurement-based WFQ scheduling algorithm. Evaluation results have shown that the measurement-based WFQ algorithm is robust to bursty media data and outperforms the WFQ algorithm for the download of bursty real-time media.
引文
[1]张宏莉,方滨兴,胡铭曾,等.Internet测量与分析综述.软件学报,2003,14(1):110-116
    [2] Z. Lotker, B. Patt-Shamir, A. Rosen. New stability results for adversarial queuing. SIAM Journal on Computing, 2004, 33(2):286-303
    [3] M.J. Pardo, D.de la Fuente. Design of a fuzzy finite capacity queuing model based on the degree of customer satisfaction: analysis and fuzzy optimization. Fuzzy Sets and Systems, 2008, 159(24):3313-3332
    [4] C. Dou, Y.H. Chang. Class-based downlink capacity estimation of a WCDMA network in a multiservice context. Computer Communications, 2005, 28(12):1443-1455
    [5] I. Iliadis, C. Minkenberg.Performance of a speculative transmission scheme for scheduling-latency reduction.IEEE/ACM Transactions on Networking, 2008, 16(1): 182-195
    [6] M. Iftikhar, B. Landfeldt, M. Caglar. Towards the formation of comprehensive SLAs between heterogeneous wireless DiffServ domains. Telecommunication Systems Special Issue on Wireless Networks Modeling, 2009, 42(4):179-199
    [7] S. Mao, D. Bushmitch, S. Narayanan, et al. MRTP: a multiflow real-time transport protocol for ad hoc networks. IEEE Transactions on Multimedia, 2006, 8(2):356-369
    [8] A. L. Alexander, A. L. Wijesinha, R. Karne. An evaluation of secure real-time transport protocol (SRTP) performance for VoIP. Third International Conference on Network and System Security, Gold Coast, Queensland, Australia, 2009, 95-101
    [9] P. Ameigeiras, J. Wigard, P. Mogensen. Performance of the M-LWDF scheduling algorithm for streaming services in HSDPA. IEEE 60th Vehicular Technology Conference, Los Angeles, California, USA, 2004, Vol.2:999-1003
    [10] H. A. Ramli, R. Basukala, K. Sandrasegaran, et al. Performance of well known packet scheduling algorithms in the downlink 3GPP LTE system. IEEE 9th Malaysia International Conference on Communications, Kuala Lumpur, Malaysia, 2009, 815-820
    [11] J. H. Rhee, J. M. Holtzman, D. K Kim. Scheduling of real/non-real time services: adaptive EXP/PF algorithm. The 57th IEEE Semiannual Vehicular Technology Conference, JEJU, Korea, 2003, Vol.1:462-466
    [12] Z. Navickas, L. Bikulciene, M. Ragulskis. Generalization of exp-function and other standardfunction methods.Applied Mathematics and Computation, 2010, 216(8):2380-2393
    [13] C. Shannon, D. Moore, K. Keys, et al. The internet measurement data catalog. Computer Communication Review, 2005, 35(5):97-100
    [14] M. Allman. Measuring end-to-end bulk transfer capacity. Proceedings of the ACM SIGCOMM Internet Measurement Workshop, San Francisco, California, USA, 2001, 139-143
    [15] V. Paxson, J. Mahdavi, A. Adams, et al. Architecture for large-scale internet measurement. IEEE Communications Magazine, 1998, 36(8):48-54
    [16] H. Dai, R. W. Knepper. Modeling and experimental measurement of active substrate-noise suppression in mixed-signal 0.18-μm BiCMOS technology. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2009, 28(6):826-836
    [17] P. Patanakul, D. Milosevic. The effectiveness in managing a group of multiple projects: factors of influence and measurement criteria. International Journal of Project Management, 2009, 27(3):216-233
    [18] I. Rish, G. Tesauro. Estimating end-to-end performance by collaborative prediction with active sampling. 10th IFIP/IEEE International Symposium on Integrated Network Management, Munich, Germany, 2007, 294-303
    [19] J. Naegele, H. Kerscher, R. Kleineisel, et al. IPPM measurements of the german research network G-WiN and their application to videoconferencing services. Proceedings of the Eighth IASTED International Conference on Internet and Multimedia Systems and Applications, Kauai, USA, 2004, 317-322
    [20] L. Liang, Z. Sun, D. He. New parameters and metrics for multiparty communications. Next Generation Internet Networks, Rome, Italy, 2005, 396-403
    [21] M. Clark, K. Jeffay. Application-level measurements of performance on the vBNS. International Conference on Multimedia Computing and Systems, Florence, Italy, 1999, Vol.2:362-366
    [22] X. Yan, J. Bao, B. Zhang, et al. Data reconciliation method containing nodal and measurement test and its application. Journal of Chemical Industry and Engineering, 2007, 58(11):2828-2833
    [23] W. Li, B. Zeng, D. Zhang, et al. Performance evaluation of end-to-end path capacity measurement tools in a controlled environment. Lecture Notes in Computer Science, 2008, 5036:222-231
    [24] P. Orosz, T. Skopko. Software-based packet capturing with high precision timestamping forlinux. The Fifth International Conference on Systems and Networks Communications (ICSNC), Nice, France, 2010, 381-386
    [25] V. Duarte, N. Farruca. Using libPcap for monitoring distributed applications. International Conference on High Performance Computing and Simulation, Caen, France, 2010, 92-97
    [26] R. P. Salvo, G. Romano, F. Palmieri, et al. Joint end-to-end loss-delay hidden markov model for periodic UDP traffic over the internet. IEEE Transactions on Signal Processing, 2006, 54(2):530-541
    [27] P. Vern. Empirically-derived analytic models of wide-area TCP connections. IEEE/ACM Transactions on Networking, 1994, 2(4):316–336
    [28] N. G. Duffield, J. Horowitz, D. Towsley, et al. Multicast-based loss inference with missing data. IEEE Journal on Selected Areas in Communications, 2002, 20(4):700–713
    [29] M. F. Shih, A. O. Hero. Unicast-based inference of network link delay distributions using mixed finite mixture models. IEEE Transactions on Signal Processing, Special Issue on Signal Processing in Networking, 2003, 51(9):2219-2228
    [30] N. Duffield, L. P. Francesco, W. Wei, et al. Network loss tomography using striped unicast probes. IEEE/ACM Transactions on Networking, 2006, 14(4):697–710
    [31] A. Soule, K. Salamatian, N. Taft. Traffic matrix tracking using kalman filters. ACM SIGMETRICS Performance Evaluation Review, 2005, 33(3):24-31
    [32] F. Qian, G. Hu, X. Yao, et al. Recurrent neural network inference of internal delays in nonstationary data network. Lecture Notes in Computer Science, 2006, 3973, 190-195
    [33] J. Song, M. Y. Chang, S. S. Lee, et al. Overview of ITU-T NGN QoS control. IEEE Communications Magazine, 2007, 45(9):116-123
    [34] J. M. Lee, J. Park, S. G. Kang, et al. Multicast architecture over next generation network. International Conference on Advanced Communication Technology(ICACT), Phoenix Park, Korea, 2008, Vol.1:218-221
    [35] S.A. Filin, S.N. Moiseev, M.S. Kondakov. Fast and efficient QoS-guaranteed adaptive transmission algorithm in the mobile WiMAX system. IEEE Transactions on Vehicular Technology, 2008, 57(6):3477-3487
    [36] B. Chellappan, T. S. Moh, M. Moh. On supporting multiple quality-of-services classes in mobile WiMAX handoff. International Conference of Computing in Engineering, Science and Information, Beijing, China, 2009, 73-78
    [37] E. Lee, H. K. Park. Packet scheduling scheme for multiple services in Mobile WiMAX system.The 2nd International Conference on Computer and Network Technology, Bangkok, Thailand, 2010, 60-63
    [38] K. H. Teo, Z. Tao, J. Zhang. The mobile broadband WiMAX standard. IEEE Signal Processing Magazine, 2007, 25(5): 144-148
    [39] K. Ntagkounakis, B. Sharif, C. Tsimenidis, et al. Cost-efficient WIMAX network deployment: the hybrid outdoor / indoor dual-layer coverage approach. 18th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC'07), Athens, Greece, 2007, 1-5
    [40] M. Ibrahim, K. Khawam, A. E. Samhat, et al. Analytical framework for dimensioning hierarchical WiMax-WiFi networks. Computer Networks, 2009, 53(3):299-309
    [41] H.L. Vu, S. Chan, L. Andrew. Performance analysis of best-effort service in saturated IEEE 802.16 networks. IEEE Transactions on Vehicular Technology, 2009, 59(1):460-472
    [42] Y. T. Mai, C. C. Yang, Y. H. Lin. Design of the cross-layer QoS framework for the IEEE 802.16 PMP networks. IEICE Transactions on Communications, 2008, 5(11):1360-1369
    [43] C. C. Yang, Y. T. Mai, L. C. Tsai. Design of the QoS framework for the IEEE 802.16 mesh networks. International Journal of Communication Systems,, 2009, 22(12):1543-1562
    [44] W. Du, J. Zhen, Z. Wang, et al. N-module based self-adaptive contention resolution scheme for WiMAX P2MP network. International Conference on High Performance Computing and Communications(HPCC), Dalian, China, 2008, 520-525
    [45] A. Biagioni, R. Fantacci, D. Marabissi, et al. Adaptive subcarrier allocation schemes for wireless OFDMA systems in WiMax networks. IEEE Journal on Selected Areas in Communications, 2009, 27(2):217-225
    [46] S. E. Elayoubi, B. Fourestie. Performance evaluation of admission control and adaptive modulation in OFDMA WiMax systems. IEEE/ACM Transactions on Networking, 2008, 16(5):1200-1211
    [47] Q. Li, X. E. Lin, J. Zhang, et al. Advancement of MIMO technology in WiMAX: From IEEE 802.16d/e/j to 802.16m. IEEE Communications Magazine, 2009, 47(6):100-107
    [48]陈永锐,粟欣,乐正友.基于预留的802.16 MAC层资源调度算法.微电子学与计算机,2008,25(1):62-65
    [49]胡军,付明怡.一种用于IEEE802.16中MAC层QoS调度架构设计.重庆工学院学报,2008,22(7):67-69
    [50] C. Zhu, O. W. Yang, J. Aweya, et al. A comparison of active queue management algorithmsusing the OPNET modeler. IEEE Communications Magazine, 2002, 40(6):158-167
    [51]邵春菊,黄宇红.WiMAX 16e公共信道开销及吞吐量性能分析.2007年中国通信学会“移动增值业务与应用”学术年会,乌鲁木齐,新疆,中国,2007,59-64
    [52] W. Nie, N. Xiong, H. Wang. A Novel Hybrid uplink Bandwidth Scheduler in WiMAX Real Time Communication Networks. The 5th International Conference on Ubiquitous Information Technologies & Applications, Sanya, Hainan, China, 2010, 1-6
    [53] C. Y. Hui, J. K. Ng, V. C. Lee. On-demand broadcast algorithms with caching on improving response time for real-time information dispatch systems. The 11th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications, Hong Kong, China, 2005, 285-288
    [54] S. Shakkottai, R. Srikant. Scheduling real-time traffic with deadlines over a wireless channel. Wireless Networks, 2002, 8(1):13-26
    [55] G. Narlikar, G. Wilfong, L. Zhang. Designing multihop wireless backhaul networks with delay guarantees. IEEE INFOCOM, Barcelona, Spain, 2006
    [56] C. F. Wu. Real-time scheduling for multimedia services in IEEE 802.16 wireless metropolitan area network. Information Technology Journal, 2010, 9(6):1053-1067
    [57] M. Matan. A deadline and minimal overhead scheduling algorithm for the WiMAX logical scheduler. 2010 European Wireless Conference, Lucca, Italy, 2010, 7-13
    [58] S. Vidya, D. Debabrata. Modified EDF algorithm and WiMAX architecture to ensure end-to-end delay in multi-hop networks. IEEE TENCON, Hyderabad, India, 2008, 1-6
    [59] J. G. Shanthikumar, S. Ding, M. T. Zhang. Queueing theory for semiconductor manufacturing systems: a survey and open problems. IEEE Transactions on Automation Science and Engineering, 2007, 4(4):513-522
    [60] A. Arazi, E. B. Jacob, U. Yechiali. Bridging genetic networks and queueing theory. Statistical Mechanics and its Applications, 2004, 332(4):585-616
    [61] J. Kreimer, A. Mehrez. Computation of availability time system using queueing theory methodology. Journal of the Operational Research Society, 1998, 49(10):1095-1100of a real-
    [62] I. E. Telatar, R. G. Gallager. Combining queueing theory with information theory for multiaccess. IEEE Journal on Selected Areas in Communications, 1995, 13(6):963-969
    [63] D. A. Heidemann. Queueing theory model of nonstationary traffic flow. Transportation Science, 2001, 35 (4):405-412
    [64] X. Ma, L. Zhao, L. Schulze. Performance of automated storage/retrieval systems understochastic demand using queuing theory. International Journal of Innovative Computing, 2009, 5(12):4469-4477
    [65] H. Masuyama, T. Takine. Analysis and computation of the joint queue length distribution in a FIFO single-server queue with multiple batch markovian arrival streams. Stochastic Models, 2003, 19(3):349-381
    [66] H. W. Lee, J. W. Beak. Threshold workload control in the BMAP/G/1 queue. Third International Conference on the Quantitative Evaluation of Systems, Riverside, CA, USA, 2006, 353-361
    [67] H. Li, F. Zhang. Stochastic process model of vehicle loads based on structural health monitoring data and maximum prediction of general renewal processes. International Conference on Computer Application and System Modeling (ICCASM), Taiyuan, China, 2010, Vol.4:704-708
    [68] W. Turin, M. Zorzi. Performance analysis of delay-constrained communications over slow rayleigh fading channels. IEEE Transactions on Wireless Communications,2002, 1(4):801-807
    [69] A. Klemm, C. Lindemann, M. Lohmann. Modeling IP traffic using the batch markovian arrival process. Performance Evaluation, 2003, 54(2):149-173
    [70] A. N. Dudin, A. Krishnamoorthy, V. C. Joshua, et al. Analysis of the BMAP/G/1 retrial system with search of customers from the orbit. European Journal of Operational Research, 2004, 157(1):169-179
    [71] P. G. Harrison, N. M. Patel, E. Pitel. Reliability modelling using G-queues. European Journal of Operational Research, 2000, 126(2):273-287
    [72] A. Chydzinski. Time to reach buffer capacity in a BMAP queue. Stochastic Models, 2007, 23(2):195-209
    [73] C. Dieter, W. Joris, L. Koenraad, et al. A batch-service queueing model with a discrete batch markovian arrival process. Lecture Notes in Computer Science, 2010, 6148:1-13
    [74] A. D. Banik. The infinite-buffer single server queue with a variant of multiple vacation policy and batch markovian arrival process. Applied Mathematical Modelling, 2009, 33(7):3025-3039
    [75] C. Kim, V. I. Klimenok, D. S. Orlovsky. The BMAP/PH/N retrial queue with Markovian flow of breakdowns. European Journal of Operational Research, 2008, 189(3):1057-1072
    [76] C. S. Kim, S. H. Park, A. Dudin, et al. Investigation of the BMAP/G/1→·/PH/1/M tandemqueue with retrials and losses. Applied Mathematical Modeling, 2010, 34(10):2926-2940
    [77] V. I. Klimenok, D. S. Orlovsky, A. N. Dudin. A BMAP/PH/N system with impatient repeated calls. Asia-Pacific Journal of Operational Research, 2007, 24(3):293-312
    [78] M. Telek, G. Horvath. A minimal representation of markov arrival processes and a moments matching method. Performance Evaluation, 2007, 64(9):1153-1168
    [79] P. V. Orlik, S. S. Rappaport. On the handoff arrival process in cellular communications. Wireless Networks, 2001, 7(2):147-157
    [80] N. G. Bean, B. F. Nielsen. Quasi-birth-and-death processes with rational arrival process components. Stochastic Models, 2010, 26(3):309-334
    [81] E. Meijering. A chronology of interpolation: From ancient astronomy to modern signal and image processing. Proceedings of the IEEE, 2002, 90(3):319-342
    [82] M. Mikkawy, B. Desouky. On a connection between symmetric polynomials, generalized stirling numbers and the newton general divided difference interpolation polynomial. Applied Mathematics and Computation, 2003, 138(2):375-385
    [83] N. Kogan, T. Tassa. Improved efficiency for revocation schemes via newton interpolation. ACM Transactions on Information and System Security, 2006, 9(4):461-486
    [84] M. Caliari. Accurate evaluation of divided differences for polynomial interpolation of exponential propagators. Computing , 2007,80(2):189-201
    [85] V. Klimenok, V. Khramova, A. Babitsky, et al. Multi-server queueing system with batch arrivals and varying environment. International Conference on Telecommunications, St. Petersburg, Russia, 2008, 1-5
    [86] S. Gagandeep, P. Salil, F. M. Nader. A high-performance parallel scheduling architecture for WiMAX base-stations. IASTED International Conference on Parallel and Distributed Computing and Systems, Orlando, Florida, USA, 2008, 59-64
    [87] W. Jiao, J. Chen, F. Liu. Provisioning end-to-end QoS under IMS over a WiMAX architecture. Bell Labs Technical Journal, 2007, 12(1):115-121
    [88] Y. Zhang, H. Hu, H. H. Chen. QoS differentiation for IEEE 802.16 WiMAX mesh networking. Mobile Networks and Applications, 2008, 13(2):19-37
    [89] S. A. Filin, S. N. Moiseev, M. S. Kondakov. Fast and efficient QoS-guaranteed adaptive transmission algorithm in the mobile WiMAX system. IEEE Transactions on Vehicular Technology, 2008, 57(6):3477-3487
    [90] N. Zorba, A. I. Perez. CAC for multibeam opportunistic schemes in heterogeneous WiMaxsystems under QoS constraints. IEEE Global Telecommunications Conference, Washington, DC, USA, 2007, 4296-4300
    [91] A. Derbala. Priority queuing in an operating system. Computers and Operations Research, 2005, 32(2):229-238
    [92] M. Ashour, T. Lengoc. Priority queuing of long-range dependent traffic. Computer Communications, 2008, 31(17):3954-3963
    [93] C. G. Kang, T. W. Kim, J. H. Kim. Adaptive delay threshold-based priority queuing scheme with opportunistic packet scheduling for integrated service in mobile broadband wireless access systems. IEEE Communications Letters, 2008, 12(4):241-243
    [94] F. Kamoun. Performance analysis of a non-preemptive priority queuing system subjected to a correlated markovian interruption process. Computers and Operations Research, 2008, 35 (12):3969-3988
    [95] H. P. Shiang, S. M. Vander. Multi-user video streaming over multi-hop wireless networks: a distributed, cross-layer approach based on priority queuing. IEEE Journal on Selected Areas in Communications, 2007, 25(4):770-785
    [96] O. K. Tonguz, A. Xhafa. Improving handover performance in wireless networks: dynamic priority queuing versus guard channel method. Electronics Letters, 2002, 38(7):338-339
    [97] A. P. Boedihardjo, Y. Liang. Hierarchical smoothed round robin scheduling in high-speed networks. IET Commun., 2009, 3(9):1557-1568
    [98] A. Klemm, C. Lindemann, M. Lohmann. Traffic modeling and characterization for UMTS networks. IEEE Global Telecommunications Conference(GLOBECOM'01), San Antonio, Texas, USA, 2001, vol.3:1741-1746
    [99] K. Isha, Y. Anjulata, T. Preeti. Comparative assessment of WiMAX scheduler in fixed and mobile WiMAX networks for VoIP using QualNet. International Conference on Computer and Communication Technology(ICCCT’10), Allahabad, Uttar Pradesh, 2010, 15-21
    [100] C. Soin, R. Jain, A. Tamimi, et al. Generalized weighted fairness and its application for resource allocation in IEEE 802.16e mobile WiMAX. The 2nd International Conference on computer and Automation Engineering (ICCAE), Singapore, 2010, 784-788
    [101] C. Soin, R. Jain, A. Tamimi. Scheduling in IEEE 802.16e mobile WiMAX networks: key issues and a survey. IEEE Journal on Selected Areas in Communications, 2009, 27(2):156-171
    [102] M. Katevenis, S. Sidiropolous, C. Courcoubetis. Weighted round-robin cell multiplexing in a general-purpose ATM switch chip. IEEE Journal on Selected Areas in Communications, 1991,9(8):1265-1279
    [103] C. Cicconetti, A. Erta, L. Lenzini, et al. Performance evaluation of the IEEE 802.16 MAC for QoS support. IEEE Transactions on Mobile Computing, 2007, 6(1):26-38
    [104]隋延峰,杨鸿文,杨大成.采用实时公平监测的改进最大C/I调度算法.北京邮电大学学报,2007,30(2):132-134
    [105] L. Liu, X. Jin, G. Min. Performance modeling and analysis of deficit round robin scheduling scheme with self-similar traffic. Concurrency Computation Practice and Experience, 2010, 22(13):1911-1926
    [106] L. Lenzini, E. Mingozzi, G. Stea. Performance analysis of modified deficit round robin schedulers. Journal of High Speed Networks, 2007, 16(4):399-422
    [107] S. Baek, H. Rim, S. Kim. Priority-based RR scheduling for soft real-time distributed object system. International Conference on Parallel and Distributed Processing Techniques and Applications, Las Vegas, CA, USA, 2003, Vol.1:298-302
    [108] F. Le, G. G. Xie, D. Pei. Shedding light on the glue logic of the internet routing architecture. ACM SIGCOMM Conference on Data Communication(SIGCOMM'08), Seattle, WA, USA, 2008, 39-50
    [109] L. D. Cicco, S. Mascolo. A mathematical model of the skype VoIP congestion control algorithm. IEEE Transactions on Automatic Control, 2010, 55(3):790-795
    [110] B. Rong, Y. Qian, K. Lu, et al. Call admission control optimization in WiMAX networks. IEEE Transactions on Vehicular Technology, 2008, 57(4):2509-2522
    [111] S. E. Elayoubi, B. Fourestie. Performance evaluation of admission control and adaptive modulation in OFDMA WiMax systems. IEEE Transactions on Networking, 2008, 16 (5):1200-1211
    [112]王兴建,胡爱群,黄玉划.基于收益率的IEEE 802.16自适应概率接纳控制算法.电子与信息学报,2007,29(3):711-715
    [113] C. Christian, K. Mikkelsen, M. Manguoglu. Analysis of the truncated spike algorithm. SIAM Journal on Matrix Analysis and Applications, 2008, 30(4):1500-1519.
    [114] S. Aziz, K. Peter. An adaptive playout algorithm with delay spike detection for real-time VoIP. Canadian Conference on Electrical and Computer Engineering, Montreal, Canada, 2003, Vol.2:997-1000
    [115] A. Boukerche, G. Jia, R.W. Pazzi. Performance evaluation of packet loss differentiation algorithms for wireless networks. The Second ACM Workshop on Performance Monitoringand Measurement of Heterogeneous Wireless and Wired Networks, Shanghai, China, 2007, 50-52
    [116] S. Biaz, Y. Ji. A survey and comparison on localisation algorithms for wireless ad hoc networks. International Journal of Mobile Communications, 2005, 3(4):374-410
    [117] H. Y. Yang, Y. P. Tian. Analysis of the stability on TCP Vegas congestion control algorithm with feedback delays. Control and Decision, 2004, 19(4):372-376.
    [118] Q. Kang, J. Wang, X. Meng. TCP vegas-like expert-controlled multicast congestion control algorithm for wireless networks. International Conference on Artificial Intelligence and Computational Intelligence(AICI’09), Shanghai, China, 2009, Vol.4:50-54
    [119]徐文静,张春业,曹永绍.IEEE 802.16系统中流模型和带宽分配机制研究.计算机技术与发展,2008,18(3):59-62
    [120]陆彦辉,尹长川,乐光新.宽带OFDMA系统有效支持QoS的分组调度算法.北京邮电大学学报,2006,29(4):24-27
    [121]彭木根,李茗,王文博.WiMAX系统中QoS机制研究.中兴通讯技术, 2005,11(2):31-35
    [122] W. Chen, C. Huang, Y. Chang, et al. An efficient cell-scheduling algorithm for multicast ATM switching systems. IEEE Transactions on Networking, 2000, 8(4):517-525
    [123] J. Choi, J. Yoo, C. K. Kim. A distributed fair scheduling scheme with a new analysis model in IEEE 802.11 wireless LANs. IEEE Transactions on Vehicular Technology, 2008,57(5):3083-3093
    [124]史俊财,胡爱群,关艳峰.基于最小速率保证的IEEE 802.16e公平调度算法.中国工程科学,2008,10(2):54-57
    [125] M. Dianati, X. Shen, S. Naik. A new fairness index for radio resource allocation in wireless networks. IEEE Wireless Communications and Networking Conference, New Orleans, LA, USA, 2005, 712-717
    [126] C. Tarhini, T. Chahed. On capacity of OFDMA-based IEEE802.16 WiMAX including adaptive modulation and coding (AMC) and inter-cell interference. The 15th IEEE Workshop on Local and Metropolitan Area Networks, New York, NY, USA, 2007, 139-144
    [127] G. Narlikar, G. Wilfong, L. Zhang. Designing multihop wireless backhaul networks with delay guarantees. IEEE INFOCOM, Barcelona, Spain, 2006, 1-12
    [128] L. Wang, G. Min, D. D. Kouvatsos, et al. Analytical modeling of an integrated priority and WFQ scheduling scheme in multi-service networks. Computer Communications, 2010, 33(1):93-101

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700