用户名: 密码: 验证码:
我国大豆资源的蛋白质组分与亚基归组及其变异程度、遗传和QTL分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆[Glycine max(L.)Merr.]原产于我国,是当今世界上最重要的植物蛋白与食用植物油的来源。大豆含有丰富的蛋白质和人体必需的氨基酸,蛋白质组分(主要为11S和7S及其比值)和亚基是大豆蛋白质品质的重要性状。以往蛋白质组分及其含量的测定主要采用超速离心分离或碱溶、酸沉、凝胶过滤纯化方法,这些方法适于小样本大样品的情况。对于育种和资源研究,需要一种能处理大样本小量样品、简单易行的技术。国内外不同学者曾经对蛋白质组分做过SDS-PAGE分析,电泳分析比较简易,但所分析材料多局限于局部地区的个别品种,缺乏代表性,所获蛋白质组分和亚基分子量的研究结果差异很大甚至相互矛盾,参考价值受到限制。因此,分析材料的范围有待扩大,材料代表性有待提高,以便把研究结果用于大豆蛋白质品质改良的研究中,因为育种者期望用简易方法研究资源和育种材料,提高育种成效并节省人力、物力和时间。在方法未解决时,育种者只对蛋白质含量做了分析测定,也做了一些遗传分析与QTL定位,但对11S、7S组分及其亚基相对含量的遗传分析和QTL定位研究很少。
     鉴于以上情况,本研究目的为:(1)在前人研究的基础上,通过640份具有代表性的栽培大豆品种的蛋白质SDS-PAGE分析,揭示蛋白质组分和亚基的电泳条带分布规律、确定鉴别大豆蛋白质11S和7S组分及其亚基的分子量标准,在此基础上建立一种相对简单的测定其相对含量的方法。(2)以原产于我国各个生态区的代表性野生豆、地方品种和育成品种为材料,在同一试验条件和同一直接测定方法下研究自然进化和人工进化对蛋白质含量、11S和7S组分相对含量的影响,分析不同生态区不同类型资源变异的特点,并从中优选特异资源以供蛋白质品质育种利用。(3)在资源研究的基础上,利用南京农业大学大豆所提供的重组自交系群体NJRIKY和重组回交自交系群体NJBIEX,探讨蛋白质含量、11S和7S组分相对含量的遗传机制并进行QTL定位,筛选相关的分子标记,为大豆蛋白质品质育种提供参考。
     本研究得到以下主要结果:
     1.640份栽培大豆品种的提取蛋白SDS-PAGE分析结果,品种间电泳条带数和条带分子量(MW)变异很大,在SDS-PAGE谱带中不同分子量的电泳条带呈现连续分布的趋势,没有间断点。参照前人结果,根据分布峰谷状况,按分子量把SDS-PAGE谱带划分成两个区域:分子量MW<44 KDa区域和分子量MW≥44 KDa的区域。第一个区域对应为11S组分,第二个区域对应为7S组分。进一步按照电泳条带次数分布的峰谷变化将条带分组称为亚基组。第一个区域的电泳条带归为4个亚基组,即11S-1(14.4-22 KDa)、11S-2(22-26 KDa)、11S-3(26.34 KDa)和11S-4(34-44 KDa);第二个区域的电泳条带归为6个亚基组,即7S-1(44-49KDa)、7S-2(49-55 KDa)、7S-3(55-67 KDa)、7S-4(67-73 KDa)、7S-5(73-82 KDa)和7S-6(82-91KDa)。11S-1~11S-4相对含量之和作为11S组分的相对含量,7S-1~7S-6相对含量之和作为7S组分的相对含量,从而计算11S/7S的比值。
     2.对全国138份野生豆、409份地方品种和148份育成品种以及83份国外引进品种(合计778份)的蛋白质组分有关性状分析结果,全国野生豆蛋白质含量、油脂含量和蛋脂总含量变幅分别为39.2~54.2%、7.5~17.5%和47.3~64.6%,地方品种为38.8~51.5%、11.5~23.4%和55.6~70.6%,国内育成品种为41.7~49.4%、12.9~24.9%和55.6~72.0%。野生豆驯化为栽培豆并经人工选育后油脂含量和蛋脂总含量有大幅增加,而蛋白质含量平均数和变异度则有减小,说明以往人工进化着重在油脂含量的改进。蛋白质含量、油脂含量和蛋脂总含量3性状各群体在各生态区内均有较大变异,区平均间差异并不大,各区都有优良变异。
     野生豆蛋白质含量、油脂含量和蛋脂总含量与来源地纬度并未发现相关;栽培豆地方品种和育成品种的油脂含量与地理纬度出现显著正相关;育成品种蛋白质含量与地理纬度还出现显著负相关;野生自然状态下蛋白质含量和油脂含量之间无相关,而栽培豆地方品种和育成品种依次增强了负相关,说明形成这种相关的原因在于地区间油脂含量人工进化程度的差异。
     全国野生豆、地方品种和育成品种11S相对含量平均分别为54.7%、64.8%和71.7%,变幅28.8~82.6%、38.8~79.4%和48.2~88.9%;7S相对含量平均分别为44.7%、34.9%和27.9%,变幅20.6~71.2%、20.6~61.1%和15.7~47.8%;11S/7S比值平均分别为1.4、2.0和2.7,变幅0.4~3.9、0.6~3.9和0.9~4.0。野生豆驯化为栽培豆并经选育后11S相对含量和11S/7S比值上升,7S相对含量下降,变幅均减小;亚基组11S-2和11S-3相对含量增加;7S的6个亚基组,尤其7S-1和7S-6,相对含量下降。11S、7S、11S/7S在各群体各生态区内均有较大变异,与来源地纬度、蛋白质和油脂含量均无显著相关。
     从各生态区和国外引进品种中优选出高蛋白质(≥50%)、高油脂(≥23%)和高蛋脂总含量(≥68%)种质各10份,优选到11S/7S比值大于3.7、11S相对含量为78.9-88.9%的8份种质,发现有11S的4个亚基组相对含量分别大于37%、7S的6个亚基组相对含量分别大于24%、以及11S-1和7S的6个亚基组缺失的种质。
     3.以蛋白质组分有关性状差异较大的科丰1号与南农1138-2衍生的RIL群体(NJRIKY,简称KY)和ZDD2315与Essex衍生的BIL群体(NJBIEX,简称EX)为材料,用主基因+多基因混合遗传模型分析大豆蛋白质组分有关性状的遗传机制,结果在KY中蛋白质含量主基因和多基因的遗传率分别为31.3%和53.7%,11S组分相对含量的为14.3%和50.7%,7S组分相对含量的为34.5%和45.1%,11S/7S比值的为74.8%和20.1%,4个11S亚基组的为45.2~77.9%和15.5~41.2%,6个7S亚基组的为38.9~67.8%和29.2~45.5%。在EX中蛋白质含量的为40.9%和37.2%,11S组分相对含量的为60.7%和17.0%,7S组分相对含量的为44.1%和21.6%,11S/7S比值的为56.6%和10.1%,4个11S亚基组的为45.4~67.6%和26.6~53.4%,6个7S亚基组的为76.2~92.6%和5.0~22.2%。在KY中蛋白质含量、11S和7S组分相对含量的多基因遗传率高于主基因遗传率,而11S和7S的亚基组则相反。EX中多数性状的主基因遗传率高于多基因遗传率。两个群体的蛋白质组分有关性状的多基因遗传率有差异,但都比较高,在主基因+多基因混合遗传中具有重要作用。
     4.以KY和EX为作图群体采用Win QTL Cartographer Version 2.5程序,利用CIM法进行QTL检测,结果在KY中蛋白质含量2个QTL(B1pr和Epr1),累计贡献率为16.5%。11S组分相对含量2个QTL(A211S和D1a11S),累计贡献率为13.3%。7S组分相对含量2个QTL(I7S1和I7S2),累计贡献率为12.7%。11S/7S比值3个QTL(D1arat、Irat1和Irat2),累计贡献率为19.8%。11S和7S的亚基组QTL贡献率均低于10%。在EX中蛋白质含量1个QTL(Epr2),贡献率为10.6%。11S组分相对含量2个QTL(E11S和B211S),累计贡献率为23.5%。7S组分相对含量3个QTL(E7S1、E7S2和D1b-27S),累计贡献率为38.3%。11S/7S比值1个QTL(Erat),贡献率为14.3%。4个11S亚基组QTL贡献率为8.7~21.9%,其中11S-1的QTL(M11S-11)贡献率最高(21.9%),6个7S亚基组QTL贡献率8.2~16.3%。在KY的D1a连锁群上的分子标记GMKF008b-GMKF008a之间和在EX群体的E连锁群上的分子标记sat_380-satt263之间各检测到3个QTL,GMKF008b-GMKF008a与11S组分的OTL D1a11S、11S/7S比值的QTL D1arat和7S-2亚基组的QTL D1a7S-2相关联,sat_380-satt263与11S组分的QTL E11S、7S组分的QTL E7S1和11S/7S比值的QTL Erat相关联,它们是重要的分子标记。在两个群体中除了个别性状,检测到的QTL位点贡献率都很低(KY中一般低于10%,EX中约10%左右),没有检测到贡献率高的主效QTL位点。蛋白质组分有关性状的遗传中主效QTL数量少、贡献率低,仅能解释约10%的表型变异,因此,多基因起着重要作用,这与遗传分析的结果相一致。
     本研究提出的亚基组划分标准和方法,经验证试验证明简单、稳定和使用方便,并在本研究的资源分析、遗传分析和QTL分析中得到应用。通过对778份资源的分析所筛选的特异种质可供蛋白质组分育种利用。遗传分析和QTL分析说明在蛋白质组分有关性状的遗传中多基因具有重要作用,在提高蛋白质含量和改善蛋白质组分时既要利用主基因又要注意多基因的积累。QTL分析发现的重要分子标记,有希望作为标记辅助选择育种的参考。
Soybean[Glycine max(L.) Merr.],originated from China,is one of the most important sources of vegetable protein and edible oil world-widely.Soybean protein is rich with essential amino acids for human bodies.Soybean protein quality depends on magnitude of 11S and 7S proteins and their subunits.In the past,protein component and its content were determined by ultracentrifuge,basic dissolve,acid-precipitation and gel filtration in large sample of a few materials.But it is needed a technology that can be used to analyze amount of materials in small sample for breeding and resource studying.Several studies have been done on SDS-PAGE analysis of protein component in soybean.It was a facility method. What's more,materials used in experiments were mostly from local regions,without representative,resulting in the limitation of reference to soybean breeding for very difference and even confliction on molecular weight of component and subunits.So,the range of materials analyzed should be extended,the material representative should also be improved,then the results studied will be used in improving protein characters of soybean. Soybean inbreeding men want a facility method to test resources and materials,to increasing effect,saving manpower,material resources and time.Before founding simple method,investigating variation and inheritance mechanism and QTL mapping of protein content and its variation range of soybeans,and some results obtained.But less concern was on relative content of 11S,7S components and their subunits.There existed few report on inheritance and QTL mapping of 11S,7S and their subunits.
     Herein above instance,the main objectives of this study were:(a) On the basic of former study,finding distribution law of electrophoresis bands of protein component and subunit,establishing a convenient method and molecular criterion for 11S,7S protein and their subunit in SDS-PAGE,by analyzing protein extracts of 640 soybean cultivars selected to represent different cultivar eco-regions for improving soybean protein component and their subunits,(b) With wild soybean,cultivated landraces and released domestic cultivars represent different cultivar eco-regions in China in the same experimental condition and directness test method,studying the effect of nature and artificial selection on content of protein,fat,total protein plus fat,relative content of 11S and 7S,analyzing variation characteristic of various germplasm in different eco-regions in China,screening out elite accessions for breeding purposes,(c)Revealing inheritance mechanism of protein content, 11S and 7S relative content of soybeans,mapping QTLs of them related genes with NJRIKY and NJBIEX population offering by Soybean Research Institution of Nanjing Agriculture University.The results of this study will be helpful for soybean protein quality breeding.
     The mostly results obtained in this study are as follows:
     1.Protein extracts of 640 soybean cultivars and landraces,mainly from China and a few from the US,were analyzed for their components and subunits based on distribution patterns of bands with varying molecular weights(MW) under SDS-PAGE(sodium dodecyl sulfate-polyacrylamide gel electrophoresis).The number and molecular weight of the bands in SDS-PAGE varied among materials and showed a tendency of continuous distribution.Accordingly,referring to former results and situation of apex and vale of frequency distribution of bands,the SDS-PAGE patterns of the soybean protein extracts were divided into two regions:the region of bands with MW<44 KDa and that with MW≥44 KDa.The first region containing mainly 11S proteins was divided into four parts, called subunit groups,i.e.11S-1(14.4-22 KDa),11S-2(22-26 KDa),11S-3(26-34 KDa) and 11 S-4(34-44 KDa).The second region containing mainly 7S protein was divided into six subunit groups,i.e.7S-1(44-49 KDa),7S-2(49-55 KDa),7S-3(55-67 KDa), 7S-4(67-73 KDa),7S-5(73-82 KDa) and 7S-6(82-91 KDa).The sum of relative contents of 11S-1~11S-4 was obtained as the relative content of 11S protein,those of 7S-1~7S-6 as that of 7S protein,and therefore,the 11S/7S ratio obtained.
     2.The content or relative content of traits relating to soybean protein component of 778 accessions,including 138 wild soybean(Glycine soja Sieb.et Zucc.),409 cultivated landraces(Glycine max(L.) Merr.) and 148 released domestic cultivars sampled from various eco-regions as a representative in China,along with 83 released foreign cultivars, were tested.The results showed that the range of protein content,fat content and total of both in wild soybean were 39.2~54.2%,7.5~17.5%,47.3~64.6%,those in cultivated landraces 38.8~51.5%,11.5~23.4%,55.6~70.6%,those in released domestic cultivars 41.7~49.4%,12.9~24.9%,55.6~72.0%,respectively.The increase of fat content and protein plus fat content after domestication,especially due to scientific breeding effort,and the decrease of protein content as well as its range implied that the improvement of fat content happened during the history.There existed large amount of genetic variation of protein content,fat content and total of both contents in various eco-regions in different kinds of materials,with elite accessions in each eco-regions,but the variation was not large enough among eco-region means.
     No significant correlation between the three contents and the original latitude of the materials was found in wild accessions,while significant positive correlation between fat content and latitude existed in cultivated landraces and released cultivars and significant negative correlation between protein content and latitude was found only in released cultivars.There was no significant correlation between protein content and fat content in wild soybeans,but significant negative correlation between the two contents found in cultivated land races and released cultivars.The reason for this kind of change should be the differential artificial selection among the eco-regions.
     11S relative content mean of 54.7%,64.8%and 71.7%,11S relative content range of 28.8-82.6%,38.8-79.4%and 48.8-88.9%,7S relative content mean of 44.7%,34.9%and 27.9%,7S relative content range of 20.6-71.2%,20.6-61.1%and 15.7-47.8%,11S/7S ratio mean of 1.4,2.0 and 2.7,11S/7S ratio range of 0.4-3.9,0.6-3.9 and 0.9-4.0 in wild soybean, landraces and released cultivars,respectively.After breeding cultivars by domestication wild soybean,11S relative content and 11S/7S ratio was step up,7S relative content was step down,with their variation range decreasing.The subunit groups 11S-2 and 11S-3 relative content were increased.The relative content of 6 subunit groups of 7S protein, particularly,7S-1 and 7S-6 were decreased.There existed abundance and choiceness variation of 11S and 7S protein relative content and 11S/7S ratio of three germplasm types in each Eco-region.There was no correlation between geography latitude of origin(or protein and fat content) and three traits in three germplasm types,respectively.
     In addition,from the tested accessions,10 most elite accessions for each of the three traits(protein content more than 50%,or fat content more than 23%,or total of both contents more than 68%),11S/7S ratio of 8 elite screened out from 778 accessions(about 1.03%) was more than 3.7,with their 11S relative content 78.9-88.9%.The relative content of elite accessions was more than 37%for 11S'subunit groups and 24%for 7S' subunits groups,respectively.There existed amount of materials lacked 11S-1,or from 7S-1 to 7S-6. They will be used for high output breeding purposes.
     3.Soybean germplasms,the NJRIKY population(KY,from Kefeng1hao and Nannong1138-2) and NJBIEK population(EX,from Essex and ZDD2315),with big differences in traits relating to protein component were used to reveal the genetic mechanism of them.Genetic analysis was performed under major gene+polygene mixed inheritance model.The resulted indicated that in KY population major gene heritability of protein content,11S relative content,7S relative content,11S/7S ratio,four 11S' subunit groups and six 7S' subunit groups were 31.3%,14.3%,34.5%,74.8%,45.2~77.9%,and 38.9~67.8%,respectively.Their polygene heritability were 53.7%,50.7%,45.1%,20.1%, 15.5~41.2%,and 29.2~45.5%,respectively.In EX population major gene heritability of protein content,11S relative content,7S relative content,11S/7S ratio,four 11S' subunit groups and six 7S' subunit groups were 40.9%,60.7%,44.1%,56.6%,45.4~67.6%,and 76.2~92.6%,respectively.Their polygene heritability were 37.2%,17.0%,21.6%,10.1%, 22.6~53.4%,and 5.0~22.2%,respectively.The polygene heritability of protein content, relative content of 11S and 7S were higher than major gene heritability of them in KY.It was reverse for 11S' and 7S' subunit groups in KY.In EX,the major gene heritability of most traits was higher than polygene heritability of them.There existed difference in polygene heritability for KY and EX,but polygene play on an important role in major gene +polygene mixed inheritance model.
     4.Based on the genetic research above,QTL mapping for traits relating to protein component in soybean was carried out as following.The composite interval mapping(CIM) of the software Windows QTL Cartographer Version 2.5 were used to map QTLs.In KY, there were 2 QTLs(B1pr and Epr1) for protein content with R~2(R~2 means accumulative total account of the phenotypic variation) of 16.5%,2 QTLs(A211S and D1a11S) for 11S relative content with R~2 of 13.3%,2 QTLs(I7S1 and I7S2) for 7S relative content with R~2 of 12.7%,3 QTLs(D1arat,Irat1 and Irat2) for 11S/7S ratio with R~2 of 19.8%.r~2(account of the phenotypic variation) of 11S' and 7S'subunit groups was below 10%,respectively. In EX,there were 1 QTL(Epr2) for protein content with r~2 of 10.6%,2 QTLs(E11S and B211S) for 11S relative content with R~2 of 23.5%,3 QTLs(E7S1,E7S2 and D1b-27S) for 7S relative content with R~2 of 38.3%,1 QTL(Erat) for 11S/7S ratio with r~2 of 14.3%.r~2 (account of the phenotypie variation) of 11S' and 7S'subunit groups was about 8.7~21.9% and 8.2~16.3%,respectively.The highest r~2 of 21.9%was QTL M11S-11 of 11S-1 in EX. There were 3 QTLs from marker GMKF008b to GMKF008a on linkage group D1a in KY (D1a11S,D1arat and D1a7S-2) and from marker sat_380 to satt263 on linkage group E in EX(E11S,E7S1 and Erat),respectively.QTL with high account of the phenotypic variation was not found.There existed a few QTL with low account of the phenotypic variation, about 10%,for the traits relating to protein component.So,polygene was important in inheritance of them.
     In this study,the molecular criterion and method about 11S,7S protein components and subunit groups of protein extracts were demonstrated to be simple,stable and feasible. It had been used to study protein component and subunits of soybean germplasm resources and inheritance analysis and QTL mapping in this study.The elite accessions for protein content,11S/7S ratio,11S relative content 78.9-88.9%11S'subunit groups and 7S' subunits groups screened out from 778 accessions will be used for high output breeding purposes. The inheritance of traits relating to protein component was controlled by a few low effect major gene and lots of polygene.It was consistent with analysis results of inheritance. Based on the results,it is inferred that the markers linked to the detected QTLs should be useful for marker-assisted selection for 11S,7S and related traits in soybean.
引文
1 陈复生,李里特,辰巳英三.分离大豆蛋白凝胶光学性质的研究.食品科学.2000,21(10):18-22
    2 陈复生,李里特,辰巳英三.大豆7S球蛋白凝胶光学性质的研究.中国粮油学报.2001,16(2):41-46
    3 陈恒鹤.大豆蛋白质、脂肪含量及其它农艺性状遗传规律的轮配分析.中国农业科学,1987,20(1):32-38
    4 陈恒鹤.大豆蛋白质及脂肪含量的遗传和选择效果研究Ⅱ.早期世代的变异与遗传进度.大豆科学,1991,10(1):1-9
    5 陈霞.不同生态区域环境对大豆蛋白质、脂肪含量的影响.大豆科学,2001,20(4):280-284
    6 陈霞.黑龙江省主栽大豆品种脂肪,脂肪酸组份的测定及其相关性的分析.大豆科学,1996,15(1):91-95
    7 陈学军,陈劲枫,方荣,程志芳,王述彬.辣椒始花节位遗传研究.园艺学报,2006,33(1):152-154
    8 陈庆山,张忠臣,刘春燕,辛大伟,单大鹏,邱红梅,单彩云.大豆主要农艺性状的QTL分析.中国农业科学2007,40(1):41-47
    9 程翠林,王振宇,石彦国.大豆蛋白亚基组成与7S/11S对豆腐品质及产率的影响.中国油脂,2006,31(4):16-19
    10 程林海,孙毅,岳焕荣.大豆生物工程研究进展.大豆科学,2001,20(10):66-70
    11 崔章林.世界大豆研究进展与动向.大豆科学,1995,14(2):167-173
    12 戴陆园,叶昌荣,徐福荣.云南稻种昆明小白谷耐冷性指标性状的遗传分析.中国水稻科学,1999,13(2):73-76
    13 大豆品质鉴定课题组(中国农科院油料所).我国部分大豆种质资源主要品质性状鉴定.中国油料,1990,4:46-50
    14 丁安林,王雁,常汝镇.大豆的抗营养因子及其改良.大豆科学,1994,13(1):72-76
    15 董英山,庄炳昌,赵丽梅,孙寰,张明,何孟元.中国野生大豆遗传多样性中心.作物学报,2000,26(5):521-527
    16 杜雄明,汪若海,刘国强,傅怀勤,潘家驹,张天真.棉花纤维相关性状的主基因+多基因混合遗传分析.棉花学报,1999,11(2):73-78
    17 段有德,李加纳.甘蓝型黄籽油菜种子皮壳率的遗传研究.西南农业大学学报,2004,26(2):180-184
    18 樊叶杨,庄杰云,李强.水稻株高QTL分析及其与产量QTL的关系.作物学报,2001,27(6):915-922
    19 范敏,许勇,张海英,任华中.西瓜果实性状QTL定位及其遗传效应分析.遗传学报,2000,27(10):902-910
    20 范云六.迎接21世纪农作物生物技术的挑战.生物技术通报,1999,5:1-6
    21 冯锋,杨新泉.“大豆优异基因资源发掘及其基因组研究”立项背景及意义.中国科学 基金,2003,6:335-338
    22 付玉清,杨庆凯.大豆脂肪酸组分含量的正反交效应和配合力分析.大豆科学,1994,13(1):9-15
    23 傅艳华,李楠,彭宝,孟庆福,王雪飞.大豆籽粒脂肪和蛋白质含量的稳定性研究初报.中国油料,1995,17(1):26-28
    24 盖钧镒.植物数量性状遗传体系的分离分析方法研究.遗传,2005,27(1):130-136
    25 盖钧镒.植物数量性状QTL体系检测的遗传试验方法.科技前沿与学术评论,21(1):34-40
    26 盖钧镒,赵团结,崔章林,邱家驯.中国1923-1995年育成的651个大豆品种的遗传基础.中国油料作物学报,1998,20(1):17-23
    27 盖钧镒,钱虎君,吉东风,王明军.大豆豆腐产量的遗传研究.遗传学报,2000,27(5):434-439
    28 盖钧镒,汪越胜,张孟臣,王继安,常汝镇.中国大豆品种熟期组划分的研究.作物学报,2001,27(3):286-292
    29 盖钧镒,汪越胜.中国大豆品种生态区域划分的研究.中国农业科学,2001,34(2):139-145
    30 盖钧镒,王建康.利用回交或F_(2:3)家系世代鉴定数量性状主基因-多基因混合遗传模型.作物学报,1998,24(4):402-409
    31 盖钧镒,王建康.利用回交世代鉴定数量性状主基因-多基因混合遗传模型.遗传,1998,20(增刊):110-111
    32 盖钧镒,章元明,王建康.《植物数量性状遗传体系》,北京,科学出版社,2003.22-24
    33 盖钧镒,章元明,王建康.QTL混合遗传模型扩展至2对主基因+多基因的多世代联合分析.作物学报,2000,26(4):385-391
    34 盖钧镒.植物种质群体遗传结构改变的测度.植物遗传资源学报,2005,6(1):1-8
    35 高力,陈飞,周立人,陆维忠.小麦品种望水白的抗赤霉病性遗传分析.麦类作物学报,2005,25(5):5-9
    36 葛秀秀,张立平,何中虎,章元明.冬小麦PPO活性的主基因+多基因混合遗传分析.作物学报,2004,30(1):18-20
    37 顾和平,凌以禄,韩锋,沈克琴,宣亚南.栽培和野生大豆脂肪酸的组成,相关及其差异的研究.江苏农业科学,1989,10:13-15
    38 关荣霞,常汝镇,邱丽娟,刘章雄,郭顺堂.栽培大豆蛋白亚基11S/7S组成及过敏蛋白缺失分析.作物学报,2004,30(11):1076-1079
    39 韩锋,顾和平,凌以禄.大豆子粒脂肪酸组分间相关及聚类分析.作物研究,1989,3:29-32
    40 何小红,盖钧镒.回交自交系群体数量性状遗传体系的分离分析方法.作物学报,2006,32(2):210-216
    41 贺春林,盖钧镒,柳家荣.黄淮夏大豆亲本经济性状的遗传研究.大豆育种应用基础和技术研究进展[M].盖钧镒主编,江苏科学技术出版社.南京:1990,109-115
    42 胡国华,陈庆山,张锡铭.黑龙江省大豆品质区划的研究.大豆科学.2006,25(2):118-122
    43 湖南省农业厅科教处.湘春豆14号.湖南农业,1996,5:17
    44 何志鸿,姚振纯,林红.黑龙江省大豆化学品质生态地理分布Ⅰ.野生大豆化学品质生 态地理分布.东北农学院学报,1988,19(8):237-245
    45 贺超英,张志永,王永军,郑先武,喻得跃,陈受宜,盖钧镒.利用微卫星标记评估大豆重组近交系NJRIKY1.遗传学报,2001,28(2):171-181
    46 侯文胜.利用转基因技术进行植物遗传改良.生物技术通报,2002,1:10-15
    47 黄尚琼.中国南方栽培大豆蛋白质资源冲国油料,1989,3:54-57
    48 胡超越,王振民,潘荣云.大豆5种油脂脂肪酸含量的配合力分析.吉林农业大学学报,2005,27(5):486-489,493
    99 胡明祥,梁岐,孟祥勋.我国大豆品种脂肪酸组成的分析研究.吉林农业科学,1986,1:12-17
    50 胡明祥,于德洋,孟祥勋,万超文.不同生态区域环境对中国大豆品质的影响.大豆科学,1990,9(1):39-49
    51 胡明祥.大豆籽粒脂肪的遗传改良.中国油料,1989,2:82-85
    52 胡超,黄丽华,李文哲.大豆球蛋白11S/7S比值对大豆蛋白功能性的影响.中国粮油学报.2004,19(1):40-42
    53 惠大丰,姜长鉴,莫惠栋.数量性状基因图谱构建方法的比较.作物学报,1997,23(2):129-136
    54 纪锋,郑惠玉,杨光宇,韩春风.吉林省野生大豆(G.sqia)蛋白质含量的初步分析.吉林农业科学,1990,3:93-96
    55 纪锋,杨光宇.东北地区野生大豆和半野生大豆化学品质研究综述.吉林农业科学,19973:16-20
    56 江和源,吕飞杰,邰建祥.大豆中生物活性成分及其功能.大豆科学,2000,19(2):160-164
    57 金骏培,武耀廷,张天真.皖杂40杂交棉产量与品质性状的杂种优势表现及遗传分析.中国农业科学,2004,37(10):1428-1433
    58 姜振峰,陈庆山,杨庆凯,李文滨.大豆种质资源贮藏蛋白亚基研究.东北农业大学学报,2006,37(5):596-603
    59 雷勃钧,尹光初,刘红军,林忠平.大豆属贮存蛋白的研究.大豆科学,1984,1:36-39
    60 李爱萍,王曙明.大豆不同杂交组合F2油分含量分布及其遗传变异.中国油料,1992,2:10-13
    61 李俊玲.高油大豆新品种邯豆四号.中国种业,2004,3:63
    62 李福山.中国野生大豆熟期类型及光周期区划.作物品种资源,1997,4:17-19
    63 李福山.中国野生大豆资源的地理分布及生态分化研究.中国农业科学,1993,26(2):47-55
    64 李建雄,余四斌,徐才国,谈移芳.“汕优63”的产量及其构成因子的数量性状基因位点分析.作物学报,2000,26(6):892-898
    65 李为喜,朱志华,刘三才,刘方,张晓芳,李燕,王述民.中国大豆(Glyclue max)品种及种质资源主要品质状况分析.植物遗传资源学报,2004,5(2):185-192
    66 林荣挥.福建省春大豆种质资源蛋白质和油脂后来的研究.福建农业学报.2001,16(3):13-15
    67 刘朝晖,张旭,李浩兵,姚景侠.小麦品种纹枯病抗性遗传的初步研究.南京农业大学学报,1999,22(3):5-8
    68 刘峰,庄炳昌,张劲松等.大豆遗传图谱的构建和分析.遗传学报,2000,27(11):1018-1026
    69 刘峰,陈受宜.大豆的基因组研究.生物工程进展,2000,20(5):16-20
    70 刘峰,陈受宜.大豆基因组中的微卫星标记.大豆科学,1998,17(3):256-261
    71 刘金波,洪德林.粳稻穗角和每穗颖花数的遗传分析.中国水稻科学,2005,19(3)223-230
    72 刘萌娟,翟亚萍,李鸣雷.陕西省大豆种质资源蛋白质和油脂含量的研究.大豆科学.2007,26(4):533-537
    73 刘谦,张木,周永春.我国生物技术及其产业发展的战略分析与思考.生物工程进展,2000,20(1):3-5
    74 刘珊珊,秦智伟,刘宏宇.大豆加工品质育种的发展状况.大豆科学,2002,21(2):138-143
    75 刘显华.改变大豆蛋白质脂肪及其组分的遗传育种概况.中国油料,1986,4:18-23.
    76 刘兴媛,胡传璞,季玉玲.中国大豆种质资源的脂肪酸组成分析.作物品种资源,1998,2:40-42
    77 刘莹.大豆根区逆境耐性的鉴定和相关根系性状的遗传分析与QTL定位.南京农业大学博士学位论文.2005
    78 刘兴嫒.中国野生大豆种子脂肪,蛋白质含量与农艺性状的关系.中国油料,1992,4:61-65
    79 刘学义,宛煜嵩,王珍等.大豆重组自交系Jinf的构建及主要农艺性状和SSR基因型分析.分子植物育种,2003,1(2):157-177
    80 刘莹,盖钧镒.大豆耐铝毒的鉴定和相关根系性状的遗传分析.大豆科学,2004,23(3):164-168
    81 刘章雄,邱丽娟,关荣霞,常汝镇.美国大豆育种研究进展.大豆科学,2004,23(2):123-129
    82 刘章雄,王守才,戴景瑞,黄烈健,曹海河.玉米P25自交系抗锈病基因的遗传分析及SSR分子标记定位.遗传学报,2003,30(8):706-710
    83 刘忠堂.黑龙江省大豆推广品种脂肪、蛋白质含量地理分布的研究.大豆科学,2002,21(4):250-254
    84 卢为国,盖钧镒,郑永战,李卫东.大豆抗胞囊线虫(Heterodera glycines Ichinohe)遗传图谱的构建和基因定位研究.作物学报,2006,32(9):1272-1279
    85 吕世霖,程舜华,程创基.中国大豆种植区域划分的研究.山西农业大学学报.1981,1(1):9-17
    86 吕景良,邵荣春,吴百灵.东北地区大豆品种资源脂肪酸组成的分析研究.作物学报,1990,16(10):349-3551
    87 吕景良,吴百灵,梁岐,衣翠文,吴桂荣.吉林省大豆品种资源研究:Ⅴ.脂肪含量及其脂肪酸组成.吉林农业科学,1989,1:75-79
    88 吕祝章.大豆遗传图谱的构建,农艺性状的QTL定位和优异基因的鉴别.山东农业大学学位论文.2006
    89 罗庆云,於丙军,刘友良,章元明,薛艳玲,张艳.栽培大豆耐盐性的主基因+多基因混合遗传分析.大豆科学,2004,23(4):239-244
    90 孟祥勋,王曙明,李爱萍,胡明祥.不同年份及地点对大豆子粒蛋白质和脂肪含量的影响.吉林农业科学,1990,4:17-20
    91 孟祥勋.大豆种子贮藏蛋白的研究.东北农业大学学报,1997,28(2):201-207.
    92 年海,刘忠堂.大豆脂肪酸与主要农艺性状和品质性状的相关分析.大豆科学,1996,15(3):213-221
    93 年海,王金陵,杨庆凯,陈怡,栾晓燕,崔玉瑰.生态环境对大豆籽粒脂肪酸含量的影响.大豆科学,1996,15(1):35-41
    94 年海,王金陵,杨晓新,杨庆凯,陈怡,栾晓燕,刘忠堂,王大秋,张仁双,王雅珍,刘国范,崔玉瑰.大豆主要品质性状的稳定性研究.大豆科学,1997,16(2):118-124
    95 宁海龙,张大勇,张淑珍,杨庆凯.东北大豆脂肪、蛋白质含量的生态效应.大豆科学,2003,22(2):132-136
    96 宁海龙,张大勇,胡国华,李文滨,李文霞.东北地区大豆(G.Max Merr)大豆蛋白质和油脂含量区划.大豆科学.2007,26(4):511-516
    97 裴东红.降低大豆籽粒中亚麻酸含量的研究进展.大豆科学,1995,14(3):255-259
    98 彭宝,孟庆福.大豆油分含量在杂种F2-F5的遗传变异特点.中国油料,1993,4:8-10,35
    99 戚存扣,盖钧镒,章元明.甘蓝型油菜芥酸含量的主基因+多基因遗传.遗传学报,2001,28(2):182-187
    100 齐宁,郭泰,刘忠堂.东北春大豆品种脂肪酸组成的分析.大豆通报,1997,5:61
    101 钱大奇,马育华,盖钧镒.苏浙春大豆地方品种群体蛋白质含量、油分含量与产量的遗传变异和选择指数研究.南京农业大学学报,1989,12(4):119-121
    102 钱虎君,盖钧镒,喻德跃.大豆豆腐产量、品质及加工性状的遗传变异和遗传规律研究.作物学报,2001,27(6):880-885
    103 钱前,何平,滕胜,曾大力等.水稻分蘖角度的QTLs分析.遗传学报,2001,28(1):29-32
    104 邱丽娟,常汝镇,许占友,李向华等.利用分子标记评价大豆种质的研究进展.大豆科学,1999,18(4):347-350
    105 石彦国,任莉.大豆制品工艺学[M].北京:中国轻工业出版社,1993,67-90
    106 宋启建,盖钧镒,马育华.长江中下游夏大豆地方品种资源特点及遗传变异.南京农业大学学报,1987,3:29-36
    107 宋启建,盖钧镒,马育华.大豆蛋白质和油分含量生态特点研究.大豆科学,1990,9(2):121-129
    108 宋启建,盖钧镒,马育华.大豆品种蛋白质、油分含量在杂种后代的优势表现及分离变异.作物学报,1994,20(5):542-547
    109 宋启建,盖钧镒.大豆品种蛋白质,油分含量的遗传特点.中国农业科学,1989,22(6):24-29
    110 宋启建.大豆SSR分子标记的创制及其应用.大豆科学,1999,18(3):248-254
    111 宋启建,盖钧镒,马育华.大豆杂种后代蛋白质和脂肪含量的配合力研究.作物学报,1991,17(2):128-134
    112 宋玉卿.食用油脂的营养、劣变及安全贮存[J].吉林粮高专学报,1994,2,7-8
    113 孙军明,丁安林.大豆加工产品中若干抗癌物质的含量及其效应.大豆科学,1997,16 (2):168-173
    114 孙小镭,王永强,王冰,顾三军,王志峰,曹齐卫.黄瓜嫩果果皮叶绿素含量的遗传.园艺学报,2004,31(3):327-331
    115 孙祖东,盖钧镒,崔章林.大豆抗食叶性害虫遗传的初步研究.大豆科学,1999,18(4):300-305
    116 孙祖东,盖钧镒.大豆对食叶性害虫抗性的研究.中国农业科学,1999,32(增刊):81-88
    117 谭震波,沈利爽,况浩池.水稻上部节间长度等数量性状基因的定位及其遗传效应分析.遗传学报,1996,23(6):439-446
    118 陶爱林,曾汉来,章元明,谢国生,秦发兰,郑用琏,张端品.光温敏雄性不育水稻不育临界温度性状的遗传分析.遗传学报,2003,30(1):40-48
    119 田清震,盖钧镒,喻德跃,贾继增.大豆DNA扩增片段长度多态性AFLP研究.大豆科学,2000,19(3):210-217
    120 田清震,盖钧镒,喻德跃,吕慧能,贾继增.我国野生大豆与栽培大豆AFLP指纹图谱研究.中国农业科学,2001,34(5):480-485
    121 田清震,盖钧镒.大豆起源与进化研究进展.大豆科学,2001,20(1):54-59
    122 王克晶,李福山,周涛,王文真.河北省野生大豆资源考察与研究.植物遗传资源科学,2000,1(2):25-29
    123 汪越胜,盖钧镒.黄淮海春夏豆区大豆熟期组归属及地理分布概貌.北华大学学报(自然科学版),2001,2(2):154-157
    124 汪越胜,盖钧镒.中国春播大豆熟期组地理分布的研究.中国油料作物学报,1999,21(3):23-26
    125 汪越胜,盖钧镒.中国大豆品种生态区划的修正Ⅱ.各区范围及主要品种类型.应用生态学报,2002,13(1):71-75
    126 汪越胜,盖钧镒.中国大豆栽培区划的修正Ⅰ.修正方案与修正理由.大豆科学,2000,19(3):203-209
    127 汪越胜,盖钧镒.中国各省大豆品种的熟期组分布.作物品种资源,1999,4:5-7
    128 汪越胜,阚显照,盖钧镒.中国夏播大豆熟期组归属及地理分布概势研究.生态学杂志,2001,20(3):1-3
    129 汪越胜,阚显照,邱家驯.东北三省大豆熟期组归属及地理分布概貌研究.安徽农业科学,2000,28(6):725-727
    130 汪越胜,马宏惠.美国的大豆熟期划分及其影响.安徽农学通报,2000,6(4):28-29
    131 汪越胜,汪鸣,阚显照,邱家驯.长江中下游大豆熟期组归属及地理分布.吉首大学学报(自然科学版),2000,21(4):13-16
    132 王大秋,陈恒鹤.大豆蛋白质和脂肪含量选择效果研究.大豆科学,1998,17(1):72-78
    133 王彬茹,翁秀英,陈怡,等.提高大豆脂肪和蛋白质总量育种工作的体会.黑龙江农业科学,1998,5(5):41-44
    134 王建康,盖钧镒.利用杂种F2世代鉴定数量性状主基因-多基因混合遗传模型并估计其遗传效应.遗传学报,1997,24(5):432-440
    135 王建康,盖钧镒.数量性状主-多基因混合遗传的P_1、P_2、F_1、F_2和F_(2:3)联合分析方法.作物学报,1998,24(6):651-659
    136 王建设,王建康,朱立宏,盖钧镒.水稻株基因—多基因混合遗传控制白叶枯病抗性的基因效应分析.遗传学报,2000,27(1):34-38
    137 王庆钰,朱立宏,盖钧镒,王建康.水稻广亲和性遗传的主基因.多基因混合模型分析.遗传,2004,26(6):898-90.
    138 王丽侠,郭顺堂,付翠真,关荣霞,张其属,常汝镇,邱丽娟.大豆种子贮藏蛋白11S与7S组分的研究.中国粮油学报,2004,19(4):53-57
    139 王守才,王国英,戴景瑞.关于高等植物转基因遗传问题的讨论.生物工程进展,2000,20(4):64-66
    140 王淑芳,石玉真,刘爱英,熊宗伟,唐淑荣,李俊文,王玉红,袁有禄.陆地棉纤维品质性状主基因与多基因混合遗传分析.中国农学通报,2006,22(2):157-161
    141 王文真,刘兴媛,曹永生,张明冲国大豆种质资源的蛋白质含量研究.作物品种资源,1998,1:35-36
    142 王永军,吴晓雷,贺超英,张劲松,陈受宜,盖钧镒.大豆作图群体检验与调整后构建的遗传图谱.中国农业科学,2003,36(11):1254-1260
    143 王永军,吴晓雷,喻德跃,章元明,陈受宜,盖钧镒.重组自交系群体的检测调整方法及其在大豆NJRIKY群体的应用.作物学报,2004,30(5):413-418
    144 王永军.大豆重组自交系群体的构建与调整及其在遗传作图、抗花叶病毒基因定位和农艺及品质性状QTL分析中的应用.南京农业大学博士学位论文.2001
    145 王小波,姜治华,林文君,张永晖.四川春大豆品种资源蛋白质和脂肪含量研究.西南农业学报,1996,9:119-123
    146 王志新,杨庆凯.环境因素对大豆化学品质及产量影响研究Ⅰ.播期对大豆化学品质及产量的影响.大豆科学,2003,22(1):45-49
    147 王志新.环境因素对大豆化学品质及产量影响研究Ⅱ.遮光对大豆化学品质及产量的影响.大豆科学,2004,23(1):41-44
    148 吴纪中,颜伟,蔡士宾.小麦纹枯病抗性的主基因+多基因遗传分析.江苏农业学报,2005,21(1):6-11
    149 吴建宇,陈彦惠,席章营.玉米穗部性状主基因—多基因遗传的初步研究.河南农业大学学报,2000,34(2):107-108,113
    150 吴晓雷,贺超英,王永军,张志永,东方阳,张劲松,陈受宜,盖钧镒.大豆遗传图谱的构建和分析.遗传学报,2001,28(11):1051-1061
    151 吴晓雷,王永军,贺超英,陈受宜,盖钧镒,王学臣.大豆重要农艺性状的QTL分析.遗传学报,2001,28(10):947-955
    152 武天龙,王振华,杨庆凯.大豆杂交和回交后代化学品质含量的遗传分析.大豆育种应用基础和技术研究进展[M].盖钧镒主编,江苏科学技术出版社.南京:1990,96-102
    153 向道权,黄烈健,曹永国,戴景瑞.玉米产量性状主基因-多基因遗传效应的初步研究.华北农学报,2001,16(3):1-5
    154 向道权.玉米SSR遗传图谱的构建及产量性状基因定位.遗传学报,2001,28(8):778-784
    155 邢邯,盖钧镒,赵经荣,孙淑燕.大豆对大豆胞囊线虫1号生理小种抗性的遗传.云南大学学报(自然科学版),1999,21卷(遗传学专辑):183-184
    156 谢良,王章,蔡宝玉.大豆分离蛋白的组成与功能性质.中国粮油学报.2000,15(6):6-10.
    157 徐豹,郑惠玉,吕景良.中国大豆的蛋白质资源.大豆科学,1984,3(4):329-331
    158 徐豹,邹淑华,庄炳昌,林忠平,赵玉锦.野生大豆(G.soja)种子贮藏蛋白组分11S/7S的研究.作物学报,1990,16(3):235-241
    159 徐豹,庄炳昌,路琴华,王玉民,胡传璞,梁岐,郑惠玉,吕景良.中国野生大豆(G.soja)脂肪及其脂肪酸组成的研究.吉林农业科学,1993,2:1-6
    160 徐豹,庄炳昌,徐航,路琴华,王玉民,李福山.中国野生大豆(G.soja)脂肪含量的多样性及地理分布.大豆科学,1993,12(4):269-274
    161 徐豹,庄炳昌,徐航,路琴华,王玉民,李福山.中国野生大豆(G.sQja)籽粒性状的遗传多样性及其地理分布.作物学报,1995,21(6):733-739
    162 徐吉臣.用双单倍体群体构建水稻的分子连锁图.遗传学报,1994,21(3):205-214
    163 徐杰,胡国华,张大勇.大豆种子脂肪酸组分的研究进展.大豆科学,2005,2(1):61-66
    164 徐学兵编著.油脂化学[M].北京,中国商业出版社,1993年
    165 徐永华,何志鸿,信依群.世界大豆化学品质生态地理分布.大豆科学,1996,15(2):119-125
    166 徐永华,何志鸿,张君政,林凤英,信依群.黑龙江省大豆化学品质生态地理分布:育成品种化学品质的遗传改进与生态分布.大豆科学1997,16(2):149-155
    167 徐云碧,申宗坦,陈英,朱立煌.利用最大似然法进行水稻产量性状基因的分子作图.遗传学报,1995,2(1):46-52
    168 许占友,常汝镇,邱丽娟,李向华等.大豆表达序列标记EST研究进展.大豆科学,2000,19(2):165-173
    169 许占友,常汝镇,邱丽娟等.大豆遗传图谱研究进展及对应的几个问题.大豆科学,2001,20(2):133-137
    170 薛福波,张文彤,田晓燕编著.SAS 8.2统计应用教程.北京,希望电子出版社,2004
    171 薛伟编著.SPASS统计分析方法及应用.北京,电子工业出版社,2004
    172 杨德,盖钧镒,马育华.我国南方大豆地方品种农艺和品质性状的遗传参数分析.大豆科学,1990,9(1):9-18
    173 杨光宇,纪锋.中国野生大豆资源的研究与利用综述Ⅰ.地理分布、化学品质性状及在育种中的利用.吉林农业科学,1999,24(1):12-17
    174 杨光宇,王洋,马晓萍.中国野生大豆(G.soja)脂肪含量及其脂肪酸组成的研究.大豆科学,2000,19(3):258-262
    175 杨光宇,郑惠玉,韩春凤等.吉林省野生大豆脂肪含量的初步研究.中国油料,1992,4:30-33
    176 杨光宇,纪锋.中国野生大豆(G.soja)蛋白质含量及其氨基酸组成的研究进展.大豆科学,1999,18(1):57-61
    177 杨庆凯,张晓艺,孟祥文,李岩,宁海龙,张大勇,孙德生.不同蛋白质、脂肪含量大豆品种在黑龙江不同地点的品质生态反应.大豆科学,2003,22(1):1-5
    178 杨喆,关荣霞,王跃强,刘章雄,常汝镇,王曙明3,邱丽娟.大豆遗传图谱的构建和若干农艺性状的QTL定位分析.植物遗传资源学报,2004,5(4):309-314
    179 姚振纯,刘继德.大豆脂肪酸组分与改良.大豆通报,1997,1:14
    180 易小平,朱祯,周开达.水稻抗性基因定位及相关分子标记研究进展.生物工程进展,1998,18(5):40-44
    181 殷剑美,武耀廷,朱协飞,张天真.陆地棉产量与品质性状的主基因与多基因遗传分析.棉花学报,2003,15(2):67-72
    182 尹天水,王树会,石磊.烤烟烟叶钾含量的遗传分析.烟草科技,2005,5:34-38
    183 尹田夫,聂俊华.大豆油脂化学品质改良的超前研究.大豆科学,1989,8(1):86-86
    184 游明安,盖钧镒,马育华.长江下游夏大豆地方品种群体蛋白质含量、油分含量及产量等性状的遗传变异和相关研究.大豆科学,1989,8(1):11-20
    185 于永德,盖钧镒,马育华.大豆蛋白质含量和油分含量的组合间遗传变异与选择研究.见盖钧镒主编:大豆育种应用基础和技术研究进展.1990a.pp.79-84.南京.江苏科学技术出版社
    186 于永德,盖钧镒,马育华.大豆蛋白质和油分含量在杂种F2-F5世代的遗传变异与选择研究.见盖钧镒主编:大豆育种应用基础和技术研究进展.1990b.pp.85-90.南京.江苏科学技术出版社
    187 于永德.大豆蛋白质含量和油分含量遗传变异研究.山东农业大学学报,1991,22(3):201-206
    188 袁有禄,张天真.棉花高品质纤维性状的主基因与多基因遗传分析.遗传学报,2002,29(9):827-834
    189 曾亚文,申时全,普晓英.粳稻孕穗期耐冷基因突变体02428c的遗传研究.核农学报,2005,19(1):6-8
    190 曾亚文,申时全,徐绍忠.云南软米低直链淀粉含量及其相关性状遗传分析.植物遗传资源学报,2004,5(1):12-16
    191 詹秋文,盖钧镒,章元明,孙祖东.大豆对斜纹夜蛾幼虫抗性遗传的发展表达过程.遗传学报,2001,28(10):956-963
    192 张大勇,宁海龙,胡国华,张淑珍,王继安,李文滨.东北三省大豆蛋白质、油分含量的地点、年份效应分析.大豆科学,2004,23(1):30-35
    193 张德水,董伟,惠东威,陈受宜,庄炳昌.用栽培大豆与野生大豆间的杂种F_2群体构建基因组分子标记连锁框架图.科学通报,1997,42(12):1326-1330
    194 张德水,刘峰,陈受宜.大豆的基因组研究及其进展.遗传,1999,20(1):26-29
    195 张礼凤,李伟,徐冉,戴海英,王彩洁.山东省大豆种质资源农艺性状和品质分析.华北农学报.2006,21(增刊):133-136
    196 张太平,盖钧镒.在南京生态环境下贵州大豆品种性状的遗传变异.中国油料,1989,3:15-20
    197 张勇,张伯桥,高德荣,程顺和.小麦赤霉病抗源H35的遗传模式分析.麦类作物学报,2005,25(4):39-43
    198 张勇,张伯桥,高德荣,程顺和.小麦抗病新材料S42抗赤霉病性的主基因+多基因遗传分析.江苏农业学报,2005,21(4):272-276
    199 张增翠,侯喜林,曹寿椿.不结球白菜维生素C和可溶性糖含量的遗传分析.园艺学报,1999,26(3):170-174
    200 张志永,衣翠文.大豆子粒中蛋白质和脂肪含量的遗传变异.吉林农业科学,1991,2:21-26
    201 张志永,盖钧镒.RFLP在大豆种质资源及遗传连锁研究中的应用.大豆科学,1995,14(4):341-348
    202 张志永.大豆籽粒脂肪酸含量的遗传相关研究.中国油料,1991,3:16-19.
    203 张忠臣,战秀玲,陈庆山.大豆QTL定位的研究进展.大豆科学,2004,23(3):222-227
    204 张忠臣,战秀玲,陈庆山.大豆油分和蛋白性状的基因定位.大豆科学,2004,23(2):81-85
    205 章元明,盖钧镒,戚存扣.利用家系群体鉴定数量性状多基因的存在.生物数学学报,2001,16(1):96-102
    206 章元明,盖钧镒,戚存扣.数量性状分离分析的精确度及其改善途径.作物学报,2001,27(6):787-793
    207 章元明,盖钧镒,王永军.利用P_1、P_2和DH或RIL群体联合分离分析的拓展.遗传,2001,23(5):467-470
    208 章元明,盖钧镒,张孟臣.利用P_1 F_1 P_2和F_2或F_(2:3)世代联合的数量性状分离分析.西南农业大学学报,2000,22(1):6-9
    209 章元明,盖钧镒.利用DH或RIL群体检测QTL体系并估计其遗传效应.遗传学报,2000,27(7):634-640
    210 章元明,盖钧镒.王建康.利用回交B_1和B_2及F_2群体鉴定数量性状两对主基因+多基因混合遗传模型.生物数学学报,2000,15(3):358-366
    211 赵道新,李淑贞,陈霞.黑龙江省大豆品种脂肪酸组成的研究.大豆科学,1988,7(4):327-332
    212 赵政文,马继凤,李小红.南方春大豆春、秋播与籽粒蛋白质脂肪含量关系的研究.大豆科学,1999,18(3):183-190
    213 赵双进,张孟臣,刘兵强,杨春燕,王文秀.河北省大豆种质资源蛋白质和油脂含量的初步分析.河北农业科学.2004,8(3):47-49
    214 中国农业科学院油料作物研究所.中国大豆品种资源目录.北京,农业出版社,1982
    215 中国农业科学院作物品种资源研究所.中国大豆品种资源目录(续编一).北京,农业出版社,1991
    216 中国农业科学院作物品种资源研究所.中国大豆品种资源目录(续编二).北京,中国农业出版社,1996
    217 中国农科院作物品种资源研究所.中国野生大豆资源目录.北京,农业出版社,1990
    218 中国农科院作物品种资源研究所.中国野生大豆资源目录(续编).北京,农业出版社,1996
    219 周宝良,朱协飞,郭旺珍,张天真.异常棉渐渗的陆地棉高品质种质系纤维特性遗传.棉花学报,2006,18(1):60-62
    220 周桂元,梁炫强.花生种子抗黄曲霉侵染性状遗传控制的研究.花生学报,2001,30(3):13-16
    221 周桂元,梁炫强.花生抗黄曲霉侵染主微效基因分析.花生学报,2002,31(3):11-14
    222 朱保葛.大豆突变基因的遗传分析及窄叶突变基因的RAPD标记.遗传学报,2001,8(1):64-68
    223 周新安.大豆种子贮存蛋白组成、积累和遗传的初步研究.南京农业大学博士学位论文,1990
    224 朱洪德,余建章,周可金.大豆脂肪和蛋白质含量双高育种研究.作物学报,1994,20(5):614-620
    225 朱军,季道藩,徐馥华.作物品种间杂种优势遗传分析的新方法.遗传学报,1993,20(3):26-271
    226 朱志华,李为喜,刘三才,张晓芳,李燕,刘方,王述民.2002年我国大豆(Glycine max)品种及种质资源的蛋白质和脂肪含量分析.植物遗传资源学报,2003,4(2):157-161
    227 朱晓丽.两个大豆群体连锁遗传图谱的构建和重要农艺性状的QTL定位.东北农业大学硕士学位论文.2006
    228 庄炳昌.中国野生大豆的遗传多样性及品质性状的QTL定位.中国农业大学博士学位论文.2000
    229 庄杰云,杨长登,钱惠荣.紫米基因与RFLP标记的连锁分析.遗传学报,1996,23(5):372-375
    230 庄无忌,韩华琼,谢发明.栽培、野生、半野生大豆脂肪酸组成的初步分析.大豆科学,1984,3(3):223-230
    231 郑永战.中国大豆种质资源油脂性状的变异、遗传和QTL定位研究.南京农业大学博士学位论文.2006
    232 邹继军,董伟,张志永.大豆RAPD影响因素的探讨.大豆科学,1998,17(3):197-201.
    233 邹继军,杨庆凯.大豆抗病基因定位的分子标记研究进展.中国油料作物学报,2000,22(4):75-78
    234 Adams MR,Golden DL,Williams JK.Soy Protein Containing Isoflavones Reduces the Size of Atherosclerotic Plaques without Affecting Coronary Artery Reactivity in Adult Male Monkeys[J].Journal of Nutrition,2005,135:2852
    235 Anderson,R.L.Analysis of soy protein disc gel electropherograms.Cereal Chemistry.1980,57:155-158
    236 Andrew J R,Walter R F,Grace A W,and Silvia R.Cianzio.Agronomic and Seed Traits of 1%-Linolenate Soybean Genotypes.Crop Sci.,2000,40:383-386
    237 Anna HW,Mimi CY,Chui CT.Plasma isoflavone levels versus self-reported soy isoflavone levels in Asian-American women in Los Angeles County[J].Carcinogenesis,2004,25(1):77
    238 Akkaya M S,Shoemaker R C,Specht JE,Bhagwat A A,Cregan P B.Integration of simple sequence repeat DNA markers into a soybean linkage map.Crop Sci.,1995,35:1439-1445
    239 Apuya N R,Frazier,Keim P,Roth E J,Lark K G.Restriction fragment length polymorphisms as genetic markers in soybean,Glycine max(L.) Merri..Theor.Appl.Genet.,1988,75:889-901
    240 Arrese,E.L.,Sorgentini,D.A.,Wagner,J.R.,A n o n,M.C.Electrophoretic,solubility,and functional properties of commercial soy protein isolates.J.Agric.Food Chem.1991,39:1029-1032
    241 Beilinson V,Chen Z,Shoemaker RC,Fischer RL,Goldberg RB,Nielsen NC.Genomic organization of glycinin genes in soybean.Theor Appl Genet.2002,104:1132-1140
    242 Briggs,D.R.,Wolf,W.J.Studies on the cold-insoluble fraction of the water-extractable soybean proteins.Ⅰ.polymerization of the 11S component through reactions of sulfhydryl groups to form disulfide bonds.Archives of Biochem.and B iophy.1957,72:127-144
    243 Brim CA.Maternal effect on fatty acid composition and oil content of soybeans.Crop Sci.1968,8:51-52
    244 Brooks J.R.,Morr C.V.Current aspects of soy protein fractionation and nomenclature.J.Am.Oil Chem.Sci.1985,62:1347-1354
    245 Brummer E C,Nickel A D,Wilcox J R and.Shoemaker R C.Mapping the Fan locus controlling linolenic acid content in soybean oil.J.Hered.1995,86(3):245-247
    246 Brummer E C,Graef G L,Orf J,Wilcox J R,and Shoemaker R C.Mapping QTL for Seed Protein and Oil Content in Eight Soybean Populations.Crop Sci.1997,37:370-378
    247 Bunyamin T.Genetic mapping of agronomic traits in common bean.Crop Sci.2002,42:544-556
    248 Cahoon E B,.Ripp K G,Hall S E,Kinney A J.Formation of conjugated delta 8,delta 10double bonds by delta 12-oleic acid desaturase related enzymes:Biosynthetic origin of calendic acid.Journal of Biological Chemistry,2001,276:2637-2643
    249 Chapman A,Pantalone V R,Ustun A,Allen F L,Landau-Ellis D.Quantitative trait loci for agronomic and seed quality traits in an F_2 and F_(4:6) soybean population.Euphytica,2003,129:387-393
    250 Cai T.,Chang K.C.Processing effect on soybean storage proteins and their relationship with tofu quality.J.Agric.Food Chem.1999,47:720-727
    251 Catsimpoolas,N.,Rogers,D.A.,Circle,S.J.,Meyer,E.W.Purification and structural stydies of the 11S component of soybean proteins.Cereal Chem.1967,44:631-637
    252 Chen Z,Shoemaker RC.Four genes affecting seed traits in soybean map to linkage group F.J Hered.1998,89:211-215
    253 Christian M.Genetic variation of palmitate and oil content in a winter oilseed rape doubled haploid population segregating for oleate content.Crop Sci.,2002,42:379-384
    254 Chris HT,Kira G,Xiao H,et al.Phase I Pharmacokinetic and Pharmacodynamic Analysis of Unconjugated Soy Isoflavones Administered to Individuals with Cancer[J].Cancer Epidemiology,B iomarkers & Prevention,2003,12:1213
    255 Chung J,Babka H L,Graef G L,Staswick P E,Lee D J,Cregan P B,.Shoemaker R C and Specht J E.The Seed Protein,Oil,and Yield QTL on Soybean Linkage Group Ⅰ.Crop Sci.,2003,43:1053-1067
    256 Churchill G A,Doerge R W.Empirical threshold values for quantitative trait mapping.Genetics,1994,138(3):963-971
    257 Collard B C Y,Jahufer M Z Z,Brouwer J B,Pang E C K.An introduction to markers,quantitative trait loci(QTL) mapping and marker-assisted selection for crop improvement:the basic concepts.Euphytica,2005,142:169-196
    258 Cregan P B,Jarvik T,Bush A L,Shoemaker R C,Lark K G,Kahler A L,VanToai T T,Lohnes D O,Chung J,Specht J E.An integrated genetic linkage map of the soybean genome.Crop Sci,1999,39:1464-1490.
    259 Csanadi G,Vollmarm J,Shift C,Lelley T.Seed quality QTLs identified in a molecular map of early maturing soybean.Theor.Appl.Genet.,2001,103:912-919
    260 David L S,Walter R F,and Grace A W.Relationship of Elevated Palmitate to Soybean Seed Traits.Crop Sci.,2000,40:52-54
    261 David L S,Waiter R F,Grace A W,Earl G H,and Silvia R C.A lap5 Allele for Elevated Palmitate in Soybean.Crop Sci.,2000,40:647-650
    262 David L S,Walter R F,Grace A W,Earl G H,and Silvia R C.A fap7 allele for elevated palmitate in soybean.Crop Sci.2000,40:1538-1542
    263 Deak NA,Murphy PA,Johnson LA.Characterization offractionated soy proteins produced by a new simplified procedure.J Am Oil Chem Soc.2007,84(2):137-149
    264 Diers B W et al.RFLP analysis of soybean seed protein and oil content.Theor Appl Genet,1992,83:608-612
    265 Diers B W,Shoemaker R C.Restriction fragment length polymorphism analysis of soybean fatty acid content.JAOCS.1992a,69:1242-1244
    266 Doerge R W,Churchill G A.Permutation tests for multiple loci affecting a quantitative character.Genetics,1996,142(1):285-294
    267 Draper,M.,Catsimpoolas,N.Isolation of the acidic and basic subunits of glycinin.Phytochemistry.1977,16:25-27
    268 Duska S,Bruce M L,Gary R A,Jack W T.Inheritance of Low Linolenic Acid Level in the Soybean Line RG10.Crop Sci.,1998,38:1441-1444
    269 Dvaid L S.A fap7 allele for elevated palmitate in soybean.Crop Sci.2000,40:1538-1542
    270 Erickson E A.Fatty acid composition of the oil in reciprocal crosses among soybean mutants.Crop Sci.1988,18:644-646
    271 Fanti O,Faugere MC,Gang Z.Systemic administration of genistein partially prevents bone ovariectomized rats in a nonestrogen-like mechanism[J].America Nutrition,1998,68(Suppl):517
    272 Fehr W.R.,Hoeck,J.A.,Johnson,S.L.,Murphy,P.A.,Nott,J.D.,Padilla,G.I.,and WeLke,G.A.Genotype and environment influence on protein components of soybean.Crop Science.2003,43:511-514
    273 Fontes,E.P.B,Moreira,M.A.,Davies,C.S.,and Nielsen,N.C.Urea-elicited changes in relative electrophoretic mobility of certain glycinin and β-conglycinin subunits.Plant Physiol.1984,76:840-842
    274 Fasoula VA,Harris DK,Boerma HR.Validation and Designation of Quantitative Trait Loci for Seed Protein,Seed Oil,and Seed Weight from Two Soybean Populations.Crop Sci.2004,44:1218-1225
    275 Freitas,R.L.,Ferrira,R.B.,Teixeira,A.R.Use of a single method in the extraction of the seed storage globulins from several legume species.Application to analyse structural comparisons within the major classes of globulins.International Journal of Food Sciences and Nutrition.2000,51:341-352
    276 Gai J Y and Wang J K.Identification and estimation of QTL model and effects.Theo.Appl.Genet.1998,97:1162-1168
    277 Garcia,M.C.,Torre,M.,Laborda,F.,Marina,M.L.Rapid separation of soybean globulins by reversed-phase high-performance liquid chromatography.J.Chromatography A.1997,758:75-83
    278 Gesteira A S,Schuster I,Jose I C,Piovesan N D,Viana J M S,Barros E G,Moreira M A.Biometrical analyses of linolenic acid content of soybean seeds.Genetics and Molecular Biology, 2003, 26 (1): 65-68
    
    279 Gilda GH, Wang Y, Che MX. Progression of renal cell carcinoma is inhibited by genistein and radiation in an orthotopic model[J]. BMC Cancer, 2007,7:4
    
    280 Graef G L et al. Inheritance of fatty acid composition in a soybean mutant with low linolenic acid. Crop Sci. 1988, 28: 55-58
    
    281 Graef G L, Fehr W R, Hammond E G. Inheritance of three stearic acid mutants of soybean.Crop Sci., 1985, 25: 1076-1079
    
    282 Gregory J R, Joseph W B, Thomas E C J, Richard F W. Changes in Agronomic and Seed Characteristics with Selection for Reduced Palmitic Acid Content in Soybean. Crop Sci.,1998, 38:297-302
    
    283 Gregory J R, Joseph W B, Thomas E CJ, Richard F W. Genetic Variation for Modifiers Controlling Reduced Saturated Fatty Acid Content in Soybean. Crop Sci., 1998, 38:303-308
    
    284 Hermansson,A.M. Soy protein gelation. J. Am. Oil Chem. Soc. 1986,63:658-666
    
    285 Hasegawa,K., Kusano,T., Mitsuda,H. Fractionation of soybean proteins by gel filtration.Agr. Biol. Chem. 1963,27:878-880
    
    286 Hill, J.E., Breidenbach, R.W. Proteins of soybean seeds. I. Isolation and characterization of the major components. Plant Physiol. 1974, 53:742-746
    
    287 Hill.J.E., Breidenbach,R.W. Proteins of soybean seeds.II. Accumulation of the major protein components during seed development and maturation. Plant Physiol. 1974,53:747-751.
    
    288 Hu J. Mapping of a gene determining linolenic acid concentration in rapeseed with DAN-based markers. Theor Appl Genet., 1995, 90: 258-262
    
    289 Hua,YF., Cui,S.W., Wang,Q., Mine,Y., Poysa,V. Heat induced gelling properties of soy protein isolates prepared from different defatted soybean flours. Food Research International. 2005,38:377-385
    
    290 Hughes,S.A., Murphy,P.A. Varietal influence on the quantity of glycinin in soybeans. J. Agric. Food Chem. 1983,31:376-379
    
    291 Hyten D L, Pantalone V R, Sams C E, Saxton A M, Landau-Ellis D, Stefaniak T R, Schmidt M E. Seed quality QTL in a prominent soybean population. Theor Appl Genet 2004, 109:552-561
    
    292 Iibuchi,C., Imahor,K. Heterogeneity and its relation to the subunit structure of the soybean 7S globulin. Agri. Biol. Chem. 1978,42:31-36
    
    293 Ishikawa G. The accumulation pattern in developing seeds and its relation to fatty acid variation in soybean. Plant Breeding, 2001, 120: 417-423
    
    294 Ishida H, Uesugi T, Hirai K. Preventive effects of the plantisoflavone, daidzin and genistein on boneloss in ovariectomized rats fed a calcium 2 deficient diet[J]. Biological pharmaceutics, 1998, 21(1): 62
    
    295 Iyengar,R.B., Ravestein,P. New aspects of subunit structure of soybean glycinin. Cereal Chem. 1981:325-330
    
    296 James M N, Walter R F, Ininda J, Grace A W, Earl G H, Daniel N Duvick, Silvia R.Cianzio. Inheritance of Elevated Palmitate in Soybean Seed Oil. Crop Sci., 2000, 40:635-639
    297 Jayo MJ,Anthony MS,Register TC.Soy phytoestrogens do not prevent bone loss in postmen opausal monkeys[J].Journal of Clinical Endogenous Metabolism,2003,88(9):4362
    298 Jourdren C.Identification of RAPD markers linked to linolenic acid genes in rapeseed.Euphytica,1996,90(3):351-357
    299 Ju YG,Xiao SL,Jimmy DB.Dietary Soy Isoflavones and Estrone Protect Ovariectomized ERKO and Wild-Type Mice from Carcinogen-Induced Colon Cancer[J].Journal of Nutrition,2004,1:179
    300 Keim P et al.A high density soybean genetic map based on AFLP marker.Crop Sci.,1997,37:537-543
    301 Keim P,Diers B W,Olson T C.RFLP mapping in soybean:association between marker loci and variation in quantitative traits.Genetics,1990,126:735-742
    302 Kenneth FA,Paul DL,Katherine MN.Soy protein containing isoflavones does not decrease colorectal epithelial cell proliferation in a randomized controlled triall[J].America Journal Clinic Nutrition,2005,82:620
    303 Khatib,KA.,Herald,T.J.,Aramouni,F.M.,Macritchie,E.,Schapaugh,W.T.Characterization and functional properties of soy β-conglycinin and glycinin of selected genotypes.J.Food Sci.2002,67:2923-2929
    304 Kitamura,K.,Shibasaki,K.Isolation and Some physico-chemical properties of the acidic subunits of soybean 11S globulin.Agr.Biol.Chem.1975,39:945-951
    305 Kitamura,K.,Shibasaki,K.Homology between the acidic subunits of 11S globulin.Agr.Biol,Chem.1975,39:1509-1510
    306 Kitamura,K.,Takagi,T.,Shibasaki,K.Subnnit structure of soybean 11S globulin.Agr.Biol.Chem.1976,40:1837-1844
    307 Kitamura,K.,Toyokawa,Y.,Harada,K.Polymorphism of glycinin in soybean seeds.Phytochemistry.1980,19:1841-1843
    308 Kitamura K,Davies CS,Nielsen NC(1984) Inheritance of alleles for Cgy1 and Gy4 storage protein genes in soybean.Theor Appl Genet 68:253-257
    309 Kito M,Moriyama S,Kimura Y,Kambara H.Changes in plasma lipid levels in young healthy volunteers by adding an extruder-cooked soy-protein to conventional meals.Biosci Bioteeh Biochem,1993,57:534-538
    310 Koshiyama,I.Factor influencing conformation changes in a 7S protein of soybean globulins by ultracentrifugal investigations.Agr.Biol.Chem.1968,32:879-887
    311 Kumar V,Rasi A,Solanki S,Hussain SM.Influence of growing environment on the biochemical composition and physical characteristics of soybean seed.Journal of Food Composition and Analysis,2006,19:188-195
    312 Laemmli,UK.C lavage of structural proteins during the assembly of head of bacteriophage T_4.Nature.1970,227:680-685
    313 Lakemond,C.M.M.,Jongh,H.H.J.D.,Gruppen,H.,Voragen,A.G.J.Differences in denaturation of genetic variants of soy glycinin.J.Agric.Food Chem.2002,50:4275-4281
    314 Lark K G,Weisemann J M,Matthews B F,Palmer R,Chase K,Macalma T.A genetic map of soybean(Glycine max L.) using an intraspecific cross of two cultivars:Minsoy and Noirl.Theor Appl Genet.,1993,86:901-906
    315 Laura NH,Heather ME,Alekel DL.Effects of soy isoflavones and phytate on homocysteine,C-reactive protein,and iron status in postmenopausal women[J].America Journal Clinic Nutrition,2006,84:774
    316 Lee S H et al.RFLP loci associated with soybean seed protein and oil content across populations and locations.Theor Appl Genet.,1996,93:649-657
    317 Li HH,Zhang LY,Wang JK.IciMapping v2.0.10 November 2007
    318 Li Z L,Wilson R F,Rayford W E,Boerma H R.Molecular mapping genes conditioning reduced palmitic acid content in N87-2122-4 soybean.Crop Sci.,2002,42:373-378
    319 Luo Z W.Estimation of genetic parameters using linkage between a marker gene and a locus underlying a quantitative character in F_2 populations.Heredity,1993,70(3):245-253
    320 Luo Z W.Maximum likelihood estimation of linkage between a marker gene and a quantitative locus.Heredity,1989,63(3):401-408
    321 Manjaya JG,Suseelan KN,Gopalakrishna T.Radiationinduced variability of seed storage proteins in soybean[Glycinemax(L.) Merrill].Food Chem.2007,100(4):1324-1327
    322 Mahmoud AA,Natarajan SS.Effect of six decades of selective breeding on soybean protein composition and quality:a biochemical and molecular analysis.Journal of agricultural and food chemistry.2006,54(11):3916-3922
    323 Mansur L M,Orf J H,Chase K.Genetic mapping of agronomic traits using recombinant inbred lines of soybean.Crop Sci.,1996,36:1327-1336
    324 Mansur L M,Lark K G,Kross H.Interval mapping of quantitative trait loci for reproductive,morphological,and seed traits of soybean(Glycine max L.).Theor.Appl.Genet.1993,86:907-913
    325 Marshall,W.E.,Zarins,Z.M.Exothermic transitions of glycinin determined by differential scanning calorimetry.J.Agric.Food Chem.1989,37:869-873
    326 Mark F H,Walter R F,Grace A W.Association of Elevated Palmitate with Agronomic and Seed Traits of Soybean.Crop Sci.2002,42:1117-1120
    327 Maughan P J.Amplified fragment length polymorphism(AFLP) in soybean:species diversity,inheritance,and near-isogenic line analysis.Theor Appl Genet.,1996,93:392-401
    328 Marcone,M.F.Biochemical and biophysical properties of plant storage proteins:a current understanding with emphasis on 11S seed globulins.Food Research International.1999,32:79-92
    329 Martins VB,Netto FM Physicochemical and functional properties of soy protein isolate as a function of water activity and storage.Food Research International.2006,39:145-153
    330 Maruyama,N.,Fukuda,T.,Saka,S.Molecular and structural analysis of electrophoretic variants of soybean seed storage proteins.Phytochemistry.2003,64:701-708
    331 Meng,G.T.,Ma,C.Y.Thermal properties of phaseolus angularir(red bean) globulin.Food Chemistry.2001,73:453-460
    332 Mitsuda,H.,Kusano,T.,Hasegawa,K.Purification of the 11S component of soybean proteins.Agr.Biol.Chem.1964,29:7-12
    333 Molina,E., Papadopoulu,A., Leaward,D.A. Emulsifying properties of high pressure treated soy protein isolate and 7S and 11S globulins. Food Hydrocolloids. 2001,15:263-269
    
    334 Molina,E., Defaye,A.B., Ledward,D.A. Soy protein pressure-induced gel. Food Hydrocolloids. 2002,16:625-632
    
    335 Mori,T., Utsumi,S., Inaba,H. Interaction involving disulfide bridges between subunits of soybean seed globulin and between subunits of soybean and sesame seed globulins. Agric.Biol.Chem. 1979.43:2317-2322
    
    336 Mori,T., Nakamura,T., Utsumi,S. Gelation mechanism of soybean 11S globulin: formation of soluble aggregates as transient intermediates. Journal of Food Science. 1981,47:26-30
    
    337 Mori,T., Utsumi.S., Inaba,H., Kitamura,K., Harada,K. Differences in subunit composition of glycinin among soybean cultivars. J. Agric. Food Chem. 1981,29:20-23
    
    338 Mujoo,R., Trinh,D.T., Ng,P.K.W. Characterization of storage proteins in different soybean varieties and their relationship to tofu yield and texture. Food Chemistry. 2003,82:265-273
    
    339 Nakamura, T., Utsumi, S., Kitamura, K. Cultivar differences in gelling characteristics of soybean glycinin. J.Agric.Food Chem.1984,32:647-651
    
    340 Nakamura,T., Utsumi.S., Mori,T. Formation of pseudoglycinins from intermediary subunits of glycinin and their gel properties and network structure. Agric. Biol. Chem.1985,49:2733-2740
    
    341 Nakamura,T., Utsumi,S., Mori,T. Mechanism of heat-induced gelation and gel properties of soybean 7S globulin. Agic. Biol. Chem. 1986,50:1287-1293
    
    342 Natarajan SS, Xu C, Bae H, Caperna TJ, Garrett WM . Characterization of storage proteins in wild (Glycine soja) and cultivated (Glycine max) soybean seeds using proteomic MDM, analysis. J Agric Food Chem.2006, 54(8):3114-3120
    
    343 Nielsen NC, Dickinson CD, Cho TJ, Thanh VH, Scallon BJ,Fischer RL, Sims TL, Goldberg RB. Haracterization of the glycinin gene family. Plant Cell. 1989 .1:313-328
    
    344 Nishinari, K., Kohyama, K., Zhang, Y. Rheological study on the effect of the A_5 subunit on the gelation characteristics of soybean proteins. Agric. Biol. Chem. 1991, 351-355
    
    345 Nickell A D, Wilcox J R, Lorenzen L L, Cavins J F, Guffy R G, Shoemaker R C. The Fap2 locus in soybean maps to linkage group D. J. Hered. 1994, 85 (2): 160-162
    
    346 Orf J H, Diers B W, Boerma H R. Genetic improvement: conventional and molecular based strategies. In H. Roger Boerma and James E. Specht (ed), Soybeans: Improvement,Production, and Uses. Third edition. USA. American Society of Agronomy. Inc., 2004,417-450
    
    347 Orf J H, Chase K, Jarvik T, Mansur L M, Cregan P B, Adler F R, Lark K G. Genetics of Soybean Agronomic Traits: I. Comparison of Three Related Recombinant Inbred Populations. Crop Sci., 1999, 39:1642-1651
    
    348 Pallansch,MJ., Liener,I.E. Soy, a toxic protein from the soybean. II. Physical characterization. Arch Bioch. Biophy. 1953,45:366-374
    
    349 Palmer R G. Qualitative Genetics. In H. Roger Boerma and James E. Specht (ed), Soybeans:Improvement, Production, and Uses. Third edition. USA. American Society of Agronomy.Inc., 2004: 201-205
    350 Panthee D R, Pantalone V R, West D R, Saxton A M, Sams C E. Quantitative Trait Loci for Seed Protein and Oil Concentration, and Seed Size in Soybean. Crop Sci. 2005, 45:2015-2022
    
    351 Panthee DR,Kwanyuen P,Sams CE,West DR,Saxton AM, Pantalone VR. Quantitative trait loci for β-conglycinin (7S) and glycinin (11S) fractions of soybean storage protein. Journal of the American Oil Chemists' Society. 2004,81: 1558-9331
    
    352 Peng,IC., Quass,D.W., Dayton,W.R., Allen,C.E. The physicochemical and functional properties of soybean 11S globulin-A review. Cereal Chemistry. 1984,61:480-489
    
    353 Pesic MB, Vucelic-Radovic BV, Barac MB, Stanojevic SP.The influence of genotypic variation in protein composition onemulsifying properties of soy proteins. J Am Oil Chem Soc. 2005,82(9):667-672
    
    354 Picherit C, Bennetau PC. Chanteranne B. Soybean isoflavonesdose2-dependently reduce bone turnover but do not reverse establishedosteopenia in adult ovariectomized rats[J].Journal of Nutrition, 2001, 131(3):723
    
    355 Poysa V,Woodrow L. Stability of soybean seed composition and its effect on soymilk and tofu yield and quality[J]. Food Research International, 2002, 35:337- 345
    
    356 Poysa V, Woodrow L, Yu K. Effect of soy protein subunit composition on tofu quality. Food Research International. 2006, 39:309-317
    
    357 Primomo V S, Duane E F, Gary R A, Jack W T, Istvan R. Inheritance and interaction of low palmitic and low linolenic soybean. Crop Sci. 2002,42: 31-36
    
    358 Primomo V S, Duane E F, Gary R A, Jack W T, Istvan R. Genotype×Environment Interactions,Stability, and Agronomic Performance of Soybean with Altered Fatty Acid Profiles. Crop Sci. 2002,42:37-44
    
    359 Puppo,MC, Speroni,F., Chapleau,N. Effect of high-pressure treatment on emulsifying properties of soybean proteins. Food Hydrocolloids. 2005,19:289-296
    
    360 Puppo,MC, Lupano,C.E., Anon,M.C. Gelation of soybean protein isolates in acidic conditions. Effect of pH and protein concentration. J. Agric. Food Chem.1995,43:2356-2361
    
    361 Qiu B X, Arelli P R, Sleper D A. RFLP markers associated with soybean cyst nematode resistance and seed composition in a `Peking'×`Essex' population. Theor. Appl. Genet.1999, 98:356-364
    
    362 Rahman S M. Genetic control of oleic acid content in the seed oil of two soybean mutants.Crop Sci. 1996, 36: 1125-1128
    
    363 Rahman S M, Kinoshita T, Anai T, Takagi Y. Genetic relationships between loci for palmitate contents in soybean mutants. J. Hered. 1999,90:423-428
    
    364 Rahman S M, Kinoshita T, Anai T, Takagi Y. Combining Ability in Loci for High Oleic and Low Linolenic Acids in Soybean. Crop Sci., 2001,41: 26-29
    
    365 Rahman S M, Takehito K, Anai T, Arima S, Takagi Y. Genetic Relationships of Soybean Mutants for Different Linolenic Acid Contents. Crop Sci. 1998, 38: 702-706
    
    366 Rahman S M, Anai T, Kinoshita T, Takagi Y. A Novel Soybean Germplasm with Elevated Saturated Fatty Acids. Crop Sci. 2003, 43: 527-531
    367 Rahman S M,Takagi T,Kinoshita Y.Genetic control of high stearic acid content in seed oil of two soybean mutants.Theor Appl Genet.1997,95:772-776
    368 Rahman S M,Takagi Y,Kumamaru T.Low linolenate sources at the Fan locus in soybean lines M-5 and IL-8.Breed Sci.1996b,46:155-158
    369 Rahman S M,Takagi Y.Inheritance of reduced linolenic acid content in soybean seed oil Theor Appl Genet.,1997,94:299-302
    370 Rahman S M,Takagi Y,Kinoshita T.Genetic control of oleic acid content in the seed oil of two soybean mutants.Crop Sci.1996a,36:1125-1128
    371 Rajcan.Detection of molecular markers associated with linolenic and erucic acid levels in spring rapeseed(Brassica napur L.).Euphytica,1999,105(3):173-181
    372 Renkema,J.M.S.,Knabben,J.H.M.,Vliet,T.V.Gel formation by β-conglycinin and glycinin and their mixtures.Food Hydrocolloids.2001,15:407-414
    373 Rennie B D,Zilka J,Cramer M M,Beversdorf W D.Genetic analysis of low linolenic acid levels in the soybean line PI361088B.Crop Sci.,1988,28:655-657
    374 Riblett A.L.,Herald,T.J.,Schmidt,K.A.Characterization of β-conglycinin and glycinin soy protein fractions from four selected soybean genotypes.J.Agric.Food.Chem.2001,49:4983-4989
    375 Roberts,R.C.,Briggs,D.R.Isolation and characterization of the 7S component of soybean globulins.Cereal Chemistry.1965,42:71-85
    376 Ruiz-Henestrosa VP,Carrera-Sanchez C,Yust MDMY,Pedroche J,Millan F,Patino JMR (2007) Limited enzymatic hydrolysis can improve the interracial and foaming characteristics of b-conglycinin.J Agric Food Chem 55(4):1536-1545
    377 Samoto M,Maebuchi M,Miyazaki C,Kugitani H,Kohno M,Hirotsuka M,Kito M.Abundant proteins associated withlecithin in soy protein isolate.Food Chem.2007,102(1):317-322
    378 Sathe,S.K.,Liliey,G.G.,Mason,A.C.,Weaver,C.M.High-resolution sodium dodecy sulfate polyacrylamide gel electrophoresis of soybean(Glycine max L.) seed proteins.Cereal Chem.1987,64:380-384
    379 Seiichiro Y,Tomotaka S,Minatsu K.Soy,Isoflavones,and Breast Cancer Risk in Japan[J].Journal of the National Cancer Institute,2003,95(12):906
    380 Sharma R.Construction of an RAPD linkage map and localization of QTLs for oleic acid level using recombinant inbreds in mustard(Brassica juncea).Genome,2002,45:467-472
    381 Sheppard,E.,Mclaren,A.D.Studies on Crystalline trypsin,soybean trypsin inhibitor and inhibitor-trypsin compound with the ultracentrifuge.J.American Chemical Society.1953,75:2587-2591
    382 Shimada,K.,Matsushita,S.Gel formation of soybean 7S and 11S proteins.Agric.Viol.Chem.1980,44(3):637-641
    383 Shoemaker R C and Specht J E.Integration of the soybean molecular and classical genetic linkage groups.Crop Sci.,1995,35:436-446
    384 Shoemaker R C.Soybean Genomics In H.Roger Boerma and James E.Specht(ed),Soybeans:Improvement,Production,and Uses.Third edition.USA.American Society of Agronomy.Inc.,2004,235-263
    385 Shoemaker R C,Specht J E.Integration of the soybean molecular and classical genetic linkage groups.Crop Sci.,1995,35:436-446
    386 Somers D J.Identification of molecular markers associated with linoleic acid desaturation in Brassica napus.Theor Appl Genet.,1998,96:897-903
    387 Song Q J,Marek L F,Shoemaker R C,Lark K G,Concibido V C,Delannay X,Specht J E,Cregan P B.A new integrated genetic linkage map of the soybean.Theor App Genet,2004,109:122-128
    388 Sonoe,O.Y.,Fukazawa,C.,Harada,K.Formation of storage protein components during soybean seed development.Agric.Biol.Chem.1978,42:697-702
    389 Sorgentini,D.A.,Wagner,J.R.Comparative study of foaming properties of whey and isolate soybean proteins.Food Research International.2002,35:721-729
    390 Spencer M.,Pantalone V R,Meyer E J.Mapping the Fas locus controlling stearic acid content in soybean.Theor.Appl.Gent.,2003,106:615-619
    391 Staswick,P.E.,Hermodson,M.A.,Nielsen,N.C.Identification of the acidic and basic subunit complexes of glycinin.The Journal of Biologicai Chemistry.1981,256:8752-8755
    392 Staswick,P.E.,Hermodson,M.A.,Nielsen,N.C.The amino acid sequence of the A_2B_(1a)subunit of glycinin.The Journal of Biological Chemistry.1984,259:13424-13430
    393 Takagi Y,and Rahman S M.Inheritance of high oleic acid content in the seed oil of soybean mutant M23.Theor.Appl.Genet.1996,92:179-182
    394 Tanhuanp(a|¨)(a|¨) P K.Mapping of a QTL for oleic acid concentration in spring turnip rape(Brassica rapa ssp.oleifera).Theor Appl Genet.,1996,92:952-956
    395 Taylor,J.F.The determination of sedimentation constant with the spinco ultracentrifuge.Arch.Bioch.Biophy.1952,36:357-364
    396 Thanh,V.H.,Okubo,K.,Shibasaki,K.The heterogeneity of the 7S soybean protein by sepharose gel chromatography and disc gel electrophoresis.Agr.Biol.Chem.1975,39:1501-1503
    397 Thanh,V.H.,Shibasaki,K.Major proteins of soybean seeds.A straightforward fractionation and their characterization.J.Agric.Food Chem.1976,24:1117-1121
    398 Thormann C E.Mapping loci controlling the concentrations of erucic and linolenic acids in seed oil ofBrassica napus L.Theor Appl Genet.,1996,93:282-286
    399 Thomas C,Matteo F,Patricia L.Isoflavones and Functional Foods Alter the Dominant Intestinal Microbiota in Postmenopausal Women[J].Journal of Nutrition,2005,135:2786
    400 Tsumura K,Saito T,Kugimiya W,Inouye K.Selective proteolysis of the glycinin and b-conglycinin fractions in a soy protein isolate by pepsin and papain with controlled pH and temperature.J Food Sci.2004,69(5):363-367
    401 Tuberosa R,Salvi S,Sanguineti M,Landi P,Maccaferri M,ContiS.Mapping QTLs regulating morpho-physiological traits and yield:case studies,shortcomings and perspectives in drought stressed maize.Ann Bot,2002,89(7):941-963
    402 Tsubokura Y,Hajika M.Molecular characterization of a β-conglycinin deficient soybean.Euphytica.2006,150(1-2):249-255
    403 Utsumi,S.,Kinsella,J.E.Forces involved in soy protein gelation:Effects of various reagents on the formation,hardness and solubility of heat-induced gels made from 7S,11S,and soy isolate.Journal of Food science.1985,50:1278-1282
    404 Utsumi,S.,Inaba,H.,Mori,T.Heterogeneity of soybean glycinin.Phytocheistry.1981,20:585-589
    405 Utsumi,S.,Kinsella,J.E.Structure-function relationships in food proteins:subunits interactions in heat-induced gelation of 7S,11S,and soy isolate proteins.J.Agric.Food Chem.1985,33:297-303
    406 Wang,C.H.,Damodaran,S.Thermal gelation of globular proteins:weight-average molecular weight dependence of gel strength.J.Agric.Food Chem.1990,38:1157-1164
    407 Wilcox J R.Breeding soybeans for improved oil quantity and quality.In R.Shibles(ed).WSRC Ⅲ:Proc.Westview Press,Boulder,USA.1985:380-386
    408 Wilcox J R and Cavins J F.Inheritance of low linolenic acid content of the seed oil of a mutant in Glycine max.Theor.Appl.Genet.,1985,71:74-78
    409 Wilcox J.R.World distribution and trade of soybean.In H.Roger Boerma and James E.Specht(ed),Soybeans:Improvement,Production,and Uses.Third edition.USA.American Society of Agronomy.Inc.,2004:1-14
    410 Wilson R F.Seed composition.In H.Roger Boerma and James E.Specht(ed),Soybeans:Improvement,Production,and Uses.Third edition.USA.American Society of Agronomy.Inc.,2004:621-677
    411 Wolf,W.J.,Briggs,D.R.Ultracentrifugal investigation of the effect of neutral salts on the extraction of soybean proteins.Arch.Bioch.Biophy.1956,63,40-49
    412 Wolf,W.J.,Briggs,D.R.studies on the cold-insoluble fraction of the water-extractable soybean proteins.Ⅱ.Fractors influencing conformation changes in the 11S component.Arch Bioch.Biophy.1958,76:377-393
    413 Wolf,W.J.,Briggs,D.R.Purification and characterization of the 11S component of soybean proteins.Arch.Bioch.Biophy.1959,85:186-199
    414 Wolf,W.J.,Babcock,G.E.,Smith,A.K.Purification and stability studies of the 11S component of soybean proteins.Arch.Bioch.Biophy.1962,99:265-274
    415 Wolf,W.J.,Eldridge,A.C.,Babcock,G.E.Physical properties of alcohol-extracted soybean proteins.Cereal Chem.1963,40:504-514
    416 Wolf,W.J.,Sly,D.A.Cryoprecipitation of soybean 11S protein.Cereal Chem.1967,44:653-668
    417 Wolf,W.J.,Tamura,T.Heat Denaturation of soybean llS protein.Cereal Chem.1969,46:331-344
    418 Wolf,W.J.Soybean proteins:Their functional,chemical,and physical properties.J.Agric.Food Chem.1970,18:969-976
    419 Wolf,W.J.Sulfhdryl content of glycinin:Effect of reducing agents.J.Agric.Food Chem.1993,41:168-176
    420 WU Jian-Yu.Molecular tagging of a new resistance gene to maize mosaic virus using microsatellite markers..Acta Botannica Sinica,2002,44(2):177-180
    421 Yagasaki,K.,Takagi,T.,Sakai,M.,Kitamura,K.Biochemical characterization of soybean protein consisting of different subunits of glycinin. J. Agric. Food Chem. 1997,45:656-660
    
    422 Yaklich RW, Vinyard B, Camp M, Douglass S. Analysis of seed protein and oil from soybean Northern and Southern region uniform tests. Crop Sci. 2002,42:1504-1515
    
    423 Yamauchi, F., Sato, M., Sato, W., et al. Isolation and identification of a new type of β-conglycinin in soybean globulins. Agric. Biol. Chem. 1981, 45: 2863-2868
    
    424 Zeng Z B. Precision mapping of quantitative trait loci. Genetics. 1994,136 (4): 1457-1468
    
    425 Zhang S F, Chao Z M A, Zhu J C, Wang J P, Wen Y C, Fu T D. Genetic Analysis of Oil Content in Brassica napus L. Using Mixed Model of Major Gene and Polygene. Acta Genetica Sinica, 2006, 33 (2): 171-180
    
    426 Zhang W K, Wang Y J, Luo G Z, Zhang J S, He C Y, Wu X L, Ga J Y i, Chen S Y. QTL mapping of ten agronomic traits on the soybean(Glycine max L. Merr.) genetic map and their association with EST markers. Theor. Appl. Genet., 2004, 108: 1131-1139
    
    427 Zhang, G.Y., Hayashi,Y, Matsumoto,S.,Matsumura,Y., Mori,Tomohiko. Molecular species of glycinin in some soybean cultivars. Phytochemistry. 2002,60:675-681

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700