用户名: 密码: 验证码:
铸造AZ91D镁合金腐蚀动态力学性能评价及防护研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究铸造AZ91D镁合金在普通电化学腐蚀和微生物腐蚀两种条件下的腐蚀动态力学性能,在系统深入分析AZ91D镁合金在自腐蚀条件下和微电物腐蚀条件下腐蚀剩余强度变化规律的基础上,揭示了镁合金腐蚀动态强度变化机理。大量的实验数据表明,镁合金受到腐蚀后其强度会迅速衰减,曲线拟合结果表明,随着浸泡时间的增加,铸造AZ91D镁合金腐蚀剩余强度遵循负指数变化规律。点蚀的发生是导致其腐蚀后强度处于动态衰减过程中的直接原因,点蚀坑的形核及长大造成了镁合金有效承载面积的下降和局部应力集中的形成,点蚀坑成为腐蚀发生后镁合金断裂过程中主要的裂纹源,是导致AZ91D镁合金最终断裂失效的根本原因。通过ANSYS有限元模拟分析发现,腐蚀内部应力场及应变场强度远高于基体的平均水平。因此,在外加载荷的作用下,蚀坑部位会率先失效。有限元模拟计算结果与实验数据完全吻合,从另一侧面证明了点蚀坑在镁合金腐蚀剩余强度衰减过程中的核心地位。通过对镁合金点蚀的研究,建立了镁合金多晶粒复相电极耦合模型,通过电化学热力学计算进一步建立了镁合金点蚀的热力学基础并揭示了镁合金点蚀形核的机理。通过电场模型的解释可以看出,由于腐蚀不均匀导致氯离子在电场力的作用下定向移动破坏腐蚀膜层是点蚀长大的根本原因。通过5样本最大蚀坑深度统计数据表明,稀土改性AZ91D镁合金最大蚀坑深度在腐蚀初期低于AZ91D镁合金,随着腐蚀的发展,由于稀土元素细化了β相导致其对点蚀的抑制作用降低,使得稀土改性AZ91D镁合金最大蚀坑深度在腐蚀后期高于AZ91D镁合金。AZ91D镁合金腐蚀剩余强度—最大蚀坑深度函数关系表明,腐蚀剩余强度随着最大蚀坑深度的增加呈现出良好的负线性关系。根据镁合金腐蚀剩余强度与最大腐蚀坑深度之间存在函数关系,在脆性材料经典破坏准则的基础上建立了镁合金腐蚀剩余强度评价准则,即,当最大腐蚀坑深度超过工程实际中允许的最大蚀坑深度时,镁合金构件断裂失效,材料发生破坏,式中安全因子可根据实际情况取1.0~2.0之间的数值。为镁合金产品的设计提供理论参考,同时也为正在使用和即将投入使用的镁合金产品提供安全评价依据。SF
Energy crisis and climate change have become two major problems in the present world, and then improving energy efficiency and reducing carbon emissions are important means for solving these problems. Automotive industry is the strategic pillar of national economy, reducing the body weight of the car could effectively promote energy efficiency and reduce carbon emissions which are very helpful for the realization of energy conservation and environmental protection.
     For weight reduction, magnesium alloy is an ideal material to replace the traditional materials, owing to these remarkable advantages, such as, high specific strength, low density, good mechanical processing properties and fine cast performance. Thus, magnesium alloy receives widespread attention.
     However, bad corrosion resistance plus low strength has become the“bottleneck problem”which significantly suppresses the development of magnesium alloy; thus magnesium alloy could hardly perform as load-bearing parts in use. Still, security risk exists as the bad performance of magnesium alloy in corrosion and strength.
     In order to address security problems and improve product safety, cast AZ91D magnesium alloy was adopted as the target alloy for investigating the dynamic strength and establishing evaluation Criteria based on the systematical research on the electrochemical corrosion and the microbiologically influenced corrosion. Simultaneously, rare earth Ce and Y were introduced to ameliorate the dynamic-mechanical property of magnesium alloy and suppress the decay rate of the corrosion residual strength of magnesium alloy.
     As a result, the corrosion residual strength of AZ91D magnesium alloy follows negatively exponential decay within 372h immersion in 3.5% NaCl aqueous solution. For magnesium alloy, the nucleation and propagation of corrosion pits should be directly responsible for the decay of corrosion residual strength in corrosive conditions. On the one hand, corrosion pits lead to the reduction of the effective loading area; on the other hand, corrosion pits are the positions where stress concentration happens when external load acts on the magnesium alloy parts.
     Consulting the international practice, the extreme depth of corrosion pit was introduced to evaluate the local corrosion of magnesium alloy, and the statistical results shows that the extreme depth of corrosion pit follows power exponent function, and thus it increases fast at the very beginning and then slowly in the following time range. Further analysis indicates that the corrosion residual strength of AZ91D magnesium alloy is linearly dependent on the extreme depth of corrosion pit, which lays a solid foundation for the evaluation of corrosion residual strength for AZ91D magnesium alloy.
     Previous studies indicated that rare earth elements Ce and Y could effectively improve the corrosion resistance and mechanical properties of AZ91D magnesium alloy. The results from the experiments shows that the rare earth Ce/Y modified AZ91D magnesium alloy exhibits a similar regulation in dynamic strength in corrosive conditions as compared with the unmodified AZ91D magnesium alloy. However, the addition of rare earth significantly improves the mechanical properties of magnesium alloy by reducing the effect of stress concentration at corrosion pits, and therefore remarkably suppressing the decay of corrosion residual strength. Electrochemical potentiodynamic polarization curves analysis indicates that rare earth could accelerate the refinement of the microstructure of AZ91D magnesium alloy, which suppresses the micro-galvanic effect in corrosion process and promotes the overall macro-corrosion resistance of AZ91D magnesium alloy. Simultaneously, the addition of rare earth could suppress the nucleation of corrosion pits judging from the corrosion morphology; therefore the extreme depth of corrosion pit to the rare earth modified AZ91D magnesium alloy is lower in contrast to that of the unmodified AZ91D magnesium alloy. With the development of corrosion, the refinement of theβphase lead resulted in the weakening of its resistance effect on the propagation of corrosion pits; in this case, the extreme depth of corrosion pit to the rare earth modified AZ91D magnesium alloy is higher than the unmodified AZ91D magnesium alloy. In general, rare earth modification could effectively suppress the decay of the corrosion residual strength of AZ91D magnesium alloy, which is an ideal mean for the protection of the dynamic-mechanical properties magnesium alloy.
     Rare earth Ce and Y exhibit significant difference in modification, i.e., rare earth Y shows better solid solution capability than Ce, while rare earth Ce could remarkable promote the precipitation of compounds. The mechanical properties of AZ91D magnesium alloy is further improved by the appropriate adjustment of the ratio between rare earth Ce and Y. In contrast to the unmodified AZ91D magnesium alloy, the tensile strength of the rare earth Ce and Y complex modified AZ91D magnesium alloy is increased by 22%. Pitting corrosion is further restricted by further adjusting the ratio of rare earth Ce and Y, and simultaneously the corrosion residual strength of the complex modified AZ91D magnesium alloy after 108h immersion is improved obviously. For the 1.0Y modified AZ91D magnesium alloy, 0.2%Ce is the optimal concentration, the mechanical property and the corrosion resistance are the best. For the 1.0Ce modified AZ91D magnesium alloy, appropriately increasing the concentration of Y could promote its mechanical property and corrosion resistance effectively. In general, the corrosion residual strength of AZ91D magnesium alloy is remarkably improved by combining the advantages of the two rare earth elements, which calls for much more research and exhibits higher research value.
     Common corrosion tests indicate that corrosion pits emerge on the surface of AZ91D magnesium alloy when corrosion happens, which results in the fast dropping corrosion residual strength. However, except common electrochemical, microbial metabolism is also an important reason for the corrosion of magnesium alloy. In this paper, the microbiologically influenced corrosion of magnesium alloy was investigated by a specially designed in-situ corrosion method, and the results indicated that the metabolism of bacteria could accelerate the degradation of corrosion film which is in favor of pitting corrosion. The degradation of corrosion film by bacteria is the direct reason for the drop of corrosion residual strength. The large-scale finite element analysis was adopted to calculate the stress field and strain field, the results revealed that stress concentration mainly emerges in the corrosion pit. Further more, the stress and strain field in the corrosion pit is also uneven, in particular stress concentration mainly happens in a long and narrow area under the axial tension state. The emergence of stress concentration is a root cause for the failure of magnesium alloy in low stress condition. In fact, this result is closely consistent with the experimental results.
     In order to systematically analyze the mechanism for pitting corrosion, a polycrystalline multi-electrode couple (PMC) model was adopted for the thermodynamics calculation based on the experimental results, which is also used for the explanation of pitting corrosion mechanism.
     Evaluation criteria, , for the dynamic-strength of magnesium alloy was founded on the basis of the relationship between the corrosion residual strength and the extreme depth of corrosion pit, i.e., , base on a large number of experiments. When corrosion happens, the EDCP value is larger than the allowed value [EDCP], the magnesium alloy components will be failed, and S F could be a value between 1.0 and 2.0 according to the engineering requiments. The foundation of the dynamic evaluation criteria could provide the safety evaluation for magnesium alloy products. It could also accelerate the application of magnesium alloy, which shows long social efficiency and remarkable economic value.
引文
[1]蒋太富,刘静安.镁及镁合金材料的应用及市场开拓前景[J].铝加工,2007(174): 5-10.
    [2]刘倩,单忠德.镁合金在汽车工业中的应用现状与发展趋势[J].铸造技术,2007(28):1668-1671.
    [3]宋珂.镁合金在汽车轻量化中的应用发展[J].机械研究与应用,2007(20):14-16.
    [4]李玉青,吴殿杰.汽车轻量化以及铝镁铸件的应用[J].材料工艺,2005(4):48-50.
    [5]彭晓东,李玉兰,刘江.轻合金在汽车上的应用[J].机械工程材料,1999(23):1-4,23.
    [6]鲍荣华.镁的供需形势分析和发展前景预测[J].国土资源情报,2008(8):44-49.
    [7]杜文博.日本镁合金的研发与应用[J].有色金属,2004(11):33-36,13.
    [8]潘复生,王敬丰,章宗和等.中国镁工业发展的机遇、挑战和责任[J].中国金属通报,2008(2):6-14.
    [9]周进生,鲍荣华.全球原镁供需及趋势分析[J].中国矿业,2008(17):8-10.
    [10]郭玉娟,田建宏.太原市镁及镁合金产业发展研究[J].科技情报开发与经,2009(32):120-122.
    [11]段亚利,张治民,薛勇.镁合金的应用及其塑性成形技术[J].湖南有色金属, 2007(1):38-41.
    [12]黄晓艳,周宏.镁合金的研究应用及最新进展[J].材料与冶金学报,2003(2):300-306.
    [13]葛红花,汪洋,周国定等.普及金属腐蚀与防护知识重要性的研究[J].上海电力学院学报,2007(23):61-64.
    [14]张学元,韩恩厚,李洪锡.中国的酸雨对材料腐蚀的经济损失估算[J].中国腐蚀与防护学报,2002(122):316-319.
    [15]李昌连.大庆油田金属腐蚀防护及其发展趋势[J].油田地面工程(OSE),1992(4): 49-52.
    [16]中国社会科学院语言研究所.现代汉语大词典[M].北京:商务印书馆,1995.
    [17]Izumi S, Yamasaki M, Kawamura Y. Relation between corrosion behavior and microstructure of Mg–Zn–Y alloys prepared by rapid solidification at various cooling rates[J].Corrosion Science,2009,51:395-402.
    [18]Gao L L, Zhang C H, Zhang M L et al. The corrosion of a novel Mg–11Li–3Al–0.5RE alloy in alkaline NaCl solution[J].Journal of Alloys andCompounds,2009,468:285-289.
    [19]Lisitsyn V, Ben-Hamu G, Eliezer D, et al. The role of Ca microalloying on the microstructure and corrosion behavior of Mg-6Zn-Mn-(0.5-2)Si alloys [J].Corrosion Science,2009,51:776-784.
    [20]Huang Z H, Liang S M, Chen R S et al. Solidification pathways and constituent phases of Mg–Zn–Y–Zr alloys[J].Journal of Alloys and Compounds, 2009, 468:170-178.
    [21]Song G L, Atrens A, Wu X L et al. Corrosion behaviour of AZ21,AZ501 and AZ91 in sodium chloride[J].Corrosion Science, 1998,40:1769-1791.
    [22]张丽君,张昭,张鉴清.阳极氧化AZ91D镁合金在氯化钠稀溶液中的腐蚀行为[J].物理化学学报(Wuli Huaxue Xuebao),2008(24):1831-1838.
    [23]刘文峰,柴跃生,孙钢.镁及镁合金在NaCl水溶液中的腐蚀行为[J].铸造设备研究, 2008(6):22-24.
    [24]张汉茹,郝远.AZ91D镁合金在含Cl -溶液中腐蚀机理的研究[J].铸造设备研究,2007(3):19-23.
    [25]李凌杰,于生海,雷惊雷等.AZ40镁合金在模拟海水介质中的腐蚀行为[J].重庆大学学报,2008(31):702-706.
    [26]Song Y W, Shan D Y, Chen R S et al. Corrosion Characterization of Mg-8Li Alloy in NaCl Solution[J].Corrosion Science,2009,51:1087-1094.
    [27]许晨阳,继国,黄永玲等.AZ91D在模拟体液中的腐蚀机理与矿化分析[J].轻金属,2009(4):40-44.
    [28]曾荣昌,周碗秋,韩恩厚等.pH值对挤压Mg合金AZ60腐蚀的影响[J].金属学报,2005(3):307-311.
    [29]Wang L, Zhang B P, Shinohara T. Corrosion behavior of AZ91 magnesium alloy in dilute NaCl solutions[J].Materials and Design,2010,31:857-863.
    [30]Zhang T, Li Y, Wang F H. Roles ofβphase in the corrosion process [J]. Corrosion Science, 2006,48:1249-1264.
    [31]Song G L, Johannesson B, Hapugoda S et al. Galvanic corrosion of magnesium alloy AZ91D in contact with an aluminium alloy, steel and zinc[J].Corrosion Science, 2004,46:955-977.
    [32]Jia J X, Song G L, Atrens A. Influence of geometry on galvanic corrosion of AZ91D coupled to steel[J].Corrosion Science,2006,48:2133-2153.
    [33]Song G L, Hapugoda S, John D S. Degradation of the surface appearance of magnesium and its alloys in simulated atmospheric environments[J].Corrosion Science,2007,49:1245-1265.
    [34]J?nsson M, Persson D, Thierry D. Corrosion product formation during NaCl induced atmospheric corrosion of magnesium alloy AZ91D[J].Corrosion Science,2007,49:1540-1558.
    [35]Pardo A, Merino S, Merino M C et al. Corrosion behaviour of silicon-carbide - particle reinforced AZ92 magnesium alloy[J].Corrosion Science,2009,51:841-849.
    [36]Xu C M, Zhang Y H, Cheng G G et al. Pitting corrosion behavior of 316L stainless steel in the media of sulphate-reducing and iron-oxidizing bacteria[J]. Materials Characterization,2008,59:245-255.
    [37]Antony P J, Singh Raman R K, Mohanram R et al. Influence of thermal aging on sulfate-reducing bacteria (SRB)-influenced corrosion behaviour of 2205 duplex stainless steel[J].Corrosion Science,2008,50:1858-1864.
    [38]Kuang F, Wang J, Yan L, Zhang D. Effects of sulfate-reducing bacteria on the corrosion behavior of carbon steel[J].Electrochimica Acta,2007,52:6084-6088.
    [39]Da Silva S, Basséguy R, Bergel A. The role of hydrogenases in the anaerobic microbiologically influenced corrosion of steels[J]. Bioelectrochemistry, 2002, 56:77-79.
    [40]刘建华,梁馨,李松梅.含钪铝镁合金微生物腐蚀行为的研究[J].中国稀土学报,2006(24):81-85.
    [41]朱绒霞,李亚会.航空发动机滑油系统镁合金微生物腐蚀与防护[J].轻金属,2004,(12):35-36.
    [42]朱绒霞,李亚会.航空润滑油变质与镁合金腐蚀模拟实验[J].石油化工腐蚀与防护,2004(215):8-9.
    [43]方世杰,刘耀辉,佟国栋等.镁合金与其它金属的微生物腐蚀行为比较[J].腐蚀科学与防护技术,2008(20):100-104.
    [44]吴振宁,李培杰,刘树勋等.镁合金腐蚀问题研究现状[J].铸造,2001(50):583-586.
    [45]李肖丰,李全安,陈君等.镁合金的腐蚀特性及耐蚀性研究[J].材料保护,2009(2):37-42.
    [46]徐永东,周灵展,赵国田等.耐蚀铸造镁合金的研究现状[J].兵器材料科学与工程,2009(6):84-88.
    [47]Candan S, Unal M, Turkmen M et al. Improvement of mechanical and corrosion properties of magnesium alloy by lead addition[J].Materials Science and Engineering A,2009,501:115-118.
    [48]He W W,Zhang E L, Yang K. Effect of Y on the bio-corrosion behavior of extruded Mg–Zn–Mn alloy in Hank's solution[J].Materials Science and Engineering: C,2010,30:167-174.
    [49]Wang H N, Li Y, Wang F H. Influence of cerium on passivity behavior of wrought AZ91 alloy[J].Electrochimica Acta,2008,54:706-713.
    [50]Zhang E L, He W W, Du H et al. Microstructure, mechanical properties and corrosion properties of Mg-Zn-Y alloys with low Zn content[J].Materials Science and Engineering A,2008,488:102-111.
    [51]Zhang J H, Niu X D, Qiu X, Ke Liu et al. Effect of yttrium-rich misch metal on the microstructures, mechanical properties and corrosion behavior of die cast AZ91 alloy[J].Journal of Alloys and Compounds,2009,471:322-330.
    [52]Song Y L, Liu Y H, Wang S H et al. Effect of cerium addition on microstructure and corrosion resistance of die cast AZ91 magnesium alloy[J].Materials and Corrosion,2007,58:189-192.
    [53]Mathieu S, Rapin C, Steinmetz J et al. A corrosion study of the main constituent phases of AZ91 magnesium alloys[J].Corrosion Science,2003,45:2741-2755.
    [54]Zhao M C, Liu M, Song G L et al. Influence of theβ-phase morphology on the corrosion of the Mg alloy AZ91[J].Corrosion Science,2008,50:1939-1953.
    [55]Neil W C, Forsyth M, Howlett P C et al. Corrosion of magnesium alloy ZE41-The role of microstructural features,Corrosion Science,2009,51:387-394.
    [56]Liu X B, Chen R S, Han E H. Effects of ageing treatment on microstructures and properties of Mg–Gd–Y–Zr alloys with and without Zn additions[J].Journal of Alloys and Compounds,2008,465:232-238.
    [57]Zhou W, Shen T, Aung N N. Effect of heat treatment on corrosion behaviour of magnesium alloy AZ91D in simulated body fluid[J]. Corrosion Science, doi: 10.1016/ j.corsci.2009.11.030.
    [58]Chang J W, Guo X W, Fu P H et al. Relationship between heat treatment and corrosion behaviour of Mg-3.O%Nd-0.4%Zr magnesium alloy. Transactions of Nonferrous Metals Society of China,2007,17:1152-1157.
    [59]Song G L, Bowles A L, StJohn D H. Corrosion resistance of aged die cast magnesium alloy AZ91D[J].Materials Science and Engineering A,2004,366:74-86.
    [60]Chang J W, Fu P H, Guo X W et al. The effects of heat treatment and zirconium on the corrosion behaviour of Mg-3Nd-0.2Zn-0.4Zr (wt.%) alloy[J].Corrosion Science,2007,49:2612-2627.
    [61]Gao L L, Zhang C H, Zhang M L et al. The corrosion of a novel Mg-11Li-3Al-0.5RE alloy in alkaline NaCl solution[J].Journal of Alloys and Compounds,2009, 468: 285-289.
    [62]吴振宁,李培杰,刘树勋等.镁合金腐蚀问题研究现状[J].铸造,2001(50):583-586.
    [63]Anik M, Celikten G. Analysis of the electrochemical reaction behavior of alloy AZ91 by EIS technique in H3PO4/KOH bufered K2SO4 solutions[J].Corrosion Science,2007,49:1878-1894.
    [64]Yang L J, Wei Y H, Hou L F et al. Corrosion behaviour of die-cast AZ91D magnesium alloy in aqueous sulphate solutions[J]. Corrosion Science,2010,52:345-351.
    [65]Chen J, Wang J Q, Han E H et al. States and transport of hydrogen in the corrosion process of an AZ91 magnesium alloy in aqueous solution[J].Corrosion Science,2008,50:1292-1305.
    [66]马全友,王振家,王璐科等.压铸镁合金AZ91D在酸性NaCl溶液中的腐蚀行为[J].表面技术,2004(33):16-19.
    [67]Huo H W, Li Y, Wang F H. Corrosion of AZ91D magnesium alloy with a chemical conversion coating and electroless nickel layer[J].Corrosion Science, 2004,46:1467-1477.
    [68]Zucchi F, Frignani A, Grassi V et al. Stannate and permanganate conversion coatings on AZ31 magnesium alloy. Corrosion Science,2007,49:4542-4552.
    [69]Zhang W X, Jiang Z H, Li G Y et al.Electroless Ni-P/Ni-B duplex coatings for improving the hardness and the corrosion resistance of AZ91D magnesium alloy[J]. Applied Surface Science,2008,254:4949-4955.
    [70]杨黎晖,李峻青,姜巍巍等.镁合金表面处理技术的研究进展[J].中国腐蚀与防护学报,2008(28):316-320.
    [71]何芳,万怡灶,周晓凇等.新型医用镁钙合金锌离子注入改性及其腐蚀行为研究[J].金属热处理,2009(4):32-37.
    [72]Zhou W, Aung N N, Sun Y S. Effect of antimony, bismuth and calcium addition on corrosion and electrochemical behaviour of AZ91 magnesium alloy[J].Corrosion Science,2009,51:403-408.
    [73]Zhang T, Liu X L, Shao Y W et al. Electrochemical noise analysis on the pit corrosion susceptibility of Mg–10Gd–2Y–0.5Zr,AZ91D alloy and pure magnesium using stochastic model[J].Corrosion Science,2008,50:3500-3507.
    [74]Ben-Hamu G, Eliezer D, Dietzel W et al. Stress corrosion cracking of new Mg–Zn–Mn wrought alloys containing Si[J].Corrosion Science,2008,50:1505-1517.
    [75]Sun M, Wu G H, Wang W, Ding W J. Effect of Zr on the microstructure, mechanical properties and corrosion resistance of Mg-10Gd-3Y magnesium alloy[J].Materials Science and Engineering:A,2009,523:145-151.
    [76]Wan Y Z, Xiong G Y, Luo H L et al. Preparation and characterization of a new biomedical magnesium–calcium alloy[J].Materials & Design,2008,29:2034-2037.
    [77]Ma G L, Han G, Liu X F. Grain refining efficiency of a new Al-1B-0.6C master alloy on AZ63 magnesium alloy[J].Journal of Alloys and Compounds, 2010, 491:165-169.
    [78]Liu S f, Chen Y, Han H. Grain refinement of AZ91D magnesium alloy by a new Mg–50%Al4C3 master alloy[J].Journal of Alloys and Compounds, doi: 10.1016 /j. jallcom. 2009.12.064.
    [79]Aung N N, Zhou W. Effect of grain size and twins on corrosion behaviour of AZ31B magnesium alloy[J].Corrosion Science,2010,52:589-594.
    [80]Marya M, Hector L G, Verma R et al. Microstructural effects of AZ31 magnesium alloy on its tensile deformation and failure behaviors[J].Materials Science and Engineering:A,2006,418:341-356.
    [81]Wu A, Xia C Q, Wang S W. Effects of cerium on the microstructure and mechanical properties of AZ31 alloy[J].Rare Metals,2006,25:371-376.
    [82]王桂香,张密林,董国君等.镁合金表面化学转化膜的研究进展[J].材料保护2008(41):46-50.
    [83]刘志远,邵忠财.镁合金表面处理的研究现状与展望[J].电渡与涂饰,2007(26):27-30.
    [84]郑润芬,梁成浩.镁合金的腐蚀与表面氧化技术进展[J].轻合金加工技术,2005(33):12-15.
    [85]Srinivasan P B. Effect of plasma electrolytic oxidation treatment on the corrosion and stress corrosion cracking behaviour of AM50 magnesium alloy[J].Materials Science and Engineering:A,2008,494:401–406.
    [86]王维青,潘复生,左汝林.镁合金腐蚀及防护研究新进展[J].兵器材料科学与工程, 2006(29)73-77.
    [87]Cui X F, Li Q F, Li Y et al. Microstructure and corrosion resistance of phytic acid conversion coatings for magnesium alloy[J].Applied Surface Science, 2008,255:2098–2103.
    [88]周大伟,许晨阳,李晋等.镁合金激光表面改性研究新进展[J].轻金属,2007(4):39-42.
    [89]Hu J H, Guan S K, Zhang C et al. Corrosion protection of AZ31 magnesium alloy by a TiO 2 coating prepared by LPD method[J].Surface and Coatings Technology, 2009,203: 2017-2020.
    [90]Wu G H, Fan Y, Gao H T. The effect of Ca and rare earth elements on the microstructure,mechanical properties and corrosion behavior of AZ91D[J].Materials Science and Engineering:A,2005,408:255-263.
    [91]Wang H n, Li Y, Wang F H. Influence of cerium on passivity behavior of wrought AZ91 alloy[J].Electrochimica Acta,2008,54:706-713.
    [92]Wu G H, Fan Y, Gao H T et al. The effect of Ca and rare earth elements on the microstructure, mechanical properties and corrosion behavior of AZ91D[J].Materials Science and Engineering: A,2005,408:255-263.
    [93]Z.H. Huang, X.F. Guo, Z.M. Zhang, et al. Effects of Ce on corrosion resistance of AZ91D magnesium alloy Acta Metallurgica Sinica,2005,18:129-136.
    [94]Liu S F, Liu L Y, Huang S Y et al. Using Hajós' construction to generate hard graph 3-colorability instances[J].Journal of the Chinese Earth Society, 2006,24: 211-225.
    [95]Zhang T, Liu X L, Shao Y W et al. Electrochemical noise analysis on the pit corrosion susceptibility of Mg–10Gd–2Y–0.5Zr, AZ91D alloy and pure magnesium using stochastic model[J].Corrosion Science,2008,50:3500–3507.
    [96]Abuleil T, Hort N, Dietzel W et al. Microstructure and corrosion behavior of Mg-Sn-Ca alloys after extrusion[J].Transactions Nanferrous Metals Society of China,2009,19:40-44.
    [97]吉泽升,陈晓瑜,胡茂良等.固相合成AZ91D镁合金的组织和性能[J].中国有色金属学报,2006(16):2010-2015.
    [98]LüY Z, Wang Q D, Ding W J et al. Fracture behavior of AZ91 magnesium alloy[J].Materials Letters,2000,44:265–268.
    [99]LüY Z, Wang Q D, Zeng X Q et al. Effects of rare earths on the microstructure, properties and fracture behavior of Mg–Al alloys[J].Materials Science and Engineering:A,2000,278:66–76.
    [100]Wang Y X, Guan S K, Zeng X Q et al. Effects of RE on the microstructure and mechanical properties of Mg–8Zn–4Al magnesium alloy[J].Materials Science and Engineering:A,2006,416 :109–118.
    [101]Xie J C, Li Q A, Wang X Q et al. Microstructure and mechanical properties of AZ81 magnesium alloy with Y and Nd elements[J].Transactions Nonferrous Metal Society of China,2008,18:303-308.
    [102]?í?ek L, Greger M, Pawlica L et al. Study of selected properties of magnesium alloy AZ91 after heat treatment and forming[J]. Journal of Materials Processing Technology,2004,157-158:466-471.
    [103]徐春杰,张忠明,郭学锋等.热挤压AZ91D镁合金的组织与力学性能[J].西安理工大学学报,2005(21):356-360.
    [104]张德平,田政,张景怀等.镱对AZ91D镁合金显微组织和力学性能的影响[J].中国稀土学报,2009(127):104-109.
    [105]许春香,吕正玲.钇对AZ91镁合金晶粒大小显微组织及力学性能的影响[J].铸造,2009(58):53-56.
    [106]齐伟光,赵宝荣,许小忠等.钇对AZ91D镁合金组织和力学性能的影响[J].兵器材料科学与工程,2007(30):52-55.
    [107]曹凤红,龙思远,廖慧敏.稀土对AZ61镁合金组织及室温力学性能的影响[J].铸造,2009(58):593-597.
    [108]陈芙蓉,李仕慧,郭锋等.铈对AZ91D镁合金组织和力学性能的影响[J].铸造技术,2009(30):203-206.
    [109]郑伟超,李双寿,汤彬等.混合稀土对AZ91D镁合金组织和力学性能的影响[J].金属学报,2006(42):835-842.
    [110]王明星,周宏,王林等.Y和Ce对AZ91D镁合金显微组织和力学性能的影响[J],吉林大学学报(工学版),2007(37):6-10.
    [111]许娟,李鹏飞,郭锋等.Y对AZ91D镁合金组织和性能的影响[J].材料热处理技术, 2009(38):32-34.
    [112]范艳艳,李秋书,柴跃生等.Nd和Ce对AZ91D镁合金显微组织和力学性能的影响[J].铸造,2009,(58):713-716.
    [113]郭学锋,黄正华,张忠明.Ce & Ca对AZ91D镁合金组织与力学性能的影响[J].西安理工大学学报,2003(3):201-205.
    [114]杨友,刘勇兵,方懿.AZ91D+xNd压铸镁合金拉伸和疲劳断裂模式[J].铸造,2007(56): 41-45.
    [115]Li S S, Tang B, Zeng D B. Effects and mechanism of Ca on refinement of AZ91D alloy[J].Journal of Alloys and Compounds,2007,437:317–321.
    [116]Sasaki T, Takigawa Y, Higashi K. Effect of Mn on fracture toughness in Mg–6Al–1 wt.%Zn alloy[J].Materials Science and Engineering:A,2008,479:117-124.
    [117]白星,胡文俊,张立强等.Sr对AZ91镁合金组织及力学性能的影响[J].中国有色金属学报,2008,18:1596-1601.
    [118]Kannana M B, Dietzel W, Blawert C et al. Stress corrosion cracking of rare-earth containing magnesium alloys ZE41, QE22 and Elektron 21 (EV31A) compared with AZ80[J].Materials Science and Engineering:A,2008,480:529–539.
    [119]Potzies C, Kainer K U. Fatigue of Magnesium alloys[J].Advanced Engineering materials,2004,6:281-290.
    [120]Pardo A, Merino M C, Coy A E et al. Corrosion behaviour of magnesium/aluminium alloys in 3.5 wt.% NaCl[J].Corrosion Science,2008,50:823–834.
    [121]Ambat R, Aung N N, Zhou W. Evaluation of microstructural e.ects on corrosion behaviour of AZ91D magnesium alloy[J].Corrosion Science,2000,42:1433-1455.
    [122]Mathieu S, Rapin C, Steinmetz J et al. A corrosion study of the mainconstituent phases of AZ91 magnesium alloys[J].Corrosion Science,2003,45: 2741-2755.
    [123]Zhang Y F, Liu Y B, Cao Z Y et al. Mechanical properties of thixomolded AZ91D magnesium alloy[J].Journal of materials processing technology,2009,209: 1375–1384.
    [124]Dieter G E. Mechanical metallurgy[M].New York:McGraw-Hill,1986.
    [125]Ghosh AK. Tensile instability and necking in materials with strain hardening and strain-rate hardening[J].Acta Metallurgica,1977,25:1413-1424.
    [126]Ghosh A K. A physically-based constitutive model for metal deformation[J]. Acta Metallurgica,1980,28:1443-1465.
    [127]Surappa M K, Blank E, Januet J C. Effect of macro-porosity on the strength and ductility of cast Al-7Si-0.3Mg alloy[J]. Scripta Metallurgica, 1986, 20: 1281-1286.
    [128]Cáceres C H. On the effect of macroporosity on the tensile properties of the Al-7%Si-0.4%Mg casting alloy[J].Scripta Metallurgica et Materialia,1995, 32: 1851-1856.
    [129]Cáceres C H, Selling B I. Casting defects and the tensile properties of an Al-Si-Mg alloy[J].Materials Science and Engineering:A,1996,220:109-116.
    [130]Chadha G, Allison JE, Jones JW. Magnesium technology 2004[J]. Warrendale (PA): TMS, 2004, 181-186.
    [131]Lee C D. Dependence of tensile properties of AM60 magnesium alloy on microporosity and grain size[J].Materials Science and Engineering:A, 2007,454-455: 575-580.
    [132]Lee S G, Patel G R, Gokhale A M et al. Variability in the tensile ductility of high-pressure die-cast AM50 Mg-alloy[J].Scripta Materialia,2005,53:851-856.
    [133]Lee C D, Shin K S. Effect of microporosity on the tensile properties of AZ91 magnesium alloy[J].Acta Materialia,2007,55:4293-4303.
    [134]Gilman J J. Electronic basis of the strength of materials[M]. Cambridge University Press, 2003.
    [135]Galicia G, Pébère N, Tribollet B et al. Local and global electrochemical impedances applied to the corrosion behaviour of an AZ91 magnesium alloy[J],Corrosion Science,2009,51:1789-1794.
    [136]Chen J, Wang J Q, Han E H et al. AC impedance spectroscopy study of the corrosion behavior of an AZ91 magnesium alloy in 0.1M sodium sulfate solution[J]. Electrochimica Acta,2007,52:3299–3309.
    [137]Anik M, Celikten G. Analysis of the electrochemical reaction behavior of alloy AZ91 by EIS technique in H3PO4/KOH buffered K2SO4 solutions[J].Corrosion Science,2007,49:1878–1894.
    [138]Liang J, Srinivasan P B, Blawert C et al. Influence of pH on the deterioration of plasma electrolytic oxidation coated AM50 magnesium alloy in NaCl solutions[J].Corrosion Science,2010,52:540–547.
    [139]Rosalbino F, Angelini E, MacciòD. Application of EIS to assess the effect of rare earths small addition on the corrosion behaviour of Zn–5% Al (Galfan) alloy in neutral aerated sodium chloride solution[J].Electrochimica Acta,2009, 54:1204-1209.
    [140]Hirth J P, Lothe J. Theory of Dislocation [M]. New York: John Wiley and Sons Inc,1982:5-80.
    [141]彭晓东,李玉兰,刘江.轻合金在汽车上的应用[J].机械工程材料,1999(23):1-4.
    [142]Song G L, John D S. The effect of zirconium grain refinement on the corrosion behaviour of magnesium-rare earth alloy MEZ[J].Journal of Light Metals,2002,2: 1-16.
    [143]Zhou X H, Huang Y W, Wei Z L et al. Improvement of corrosion resistance of AZ91D magnesium alloy by holmium addition[J].Corrosion Science, 2006, 48: 4223-4233.
    [144]Candan S, Unal M, Turkmen M et al. Improvement of mechanical and corrosion properties of magnesium alloy by lead addition[J]. Materials Science and Engineering:A,2009,501:115–118.
    [145]Srinivasan A, Pillai U T S, Pai B C. Effect of Pb addition on ageing behavior of AZ91 magnesium alloy[J]. Materials Science and Engineering: A, 2007, 452-453: 87-92.
    [146]Bayani H, Saebnoori E. Effect of rare earth elements addition on thermalfatigue behaviors of AZ91 magnesium alloy[J].Journal of Rare Earths, 2009,27: 255-256.
    [147]Hirai K, Somekawa H, Takigawa Y et al. Effects of Ca and Sr addition on mechanical properties of a cast AZ91 magnesium alloy at room and elevated temperature[J].Materials Science and Engineering:A,2005,403:276–280.
    [148]Zhang J H, Niu X D, Qiu X et al. Effect of yttrium-rich misch metal on the microstructures, mechanical properties and corrosion behavior of die cast AZ91 alloy[J].Journal of Alloys and Compounds,2009,471:322–330.
    [149]Zhao Z D, Chen Q, WangY B et al. Microstructures and mechanical properties of AZ91D alloys with Y addition[J].Materials Science and Engineering: A, 2009, 515: 152-161.
    [150]曹楚南,腐蚀电化学原理[M].北京:化学工业出版社,2004.
    [151]孙振国,瞿晓剑,顾琳.固溶体的价电子结构与固溶强化[J].材料科学与工艺, 2005(5):474-476.
    [152]余瑞璜.固体与分子经验电子理论[J].科学通报,1978(23):217.
    [153]张伟,刘伟东,曾莉等.用价电子理论分析Y对Mg2Al合金力学性能的影响[J].色金属, 2008(4):9-13.
    [154]黄正华,郭学锋,张忠明.Ce对AZ91D镁合金力学性能与阻尼性能的影响[J].稀有金属材料与工程,2005(34):375-379.
    [155]赵源华,陈云贵,唐永柏等.Nd和Ce对AZ91镁合金组织和力学性能的影响[J].特种铸造及有色合金,2009(1):69-73.
    [156]杨洁,易丹青,邓姝皓等.微量Ce对AZ91镁合金微观组织及耐蚀性的影响[J].中国腐蚀与防护学报,2008(28):205-209.
    [157]Liu S F, Li B, Wang X H et al. Refinement effect of cerium, calcium and strontium in AZ91 magnesium alloy[J]. Journal of Materials Processing Technology, 2009,209:3999–4004.
    [158]宋雨来,刘耀辉,朱先勇等.铈对AZ91压铸镁合金组织及电偶腐蚀性能的影响[J].铸造,2006 (55):689-691.
    [159]Wang Q, Liu Y H, Zhu X Y et al. Study on the effect of corrosion on the tensile properties of the 1.0 wt.% Yttrium modified AZ91 magnesium alloy[J].Materials Science and Engineering: A, 2009,517:239-245.
    [160]Wang M X, Zhou H, Wang L. Effect of Yttrium and Cerium Addition on Microstructure and Mechanical Properties of AM50 Magnesium Alloy[J].Journal of Rare Earths,2007,25:233-237.
    [161]Gaines R H. Bacterial activity as a corrosion influence in the soil[J]. Journal of English Industrial Chemistry,1910,2:128–130.
    [162]Von C A H,Kühr W, Van der Vlugt L S. The graphitization of cast iron as an electrobiochemical process in anaerobic soils[J].Water,1934,18:147-165.
    [163]Miranda E, Bethencourt M, Botana F J et al. Biocorrosion of carbon steel alloys by an hydrogenotrophic sulfate-reducing bacterium Desulfovibrio capillatus isolated from a Mexican oil field separator[J].Corrosion Science,2006,48:2417-2431.
    [164]Leena-Sisko J, Tuomas S, Investigating early stages of biocorrosion with XPS: AISI 304 stainless steel exposed to Burkholderia species[J].Applied Surface Science,1999,144-145:244-248.
    [165]Liu Y H, Wang Q, Song Y L et al. A study on the corrosion behavior of Ce-modified cast AZ91 magnesium alloy in the presence of sulfate-reducing bacteria[J].Journal of Alloys and Compounds,2009,473:550-556.
    [166]Zhang T, Li Y, Wang F H, Roles ofβphase in the corrosion process of AZ91D magnesium alloy[J].Corrosion Science,2006,48:1249–1264.
    [167]Ballerini G, Bardi U, Bignucolo R et al. About some corrosion mechanisms of AZ91D magnesium alloy[J].Corrosion Science,2005,47:2173–2184.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700