用户名: 密码: 验证码:
图像颜色量化模型优化方法及其在裂纹图像中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,对固体材料裂纹扩展过程的研究主要是通过实验数据进行分析。材料的断裂形貌图像是一组记录了材料断裂历程的裂纹图像,对其进行观察分析可以获得裂纹扩展过程的特征信息。利用图像处理的方法从裂纹图像中提取裂纹信息,并分析裂纹扩展过程特征是一种可行的研究途径。然而,许多固体材料的裂纹图像颜色较为杂乱,这会对图像观察分析产生干扰。利用图像处理中的颜色量化技术,可以在确保图像颜色失真度较小的前提下,将含有丰富颜色信息(2563种)的图像用少数的代表色来表示。因而,对颜色较为杂乱的材料裂纹图像进行颜色量化处理,有利于更好地对裂纹信息进行观察分析。聚类算法是较为流行的一类颜色量化方法,然而,聚类算法对初始条件较为敏感,且易于陷入局部最优。随机优化算法能较好地克服聚类算法的这些缺点。近年来,被成功地应用于彩色图像颜色量化问题的随机优化方法主要有:神经网络算法、蚁群算法、遗传算法、粒子群算法等,现有研究表明随机优化算法在求解彩色图像颜色量化问题上具有一定的优越性。然而,一系列新的问题还有待进一步系统研究,如新兴的随机优化算法是否能更好的求解彩色图像颜色量化问题,面向该问题的数学模型有何特征能指导随机优化算法的设计等等。本文围绕彩色图像颜色量化优化模型的建立、模型特征的分析以及面向彩色图像颜色量化问题的随机优化算法设计等进行了研究,为研究固体材料的裂纹扩展规律和预测裂纹增长趋势奠定了基础。具体工作和创新如下:
     (1)比较研究了粒子群算法、遗传算法、差分演化算法和K-均值聚类算法在颜色量化问题上的优化效果,实验结果表明差分演化策略具有更好的整体优化效果,进而通过数值实验系统地研究了面向颜色量化问题的差分演化相关参数的设置规律。
     (2)研究了彩色图像颜色量化的单目标模型特征,发现彩色图像颜色量化模型对基于种群的随机优化策略的个体元素具有置换等效性,并进一步分析了抑制远距离等效置换的必要性。
     (3)针对彩色图像颜色量化问题,结合置换等效性,提出了一种适合彩色图像颜色量化问题的保持种群多样性的演化策略,该策略以差分演化算法的优化策略为基础,通过设置变异策略的阈值和小概率地应用K-均值聚类策略来抑制远距离等效置换;为了避免实际应用中参数的设置问题,进一步提出了一种彩色图像颜色量化自适应混合演化策略,该策略依据面向颜色量化问题的相关参数设置规律来初始化参数,在演化过程中具有自适应的调整算法参数的功能。对常用测试图像进行量化实验,结果表明加入混合策略、变异策略阈值和自适应策略后,演化策略的收敛速度和颜色量化效果均得到了提高。
     (4)通过数值实验验证了最小化类内最大距离、最大化类间最小距离和类内均方误差的冲突性,从而,以这三个评估准则为目标函数,建立了彩色图像颜色量化问题的多目标优化模型。
     (5)以基于差分演化和K-均值聚类的彩色图像颜色量化自适应混合策略为基础,设计了两个彩色图像颜色量化自适应混合多目标优化算法。常用测试图像的量化实验结果表明了提出的彩色图像颜色量化多目标算法的有效性,且由这两个算法可以得到不同效果的量化图像,从而可以根据实际要求来选择需要的量化图像。
     (6)应用提出的彩色图像颜色量化自适应混合多目标优化算法对固体材料裂纹图像进行量化,实验结果表明仅用少数代表色表示的量化图像中保持了完整的裂纹信息。
The characteristics of solid materials crack propagation is commonly analysed according to the experimental data. Fracture pattern images, consisting of a set of crack images, show the development of material crack. For some image processing techniques can be used to extract the information of cracks, it is practicable to research the characteristics of crack propagation according to fracture pattern images. Howere, the rich colors in some crack images may interfer with the observation of cracks. Color image quantization techniquch of image processing can reduce the number of colors in a color image with a smaller image color distortion. So quantizing crack images will benefit the observation of cracks. Cluster algorithms are one popular class of color quntization methods. However, these algorithms are sensitive to initial conditions, and are easy to get into the local optima. Stochastic optimization algorithms are ones, which can overcome the above shortcomings of clustering algorithms. The stochastic optimization methods, having been applied in color image quantization, mainly are neural networks algorithm, ant colony algorithm, genetic algorithm and particle swarm algorithm. Although these stochastic optimization algorithms perform better than some common color qunatization methods, there exist some problems on the application of stochastic optimization methods on color image quantization for further research. For example, do some new stochastic optimization algorihms have better performance for color quantization? And for the color image quantization model, what characteristics can guide us to design the color quantization algorithms based on stochastic optimization? This thesis researches the design and characteristics of color image quantization model, and the design of the color quantization algorithms based on stochastic optimization. These works lay the foundation of the analysis and forecasting on the development of crack propagation. Main works of this thesis are as follows:
     (1) Some experiments for color images quantization are run to compare the performance of genetic algorithm, particle swarm algorithm, differential evolution algorithm and K-means algorithm. And the experimental results show that differential evolution performs better. Furthermore, the paremeters set of differential evolution suitable for the color image quantization is suggested by some experiments.
     (2) The characteristics of color image quantization model are analysed. And it is found that the stochastic optimization algorithms based on population have the permutation equivalence of the elements of each individual. This characteristic can guide us to improve the stochastic optimization algorithms for color quantization.
     (3) For restraining the permutation equivalence of the color image quantization model, a new evolution algorithm with diversity maintaining mechanism is presented. In this hybrid algorithm, the optimization strategy of differential evolution is applied, a threshold of the mutation difference vecter is set according to the permutation equivalence, and K-means is used with a little probability. Furthermore, a selfadaptive strategy to control the parameters is applied in the hybrid algorithm. Then a selfadaptive hybrid color image quantization algorithm is proposed. In this algorithm, its parameters are adjusted during evolution process. By some comparing experiments on some common test color images, the selfadaptive hybrid stragtegy with a threshold of the mutation difference vecter improves the convergence speed of quantization algorithms and the quality of quantized images.
     (4) A color image quantization multi-objective model is constructed with three objectives, that is, intra-cluster distance, inter-cluster separation and mean square error, which are verified to be conflicting by some experiments.
     (5) Two selfadaptive hybrid multi-objective optimization algorithms for color image quantization are presented. The experimental results on some common test color images show that the two proposed multi-objective optimization algorithms perform better on the color image quantization. Sbving the color image quantization multi-objective model with the two proposed multi-objective optimization algorithms can generate some different quantized images, which can satisfy the practical requirement.
     (6) The presented selfadaptive hybrid multi-objective optimization algorithms for color image quantization are applied to some crack images. The experimental results show that all the cracks are retained in the quantized images only with few colors.
引文
[1]王忠山.弹塑性裂纹梁的有限元分析.山东大学,2011.
    [2]贾秋菊.基于空间特征和边缘保护的颜色量化算法研究.广州:华南师范大学,2006.
    [3]K.P.Willian. Digital Image Processing. John Wiley and Sons, New York, NY,1978.
    [4]C.C.Pmela L.O.Karen, AR.Eve, M.Robert. Gray using vector quantization for image processing. Proceedings of the IEEE,81(9):1326-1341,1993.
    [5]C.KYang, W.HTsai. Color image compression using quantization, thresholding, and edge detection techniques all based on the moment-preserving principle. Pattern Recognition Letters,19 (2):205-215,1998.
    [6]Y.Deng, B.Manjunath. Unsupervised segmentation of color-texture regions in images and video. IEEE Transactions on Pattern Analysis and Machine Intelligence,23 (8):800-810, 2001,
    [7]N.Sherkat, T.Allen, S.Wong.Use of colour for hand-filled form analysis and recognition. Pattern Analysis and Applications,8 (1):163-180,2005.
    [8]Sertel, J.Kong, U.V.Catalyurek, G.Lozanski, J.HSaltz, M.N.Gurcan. Histopathological image analysis using model-based intermediate representations and color texture:follicular lymphoma grading. Journal of Signal Processing Systems,55 (1-3):169-183,2009.
    [9]C.T.Kuo, S.C.Cheng. Fusion of color edge detection and color quantization for color image watermarking using principal axes analysis. Pattern Recognition,40(12):3691-3704,2007.
    [10]S.Wang, KCai, J.Lu, X.Liu, E.Wu. Real-time coherent stylization for augmented reality. The Visual Computer,26(6-8):445-455,2010.
    [11]Y.Deng, B.Manjunath, C.Kenney, M.Moore, H.Shin. Anefficient color representation for image retrieval. IEEE Transactions on Image Processing,10(1):140-147,2001.
    [12]What is color quantization? http://www.faqs.org/faqs/jpeg-faq/part1/section-8.html.
    [13]P.Scheunders. A genetic C-means clustering algorithm applied to color image quantization. Pattern Recognition,30(6):859-86,1997.
    [14]周兵,沈钧毅,彭勤科.一种基于颜色聚类特征的色彩量化算法.小型微型计算机系统,25(11):1998-2001,2004.
    [15]M.Omran. Particle swarm optimization methods for pattern recognition and image processing. Kuwait, Kuwait University, Department of Computer Eng ineering,2005.
    [16]耿国华,周明全.常用色彩量化算法的性能分析.小型微型计算机系统,19(9):46-49,1998.
    [17]P.Heckbert. Color image quantization for frame buffer display. ACM SIGGRAPH Computer Graphics,16 (3):297-307,1982.
    [18]M.Gervautz, W.Purgathofer. A Simple Method for Color Quantization:Octree Quantization. New Trends in Computer Graphics, Springer-Verlag, Ch.,219-2318,1988.
    [19]S.Wan, P.Prusinkiewicz, S.Wong. Variance-based color image quantization for frame buffer display. Color Research and Application 15 (1):52-58,1990.
    [20]M.Orchard, C.Bouman. Color quantization of images. IEEE Transactions on Signal Processing,39 (12):2677-2690,1991.
    [21]X.Wu. Efficient Statistical Computations for Optimal Color Quantization. Graphics Gems Volume II, Academic Press, Ch.,126-133,1991.
    [22]X.Wu. Color quantization by dynamic programming and principal analysis. ACM Transactions on Graphics,11 (4):348-372,1992.
    [23]G.Joy, ZXiang. Center-cut for color image quantization. The Visual Computer,10(1):62-66, 1993.
    [24]C.Y.Yang, J.C.Lin. RWM-cut for color image quantization. Computers and Graphics,20 (4): 577-588,1996.
    [25]W.H.Equitz. A new vector quantization clustering algorithm. IEEE Transactions on Acoustics, Speech and Signal Processing,37 (10):1568-1575,1989.
    [26]R.Balasubramanian, J. Allebach. A new approach to palette selection for color images. Journal of Imaging Technology,17 (6):284-290,1991.
    [27]Z.Xiang, G.Joy. Color image quantization by agglomerative clustering, IEEE Computer Graphics and Applications,14 (3):44-48,1994.
    [28]L.Velho, J.Gomez, M.Sobreiro. Color image quantization by pairwise clustering. Proc. of the 10th Brazilian Symposium on Computer Graphics and Image Processing,203-210,1997.
    [29]L.Brun, M.Mokhtari. Two high speed color quantization algorithms. Proc. of the 1st Int Conf. on Color in Graphics and Image Processing,116-121,2000.
    [30]P.Franti, O.Virmajoki, V. Hautamaki. Fast agglomerative clustering using a knearest neighbor graph. IEEE Transactions on Pattern Analysis and Machine Intelligence,28 (11):1875-1881, 2006.
    [31]陈树彬,王小铭.一种基于彩色图像频率特征的颜色量化算法.华南师范大学学报(自然科学版),3:36-38,2009.
    [32]H.Kasuga, H.Yamamoto, M.Okamoto. Color quantization using the fast k-means algorithm. Systems and Computers in Japan,31 (8):33-40,2000.
    [33]Y.L.Huang, R.F.Chang. A fast finite-state algorithm for generating RGB palettes of color quantized images. Journal of Information Science and Engineering,20 (4):771-782,2004.
    [34]Y.C.Hu, M.G.Lee. K-means based color palette design scheme with the use of stable flags. Journal of Electronic Imaging,16 (3):33-38,2007.
    [35]Y.C.Hu, B.H.Su. Accelerated k-means clustering algorithm for colour image quantization. Imaging Science Journal,56 (1):29-40,2008.
    [36]Z.Xiang. Color image quantization by minimizing the maximum intercluster distance. ACM Transactions on Graphics,16 (3):260-276,1997.
    [37]T.Uchiyama, M.Arbib. An algorithm for competitive learning in clustering problems. Pattern Recognition,27 (10):1415-1421,1994.
    [38]Verevka, J.Buchanan. Local k-means algorithm for colour image quantization. Proc. of the Graphics/Vision Interface Conf.,128-135,1995.
    [39]P.Scheunders. Comparison of clustering algorithms applied to color image quantization. Pattern Recognition Letters,18 (11-13):1379-1384,1997.
    [40]M.E.Celebi. An effective color quantization method based on the competitive learning paradigm. Proc. of the 2009 Int Conf. on Image Processing, Computer Vision, and Pattern Recognition,2:876-880,2009.
    [41]M.E.Celebi, G.Schaefe. Neural gas clustering for color reduction. Proc. of the Int. Conf. on Image Processing, Computer Vision, and Pattern Recognition,2010.
    [42]D.Ozdemir, L.Akarun. Fuzzy algorithm for color quantization of images. Pattern Recognition, 35 (8):1785-1791,2002.
    [43]G.Schaefer, H.Zhou. Fuzzy clustering for colour reduction in images. Telecommunication Systems,40 (1-2):17-25,2009.
    [44]Z.Bing, S.Junyi, P.Qinke. An adjustable algorithm for color quantization. Pattern Recognition Letters,25 (16):1787-1797,2004.
    [45]Dekker. Kohonen neural networks for optimal colour quantization. Network:Computation in Neural Systems,5 (3):351-367,1994.
    [46]N.Papamarkos, A.Atsalakis, C.Strouthopoulos. Adaptive color reduction. IEEE Transactions on Systems, Man, and Cybernetics Part B,32 (1):44-56,2002.
    [47]C.H.Chang, P.Xu, RXiao, T.Srikanthan. New adaptive color quantization method based on self-organizing maps. IEEE Transactions on Neural Networks,16(1):237-249,2005.
    [48]周兵,沈钧毅,彭勤科.基于颜色对的色彩量化算法.计算机工程,30(14):24-26,2004.
    [49]Belahbib, Z.B.Fatima. Genetic algorithm clustering for color image quantization.3rd European Workshop on Visual Information Processing, EUVIP 2011-inal Program,83-87, 2011.
    [50]M.G.Omran, AP.Engelbrecht, ASalman. A Color Image Quantization Algorithm Based on Particle Swarm Optimization. Soft Computing in Multimedia Processing,29 (3):261-269, 2005.
    [51]Y.M.Zhou, S.M.Li, M.Tang. A BP Neural Network-based color space quantization scheme. Proceedings of the 7th International Conference on Machine Learning and Cybernetics, ICMLC,5:2690-2694,2008.
    [52]X.Hu, T.Wang, D.Li. A new approach of color quantization based on ant colony clustering algorithm. International Conference on Information Technology:Coding and Computing, ITCC,1:102-108,2005.
    [53]Tasdizen, Tolga. Color quantization with genetic algorithms. Signal Processing:Image Communication,12(1):49-57,1998.
    [54]R.J.Hathaway, J.C.Bezdek. Optimization of clustering criteria by reformulation. IEEE Transactions on Fuzzy Systems,3(2):241-254,1995.
    [55]H.Frigui, R.Krishnapuram. Clustering by competitive agglomeration. Pattern Recognition, 30(7):1109-1119,1997.
    [56]沙秋夫,刘向东,何希勤,焉德军.一种基于粒子群算法的色彩量化方案.中国图象图形学报,12(9):1544-1548,2007.
    [57]P.Scheunders. A genetic c-means clustering alorithm applied to color image quantization. Pattern Recognition,30(6):859-866,1997.
    [58]F.Alamdar, Z.Bahmani, S.Haratizadeh. Color quantization with clustering by F-PSO-GA 2010 IEEE International Conference on Intelligent Computing and Intelligent Systems,3: 233-238,2010.
    [59]R.Storn, K.V.Price. Differential evolution:a simple and effcient adaptive scheme for global optimization over continuous spaces. Int Comput Sci. Instit., Berkeley, CA, Tech. Rep. TR-95-012,1995.
    [60]R.Storn, KV.Price. Minimizing the real functions of the ICEC'96 contest by differential evolution, in Proc. IEEE Int. Conf. EvoL Comput,842-844,1996.
    [61]K.V.Price, R.Storn, J.Lampinen. Differential evolution:a practical approach to global optimization. Berlin, Germany:Springer,2005.
    [62]S.Das, P.N.Suganthan. Differential evolution:a survey of the state-of-the-art. J. IEEE Trans. Evol. Comput.,1:4-31,2011.
    [63]S.Das, P.N.Suganthan, C.ACoello.Guest Editorial:Special issue on differential evolution. J. IEEE Trans. Evol. Comput.,1:1-3,2011.
    [64]R.S.Prado, R.C.P.Silva,et.al. Using differential evolution for combinatorial optimization:a general approach. Systems Man and Cybernetics (SMC).2010 IEEE Intern. Conf. on digital object identifier,11-18,2010.
    [65]AM.Gujarathi, B. V.Babu. Optimization of adiabatic styrene reactor:a hybrid multi-objective differential evolution approach. Industrial & engineering chemistry research,48(24): 11115-111132,2009.
    [66]Y.Wang, Z.X.Cai. Combining multiobjective optimization with differential evolution to solve constrained optimization problems. IEEE Trans. On Evolut. Comp.,16(1):117-134,2011.
    [67]K.V.Price, R.Storn.Homepage. http://www.icsi.berkeley.edu/~storn/code.html.
    [68]S.Das, A Abraham, U.K.Chakraborty, AKonar. Differential evolution using a neighborhood based mutation operator. IEEE Trans. Evol. Comput.,13(3):526-553,2009.
    [69]S.Rahnamayan, H.R.Tizhoosh, M.M.ASalama. Opposition based differential evolution. IEEE Trans. Evol. Comput.,12(1):64-79,2008.
    [70]J.Vesterstr(?)m, R-AThomson. Comparative study of differentialevolution. particle swarm optimization and evolutionary algorithms on numerical benchmark problems in Proc. IEEE Congr. Evol. Comput.,1980-1987,2004.
    [71]J.Zhang, AC.Sanderson. JADE:Adaptive differential evolution with optional external archive. IEEE Trans. Evol. Comput.,13(5):945-958,2009.
    [72]J.Brest, S.Greiner, B.Boskovic, M.Mernik, V.Zumer. Selfadapting control parameters in differential evolution:A comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput.,10(6):646-657,2006.
    [73]A.K.Qin, V.L. Huang, P.N.Suganthan. Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans Evol. Comput.,13(2):398-417, 2009.
    [74]L.Velho, J.Gomes, M.Sobreiro. Color image quantization by pairwise clustering, Proceedings of the 10th Brazilian Symposium on Computer Graphics and Image Processing,203-207, 1997.
    [75]P.Scheunders. A genetic C-means clustering algorithm applied to color image quantization. Pattern Recognition,30(6):859-866,1997.
    [76]F.Alamdar, Z.Bahmani, S.Haratizadeh. Color Quantization with Clustering By F -PSO-GA 2010 IEEE International Conference on Intelligent Computing and Intelligent Systems,3: 233-238,2010.
    [77]Celebi, M.Emre. Improving the performance of k-means for color quantization. Image and Vision Computing,29(4):260-271,2011.
    [78]许永峰,姜振益.一种基于粒子群优化的K-均值彩色图像量化算法.西北大学学报(自然科学版),42(3):351-354,2012.
    [79]吴晓蓉.K-均值聚类算法初始中心选取相关问题的研究.湖南大学,2008.
    [80]徐速,胡健,周元.基于微粒群优化算法的颜色量化.数字通信,2:61-63,2011.
    [81]周鲜成,申群太,王俊年.基于微粒群的颜色量化算法微电子学与计算机,25(3):51-54,2009.
    [82]F.Z.B.Belahbib, F.Souami. Gentic algorithm clustering for color image quantization.3rd European Workshop on Visual Information Processing (EUVIP),83-87,2011.
    [83]N.Kim, N.Kehtarnavaz. DWT-based scene-adaptive color quantization. Real-Time Imaging, 11:443-453,2005.
    [84]M.Omran, ASalman, A Engelbrecht. Image classification using particle swarm optimization. Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution and Learning, Singapore,2002.
    [85]M.Omran, AEngelbrecht, A Salman. Particle swarm optimization method for image clustering. International journal of Pattern Recognition and Artificial Intelligence,19(3): 297-322,2005.
    [86]AAEsmin, D.L.Pereira, F.P.Ade Araujo, Study of different approach to clustering data by using particle swarm optimization algorithm. Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2008),2008.
    [87]M.Wong, X.He, W.Yeh. Image Clustering Using Particle Swarm Optimization.2011 IEEE Congress on Evolutionary Computation (CEC),262-268,2011.
    [88]S.Ouadfel, M.Batouche, Ataleb-Ahmed. A modified particle swarm optimization algorithm for automatic image clustering. Proceedings of the Int'l Symposium on Modelling and Implementation of Complex Systems,49-57,2010.
    [89]S.Z.Selim, M.AIsmaiL K-means-type algorithms:a generalized convergence theorem and characterization of local optimality. IEEE Transactions on Pattern Analysis and Machine Intelligence,6 (1):81-87,1984.
    [90]J.Kennedy, R.C.Eberhart, Y.Shi. Swarm Intelligence. SanFrancisco:Morgan Kaufman Publisher,2001.
    [91]G. Gan, C.Ma,J.Wu.Data Clustering:Theory, Algorithms and Applications, SIAM,2007.
    [92]J.Braquelaire, L.Brun. Comparison and optimization of methods of color image quantization. IEEE Transactions on Image Processing,6(7):1048-1052,1997.
    [93]X.Wu, KZhang. A better tree-structured vector quantizer. Proceedings IEEE Data Compression Conference.392-401,1991.
    [94]M.Emre Celebi. Improving the performance of k-means for color quantization. Image and Vision Computing,29:260-271,2011.
    [95]M.Celenk. A color clustering technique for image segmentation, computer visio. Graphics and Image Processing.52:145-170,1990.
    [96]B.Freisleben, ASchrader. An evolutionary approach to color image quantization. Proceedings of IEEE International Conference on Evolutionary Computation,459-464,1997.
    [97]M.G.H.Omran, AP.Engelbrecht, A Salman. Differential Evolution Methods for Unsupervised Image Classification.2005 IEEE Congress on Evolutionary Computation,2: 966-973,2005.
    [98]S.Das, AKonar, Automatic image pixel clustering with an improved differential evolution. Applied Soft Computing,9:226-236,2009.
    [99]Q.Su, Z.Huang, Z.Hu, Binarization algorithm based on differential evolution algorithm for gray images. ICNC-FSKD,6:2624-2628,2012.
    [100]M.M.Ali, ATorn. Population set based global optimization algorithms:Some modifications and numerical studies. Comput. Oper. Res.,31(10):1703-1725,2004.
    [101]H.Abbass. The self-adaptive Pareto differential evolution algorithm, in Proc. Congr. Evol. Comput.,1:831-836,2002.
    [102]R.Mallipeddi, P.N.Suganthan. Differential evolution algorithm with ensemble of populations for global numerical optimization. OPSEARCH,46(2):184-213,2009.
    103]D.Zaharie. On the explorative power of differential evolution. In Proc.3rd Int Workshop Symbolic Numerical Algorithms Sci Comput.,2001.
    104]D.Zaharie. Parameter adaptation in differential evolution by controlling the population diversity. In Proc.4th Int Workshop Symbolic Numeric Algorithms Sci. Comput,385-397, 2002.
    105]D.Zaharie. A comparative analysis of crossover variants in dierential evolution. Pro. of Int. Multiconference on Computer Sci. and Inform. Tech.,171-181,2007.
    106]D.Zaharie. Statistical properties of differential evolution and related random search algorithms. In Proc. Int. Conf. Comput. Statist.,473-485,2008.
    [107]D.Zaharie. Inuence of crossover on the behavior of differential evolution algorithms. Soft Comput.,9(3):1126-1138,2009.
    [108]S.Dasgupta, S.Das, A-Biswas, A.Abraham. The population dynamics of differential evolution:A mathematical model. In Proc. IEEE Congr. Evol. Comput.,1439-1446,2008.
    [109]S.Dasgupta, S.Das, A Biswas, A Abraham. On stability and convergence of the population-dynamics in differential evolution. AI Commun.,22(1):1-20,2009.
    [110]L.Wang, F.Z.Huang. Parameter analysis based on stochastic model for differential evolution algorithm. Applied Mathematics and Computation,217:3263-3273,2010.
    [111]S.Das, A Konar, U. K. Chakraborty. Two improved differential evolution schemes for faster global search. In Proc. ACM-SIGEVO GECCO,991-998,2005.
    [112]J.Brest, S.B.Boskovic, V.Zume, M.S.Maucec. Performance Comparison of Self-Adaptive and Adaptive Differential Evolution Algorithms. Soft Computing-A Fusion of Foundations, Methodologies and Applications,11(7):617-629,2007.
    [113]J.Brest, V.Zumer, M.S.Mauec. Self-Adaptive Differential Evolution Algorithm in Constrained Real-Parameter Optimization. In the 2006 IEEE Congress on Evolutionary Computation,16-21,2006.
    [114]L.Zhang, C.Zhou, M.Ma, et al. A multiobjective differential evolution algorithm based on Max-Min distance density. Journal of Computer Research and Development,44(1):177-184, 2007.
    [115]H.Meng, X.Zhang, S.Liu. A differential evolution based on double populations for constrained multiobjective optimization problem. Chinese Journal of Computers,31(2): 228-235,2008.
    [116]L.V.Santana-Quintero, C.AC. Coello. An algorithm based on differential evolution for multi-objective problems. International Journal of Computational Intelligence Research,1(2): 151-169,2005.
    [117]H.Abbass. A memetic Pareto evolutionary approach to artificial neural networks. Proceedings of the Australian Joint Conference on Artificial Intelligence,1-12,2001.
    [118]C.Chang, C.Kwan. Evaluation of evolutionary algorithms for multi-objective train schedule optimization. Advances in Artificial Intelligence,803-815,2004.
    [119]F.Xue. Multi-objective differential evolution. Theory and applications. Troy, New York: Rensselaer Polytechnic Institute,2004.
    [120]B.Qian, L.Wang, D.Huang, et al. Multi-objective flow shop scheduling using differential evolution. Intelligent Computing in Signal Processing and Pattern Recognition,1125-1136, 2006.
    [121]B.Alatas, E.Akin,A.Karci. Multi-objective differential evolution algorithm for mining numeric association rules. Applied Soft Computing,8(1):6-656,2008
    [122]J.M.Reddy, N.D.Kumar. Multiobjective differential evolution with application to reservoir system optimization. Journal of Computing in Civil Engineering,21(2):136-146,2007.
    [123]Z.Wang, K.Tang, X.Yao. A multi-objective approach to testing resource allocation in modular software systems. Proceedings of the 2008 IEEE Congress on Evolutionary Computation,1148-1153,2008.
    [124]B.V.Babu, A.M.Gujarathi, P.Katla, et al. Strategies of multiobjective differential evolution (MODE) for optimization of adiabatic styrene reactor. Proceedings of International Conference on Emerging Mechanical Technology-Macro to Nano,243-250,2007.
    [125]S.Kokkonen, J.Lampinen. Mechanical component design for multiple objectives using generalized differential evolution. Adaptive Computing in Design and Manufacture VI, 261-272,2004.
    [126]J.C.J.Groot, W.AHRossing, AJellema, et al. Landscape design and agricultural land-use allocation using Pareto-based multi-objective differential evolution. International Environmental Modelling & Software Summit,2006.
    [127]S.Kukkonen, S.R.Jangam, N.Chakraborti. Solving the molecular sequence alignment problem with generalized differential evolution3 (GDE3). Proceedings of the 2007 IEEE Symposium on Computational Intelligence in Multicriteria Decision Making,302-309,2007.
    [128]M.Varadarajan, KS.Sworup. Solving multi-objective optimal power flow using differential evolution. IET Generation Transmission & Distribution,2(5):720-730,2008.
    [129]H.Li, Q.Zhang. A multiobjective differential evolution based on decomposition for multiobjective optimization with variable linkages. LNCS:Parallel Problem Solving from Nature-PPSN Ⅸ,9th International Conference,4193:583-592,2006.
    [130]B.V.Babu, M.M.L.Jehan. Differential evolution for multiobjective optimization. Proceedings of 2003 Congress on Evolutionary Computation,4:2696-2703,2003.
    [131]K.E.Parsopoulos, D.KTaoulis, N.G.Pavlidis, et al. Vector evaluated differential evolution for multiobjective optimization.2004 Congress on Evolutionary Computation (CEC2004),1: 204-211,2004.
    [132]H.AAbbass, RSarker, C.Newton. PDE:A Pareto-frontier differential evolution approach for multiobjective optimization problems. Proceedings of IEEE Congress on Evolutionary Computation,2:971-978,2001.
    [133]N.KMadavan. Multiobjective optimization using a Pareto differential evolution approach. Proceedings of Congress on Evolutionary Computation,2:1145-1150,2002.
    [134]F.Xue, A.C.Sanderson, RJ.Graves. Pareto-based multiobjective differential evolution. Proceedings of the 2003 Congress on Evolutionary Computation,2:862-869.2003.
    [135]A.W.Iorio, X.Li. Incorporating directional information within a differential evolution algorithm for multi-objective optimization. Proceedings of the 2006 Genetic and Evolutionary Computation Conference,1:675-682,2006.
    [136]T.Robic, B.Filipic. DEMO:Differential evolution for multiobjective optimization. The Third International Conference on Evolutionary Multi-Criterion Optimization,520-533,2005.
    [137]敖友云,迟洪钦.多目标差分演化算法研究综述.计算机科学与探索,3(3):234-246,2009.
    [138]A.G.Hernandez-Diaz, C.AC.Coello, F.Perez, et al. Seeding the initial population of a multi-objective evolutionary algorithm using gradient -based information. 2008 Congress on Evolutionary Computation,1617-1624,2008.
    [139]Z.Yang, K.Tang, X.Yao. Self-adaptive differential evolution with neighborhood search. Proceedings of the 2008 IEEE Congress on Evolutionary Computation,1110-1116,2008.
    [140]M.Zhang, H.Geng, W.Luo, et al. A hybrid of differential evolution and genetic algorithm for constrained multiobjective optimization problems. Simulated Evolution and Learning,6th International Conference,318-327,2006.
    [141]H.A.Abbass. The self-adaptive Pareto differential evolution algorithm. Congresson Evolutionary Computation,1:831-836,2002.
    [142]R.Tea, F.Bogdan.:DEMO:Differential Evolution for Multi-objective Optimization. EMO 2005 Proeeedings,520-533,2005.
    [143]W.Stadler. A survey of multicriteria optimization or the vector maximum problem. Journal of Optimization Theory and Applications,29(1):1-52,1979.
    [144]K.Miettinen. Nonlinear Multiobjective Optimization. Kluwer Academic Publishers,1999.
    [145]K.Deb. Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons Ltd.,2001.
    [146]Zhou, B.Qu, H.Li, S.Zhaob, et al. Multiobjective evolutionary algorithms:A survey of the state of the art. Swarm and Evolutionary Computation,1:32-49,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700