用户名: 密码: 验证码:
苏云金芽胞杆菌几丁质酶活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
几丁质是自然界储量第二的天然高聚物,几丁质酶是降解其的主要酶类。Bt是应用最成功的杀虫微生物,几丁质酶对Bt杀虫有增效作用。本研究以筛选到的具有较高几丁质水解能力的Bt菌株BRC-Bt1为试验材料,克隆表达该菌株的2个几丁质酶基因,对这2种几丁质酶的结构域组成、催化反应机制、表达调控以及水解产物的生物活性进行了系统研究。
     BRC-Bt1菌株的chi74基因和目前已发现的Bt 70kDa几丁质酶在核酸序列上高度同源,该酶属18家族几丁质酶,由信号肽、催化区、FN3和ChBD等4个结构域组成,理论分子量74kDa,pI5.77。chi74基因和GST融合在E. coli表达产物为胞内可溶性蛋白,含chi74基因的E. coli细胞能在胶体几丁质平板产生水解圈。以胶体几丁质为底物,Chi74蛋白最适反应温度60℃、pH5,在20-80℃和pH4-8都有活性。Na~~+、K~~+、NO_3~-、Cl~-不影响该酶活性;Mg~(2+)和SO_4~(2-)对该酶有激活作用,其中6mmol/L浓度Mg~(2+)提高酶活力约40%,而SO_4~(2-)在0-3mmol/L浓度范围能提高酶活性,3mmol/L时,提高酶活力约20%,之后再增加浓度激活作用反而下降;Cu~(2+)、Ag~+都抑制酶活性。HPLC分析水解产物表明该酶能水解胶体几丁质形成GlcNAc、几丁二糖以及聚合度更高的几丁寡糖,随着反应时间的延长,GlcNAc占产物的比例不断提高。该酶为内切几丁质酶。
     构建chi74基因不同截短酶基因chiA、chiAF、chiAC,三个截短基因编码的蛋白产物理论分子量和pI分别为:54kDa、6.04,63kDa、6.07和66kDa、5.74。三个截短基因GST融合在E. coli细胞表达产物ChiA、ChiAF、ChiAC水解胶体几丁质的活性分别是野生酶的81%、72%、39%。3种截短酶最适反应温度都是60℃,且温度变化对酶活性的影响和Chi74类似。Mg~(2+)能激活3种截短酶,且激活效率比Chi74高,6.0mmol/L的Mg~(2+)对ChiA、ChiAF、ChiAC分别提高酶活力85%、62%、60%。低浓度的Ag~+对3种截短酶活性抑制也比野生酶显著,500μmol/L的Ag~+对ChiAC、ChiAF、ChiA等3种截短酶活力分别为70.0%、63.2%、55.0%。截短酶的水解产物HPLC结果表明,Chi74的C端不同片段缺失,胶体几丁质水解不彻底,产物中GlcNAc含量不高,而几丁寡糖含量高。截短酶与Chi74催化活性的差异,表明FN3和ChBD对Chi74水解胶体几丁质很重要。
     克隆chi36基因,推导蛋白分子量40kDa,pI6.52。该基因与Bt、Bc、Ba上发现的编码36kDa大小的几丁质酶基因同源性很高,而与chi74没有同源性。该酶也属于18家族几丁质酶,只有信号肽和催化区。chi36基因和GST融合表达产物,以胶体几丁质为底物,最适合反应温度55℃、pH5,在30-80℃、pH4-8都有活性。Na~+、K~+、Mg~(2+)、NO_3~-、Cl-对该酶活性基本没有影响;低浓度的SO_4~(2-)对该酶有激活作用;Cu~(2+)、Fe~(3+)、Ag~+则抑制该酶活性。Chi36水解胶体几丁质产物HPLC结果表明:该酶是内切几丁质酶,产物中GlcNAc含量低,多种几丁寡糖含量较高。从水解产物可以看出,Chi36水解胶体几丁质的机制和Chi74不同,而且Chi36水解的效率也不如Chi74。等体积混合Chi36和Chi74,催化活性协同提高。
     用来自chi74的3个C端片段(ChBD、FN3、ChBD~+FN3)添加到chi36基因的C端构建3种加长酶基因chi36F、chi36C、chi36FC,预测分子量分别为49kDa、52kDa、60kDa。加长酶基因和GST融合表达产物Chi36F、Chi36C、Chi36FC几丁质酶活性分别比野生Chi36提高7%、21%、33%,最适合反应温度仍是55℃。Ag~+对3种加长酶活性抑制率比Chi36低,500μmol/L时,Chi36F、Chi36C、ChiFC加长酶活力分别保留为64.0%、66.0%、70.5%。加长酶水解胶体几丁质产物组成与Chi36类似,且产物中各个组分的浓度都提高,表明加长酶对底物的亲和力增强,进一步说明ChBD、FN3在催化反应中发挥作用,且ChBD比FN3更重要。
     分别克隆6株Bt菌株chi74和chi36基因上游序列,序列功能分析结果表明,这两个基因都是独立表达的,且两个基因在Bt基因组距离很远。两个基因上游的启动子没有同源性,表明Bt的两个几丁质酶基因的表达调控方式不同。chi74和chi36基因启动子分析结果表明:chi74基因上游有多个潜在启动子,且不同菌株这些启动子的同源性较高,而在chi36上游发现的启动子较少,且菌株间的差异较大。6个菌株都在基因上游发现CAP/CRP位点、NIT-2等多种转录因子结合位点。产几丁质酶培养基和LB培养的BRC-Bt1菌株发酵液上清对香蕉炭疽菌生长有抑制作用,且产酶培养基上清的抑制率更高,抑制率分别为42.8%、27.4%。产酶培养基发酵的上清还能抑制稻瘟病菌丝生长和孢子萌发。E. coli表达的Chi74和Chi36蛋白混合,分别以浓度10mg/mL和5mg/mL作用于松材线虫,24h死亡率分别为87.5%、54.5%。以胶体几丁质为底物,混合酶解反应不同时间的产物对松材线虫的致死情况差异较大,其中酶解8h的产物对松材线虫的毒杀作用最好,平均死亡率为100%。1h、3h的水解产物处理松材线虫的死亡率分别为23.8%、69.3%,而处理时间长达24h的产物对线虫几乎没有毒杀作用,致死率仅为8.4%。此外,酶解产物对肝癌细胞SMMC-7721的生长有抑制作用,IC50为69μg/ml,而对正常肝细胞活性无影响。
Chitin is the second most abundant polysaccharides in nature. Chitinases are important and major enzymes which can degrade chitin. Bacillus thuringiensis is the most successfully used biological pesticide. Chitinase can increase the insecticidal activity of Bt. Herein, we present the cloning of two chitinase genes(chi74 and chi36) from a Bt strain(named BRC-Bt1) with high chitinase activity, as well as the expression in vitro, the domains of chitinases, the catalytic mechanisms, the regulation of chitinase genes expression and the bioactivity of chitinase hydrolysis products.
     The nucleotide sequence of chi74 gene from BRC-Bt1 consists of 2025 bases and encodes a putative protein of 674 amino acids residus with a predicted molecular weight of 74kDa and pI 5.77. Homology comparison revealed that the chi74 gene had high homology in nucleotide sequence with the genes encoded 70kDa chitinases of Bt reported. The predicted protein of Chi74 was a modular enzyme consisting of a signal peptide, a FN3 domain, a ChBD domain and a catalytic domain belonging to chitinase family 18. The chi74 gene was expressed with GST fusion in E. coli and the characteristic of Chi74 was investigated. When using the colloid chitin as substrate, the optimum pH, optimum temperature and thermal stability of Chi74 were pH 5, 60℃and 40℃, respectively. The enzyme exhibited activity in broad temperature range, from 20 to 80℃, and pH between 4.0 and 8.0. The chitinase activity of Chi74 was not influenced by Na~+, K~+, NO_3~- and Cl-; however, it was improved by Mg~(2+)and SO_4~(2-), and inhibited by Cu~(2+) and Ag~+. HPLC analysis of the hydrolysis products indicated that it contained GlcNAc, (GlcNAc)2 and oligomers with higher degree of polymerization, and GlcNAc was predominant product increased gradually with the reaction time extension. The Chi74 maybe an endo-chitinase.
     Three different C-terminal truncation chitinase genes of chiA, chiAF and chiAC from chi74 were constructed, which encoded the putative proteins with the predicted molecular weights and the pI values of 54kDa and 6.04, 63kDa and 6.07, 66kDa and 5.74, respectively. The 3 truncation genes were expressed with GST fusion in E.coli. With colloidal chitin as substrate, the relative activities of ChiA, ChiAF and ChiAC were 81%, 72% and 39% compared with the native chitinase Chi74. The optimum temperature of three truncation enzymes were all 60℃and the curves of enzyme activity on different temperature were similar to Chi74. The activities of three truncation enzymes were activated by Mg~(2+) and the activation efficiency was higher than that of native enzyme, and were inhibited by Ag~+ and the inhibition efficiency was higher than that of Chi74. HPLC analysis of the hydrolysates of three truncation enzymes showed that the contents of GlcNAc and chito-oligomers were at lower and higher level respectively, compared to Chi74. FN3 domain and ChBD domain may play important roles in insoluble chitin hydrolysis.
     The nucleotide sequence of chi36 gene from BRC-Bt1 consists of 1083 bases and encodes a putative protein of 360 amino acids residus with a predicted molecular weight of 40kDa and a pI value of 6.52. The chi36 gene showed high homology with the genes encoded 36kDa chitinases from Bt, Bacillus cereus and Bacillus anthracis. Analysis of the predicted protein structure of Chi36 revealed that it also belongs to chitinase family 18, and contains a signal peptide and a single catalytic domain which has little homology with Chi74. The chi36 gene was expressed with GST fusion in E. coli and the characteristic of Chi36 was also investigated. When using the colloid chitin as substrate, the optimum pH, optimum temperature and thermal stability of Chi36 were pH 5, 55℃and 40℃, respectively. The enzyme exhibited activity in broad temperature range, from 30 to 80℃, and pH between 4.0 and 8.0. The chitinase activity of Chi36 was not influenced by Na~+, K~+, Mg~(2+), NO_3~- and Cl-; however, it was improved by SO_4~(2-), and inhibited by Fe~(3+), Cu~(2+) and Ag~+. HPLC analysis of hydrolysates showed that it contained GlcNAc, (GlcNAc)2 and oligomers with higher degree of polymerization, and the content of GlcNAc was lower than chito-oligomers. The Chi36 maybe an endo-chitinase and its catalytic mechanism different from that of Chi74. The enzyme activity of the mixture of Chi36 and Chi74 with equal volume was the highest.
     Three different C-terminal prolonged chitinase genes of chi36F, chi36C and chi36FC were constructed by adding the different C-terminal fragments of Chi74 into the C-terminal of Chi36, which encoded the putative proteins with the predicted molecular weights of 49kDa, 52kDa and 60kDa, respectively. The three prolonged genes were expressed with GST in E. coli. With colloidal chitin as substrate, the relative activities of Chi36F, Chi36C and Chi36FC were 7%, 21% and 33% higher than native Chi36, respectively. The optimum temperature of three prolonged enzymes were all 55℃. The enzyme activities of three prolonged enzymes were inhibited by Ag+ and the inhibition efficiency was lower than Chi36. The components of colloid chitin hydrolysis products of three prolonged enzymes were similar with Chi36, but the concentrations of each component were higher than native enzyme. It supported that FN3 domain and ChBD domain may play important roles in insoluble chitin hydrolysis.
     The upstream sequences of chi74 and chi36 from 6 Bt strains were cloned and sequenced. Analysis of the sequence revealed that the chi74 and chi36 were expressed independently and spaced long distance. The promoters of chi36 were not similar to the promoter of chi74. The result of promoter prediction showed that the amounts of promoters from chi74 were more than from chi36. The transcriptional factor of CAP/CRP and NIT-2 were found in both upstream sequences of chi74 and chi36.
     The supernatants of BRC-Bt1 cultured in chitinase-produced medium and LB medium both inhibited spore germination of Colletotrichum musae, and the inhibition efficiency of the former was higher than the later. The supernatant of BRC-Bt1 cultured in chitinase-produced medium also inhibited spore germination and hyphal extension of Magnaporthe grisea. The mixture of Chi74 and Chi36 with the final concentration of 10mg/mL and 5mg/mL exhibited 87.5% and 54.5% mortality against Pinus massoniana, respectively. The mortality of hydrolysis products produced by mixture enzyme at 1h, 3h, 8h and 24h were 23.8%, 69.3%, 100% and 8.4%, respectively. Furthermore, the hydrolysis products exhibited in vitro anti-liver cancer cell (SMMC-7721) with IC_(50)69μg/ml, but had no influence on normal liver cell.
引文
[1]喻子牛.苏云金杆菌[M].北京:科学出版社, 1990.
    [2]关雄.苏云金芽胞杆菌8010的研究[M].北京:科学出版社, 1997.
    [3]戴莲韵,王学聘.苏云金芽胞杆菌研究进展[M].北京:科学出版社, 1997.
    [4]Schnepf E, Crickmore N, Vanrie J, et al. Bacillus thuringiensis and its pesticidal crystal proteins[J]. Microbiol. Mol. Biol. Rev., 1998, 62(3):775-806
    [5]Glare T R, O’Callaghan M, Bacillus thuringiensis: Biology. Ecology and Safety[M], London: John Wiley & Sons, 2000.
    [6]Liu Y, Tabashnik B E.. Diamondback moth resistance to Bacillus thuringiensis toxin Cry1C in the field[J]. Resistance Pest Management, 1996, 8:44-46
    [7]蒋挺大.甲壳素(第二版)[M].北京:中国环境出版社, 1996
    [8]贝特斯S D,旺达姆E J,斯泰因比歇尔A.生物高分子(第六卷)[M].北京:化学工业出版社, 2004.
    [9]陈三凤,李季伦.几丁质酶研究历史和发展前景[J].微生物学通报,1993, 20(3):156-160
    [10]Henrissat B. Classification of chitinases modules[J]. EXS, 87:137-156
    [11]Shinshi H, Neuhas JM, Ryals J, et al. Structure of a tobacco endochitinase gene: evidence that different chitinase genes can arise by transposition of sequences encoding a cysteine-rich domain[J]. Plant Mol Biol, 1990, 14(3):357-368.
    [12]Tanaka T, Fujiwara S, Nishikori S, et al. A unique chitinase with dual active sites and triple substrate binding sites from the hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1[J]. Appl Environ Microbiol. 1999, 65(12):5338-5344
    [13]Rechsteiner M, Rogers S W. PEST sequences and regulation by proteolysis[J]. Trends Biol. Sci. 1996, 21:267-271
    [14]Fuchs R, Mcpherson S, Drahos D J. Cloning of a Serratia marcescens gene encoding chitinase [J]. Appl Environ Microbiol, 1986, 51(3):504-509.
    [15]Mabuchi N, Hashizume I, Araki Y. Characterization of chitinases excreted by Bacillus cereus CH[J]. Can J Microbiol, 2000, 46(4):370-375.
    [16]Mabuchi N, Araki Y. Cloning and sequencing of two genes encoding chitinases A and B fromBacillus cereus CH[J]. Can. J Microbiol. 2001, 47(10):895-902.
    [17]Wang S, Moyne A, Thottappilly G, et al. Purification and characterization of a Bacillus cereus exochitinase[J]. Enzyme Microb Technol, 2001, 28(6):492-498.
    [18]Wen C M, Tseng C S, Cheng C Y. Purification, characterization and cloning of a chitinase from Bacillus sp. NCTU2[J]. Biotechnol Appl Biochem, 2002, 35(3):213-219.
    [19]Hsieh Y C, Wu Y J, Chiang T Y. Crystal structures of Bacillus cereus NCTU2 chitinase complexes with chitooligomers reveal novel substrate binding for catalysis: a chitinase without chitin-binding and insertion domains[J]. J. Biol. Chem., 2010, 285: 31603-31615.
    [20]Huang C J, Wang T K, Chung S C, et al. Identification of an antifungal chitinase from a potential biocontrol agent, Bacillus cereus 28-9[J]. J Biochem Mol Biol, 2005, 38(1):82-88.
    [21]Huang C J, Chen C Y. High-level expression and characterization of two chitinases, ChiCH and ChiCW, of Bacillus cereus 28-9 in Escherichia coli[J]. Biochem Biophys Res Commun, 2005, 327(1):8-17.
    [22]Wang S L, Chao C H, Liang T W. Purification and characterization of protease and chitinase from Bacillus cereus TKU006 and conversion of marine wastes by these enzymes[J]. Mar Biotechnol (NY), 2009, 11(3):334-44.
    [23]李盛,赵志安,李明等.短芽胞杆菌(Bacillus brevis No.G1)几丁质酶的提纯和分离鉴定[J].生物化学与生物物理学报, 2002, 34(6):690-696
    [24]Wang S L, Lin T Y, Yen Y H. Bioconversion of shellfish chitin wastes for the production of Bacillus subtilis W-118 chitinase[J]. Carbohydr Res, 2006, 341(15):2507-2515.
    [25]Yang C Y, Ho Y C, Pang J C, et al. Cloning and expression of an antifungal chitinase gene of a novel Bacillus subtilis isolate from Taiwan potato field[J]. Bioresour Technol, 2009, 100(3): 1454-1458.
    [26]Wiwat C, Siwayaprahm P, Bhumiratana A. Purification and Characterization of Chitinase from Bacillus circulans No.4.1[J]. Current Microbiology, 1999, 39(3):134-140.
    [27]Wiwat C, Thepouyporn A, Siwayaprahm P, et al. Cloning, sequencing, and expression of a chitinase-encoding gene from Bacillus circulans No. 4.1[J]. Curr Microbiol, 2002, 44(3): 167-172
    [28]Kudan S, Pichyangkura R. Purification and characterization of thermostable chitinase fromBacillus licheniformis SK-1[J]. Appl Biochem Biotechnol, 2009, 157(1): 23-35.
    [29]肖亮,刘传,谢池楚等.地衣芽胞杆菌MY75菌株几丁质酶基因的异源表达及特性[J].微生物学报, 2010, 50(6): 749-54
    [30]Islam SA, Cho KM, Hong SJ. Chitinase of Bacillus licheniformis from oyster shell as a probe to detect chitin in marine shells[J]. Appl Microbiol Biotechnol, 2010, 86(1):119-129
    [31]Natsir H, Chandra D, Rukayadi Y. Biochemical characteristics of chitinase enzyme from sp. of Kamojang Crater, Indonesia[J]. J Biochem Mol Biol Biophys, 2002, 6(4):279-282.
    [32]Lee Y S, Park I H, Yoo J S. Cloning, purification, and characterization of chitinase from Bacillus sp. DAU101[J]. Bioresour Technol, 2007, 98(14):2734-2741.
    [33]Ahmadian G, Degrassi G, Venturi V, et al. Bacillus pumilus SG_2 isolated from saline conditions produces and secretes two chitinases[J]. J Appl Microbiol, 2007, 103(4):1081- 1089.
    [34]Wang S L, Chang W T. Purification and characterization of two bifunctional chitinase/ lysozymes extracellularly produced by Pseduomonas aeruginosa K-187 in a shrimp and crab shell powder medium[J]. Appl Environ Microbiol, 1997, 63(2)380-386.
    [35]Wang S L, Liang T W, Lin B S, et al. Purification and characterization of chitinase from a new species strain Pseudomonas sp. TKU008[J]. J Microbiol Biotechnol,, 2010, 20(6):1001-1005.
    [36]Folders J, Algra J, Roelofs M S. Characterization of Pseudomonas aeruginosa Chitinase, a Gradually Secreted Protein[J]. Journal of Bacteriology, 2001, 183(24):7044-7052
    [37]Morimoto K, Karita S, Kimura T, et al. Cloning, sequencing, and expression of the gene encoding Clostridium paraputrificum chitinase ChiB and analysis of the functions of novel cadherin-like domains and a chitin-binding domain[J]. J. Bacteriol. 1997, 179:7306-7314
    [38]Morimoto K, Karita S, Kimura T, et al. Sequencing, expression, and transcription analysis of the Clostridium paraputrificum chiA gene encoding chitinase ChiA[J]. Appl Microbiol Biotechnol., 1999, 51(3):340-347
    [39]Hobel C F, Hreggvidsson G O, Marteinsson V T, et al. Cloning, expression, and characterization of a highly thermostable family 18 chitinase from Rhodothermus marinus[J]. Extremophiles, 2005, 9(1):53-64
    [40]Lonhienne T, Mavromatis K, Vorgias C E. Cloning, Sequences, and Characterization of TwoChitinase Genes from the Antarctic Arthrobacter sp. Strain TAD20: Isolation and Partial Characterization of the Enzymes[J]. Journal of Bacteriology, 2001, 183(5): 1773-1779
    [41]Hashimoto M, Ikegami T, Seino S, et al. Expression and characterization of the chitin-binding domain of chintinase A1 from B. circulans WL-12[J]. J. Bacteriol., 2000, 182, 3045-3054
    [42]Sampei Z, Nagao Y, Fukazawa T, et al. Gene cloning and deletion analysis of chitinase J from alkaliphilic Bacillus sp. strain J813[J]. Nucleic Acids Symposium Series. 2004, 48(1):167-168
    [43]Uni F, Lee S, Yatsunami R. Role of exposed aromatic residues in substrate-binding of CBM family 5 chitin-binding domain of alkaline chitinase. Nucleic Acids Symposium Series. 2009, 53(1):311-312.
    [44]Kojima M, Yoshikawa T, Ueda M, et al. Family 19 Chitinase from Aeromonas sp. No.10S-24: Role of Chitin-Binding Domain in the Enzymatic Activity[J]. Journal of Biochemistry, 2005, 137(2):235-242
    [45] Huang C J, Guo S H, Chung S C, et al. Analysis of the involvement of chitin-binding domain of ChiCW in antifungal activity, and engineering a novel chimeric chitinase with high enzyme and antifungal activities. J Microbiol Biotechnol, 2009, 19(10):1169-1175.
    [46]Chuang H H, Lin H Y, Lin F P. Biochemical characteristics of C-terminal region of recombinant chitinase from Bacillus licheniformis: implication of necessity for enzyme properties[J]. FEBS J, 2008, 275(9):2240-2254.
    [47]Lin F P, Chuang H H, Liu Y H, et al. Effects of C-terminal amino acids truncation on enzyme properties of Aeromonas caviae D1 chitinase[J]. Arch Microbiol, 2009, 191(3):265-273.
    [48]Dehestani A, Kazemitabar K, Ahmadian G, et al. Chitinolytic and antifungal activity of a Bacillus pumilus chitinase expressed in Arabidopsis[J]. Biotechnol Lett., 2010, 32(4):539- 546.
    [49]Watanabe T, Ishibashi A, Ariga Y, et al. Trp122 and Trp134 on the surface of the catalytic domain are essential for crystalline chitin hydrolysis by Bacillus circulans chitinase A1[J]. FEBS Lett, 2001, 494(1-2):74-78.
    [50]Watanabe T, Ariga Y, Sato U, et al. Aromatic residues within the substrate-binding cleft of Bacillus circulans chitinase A1 are essential for hydrolysis of crystalline chitin[J]. Biochem J, 2003, 376:237-244.
    [51]Toratani T, Kezuka Y, Nonaka T, et al. Structure of full-length bacterial chitinase containing two fibronectin type III domains revealed by small angle X-ray scattering[J]. Biochem Biophys Res Commun, 2006, 348(3): 814-818.
    [52]CY Kuo, YJ Wu, YC Hsieh, Purification, crystallization and preliminary X-ray crystallographic analysis of chitinase from Bacillus cereus NCTU2[J]. Acta Crystallogr Sect F Struct Biol Cryst Commun, 2006, 62(9): 916-919
    [53]Akagi K, Watanabe J, Hara M. Identification of the Substrate Interaction Region of the Chitin-Binding Domain of Streptomyces griseus Chitinase C[J]. Journal of Biochemistry, 2006, 139(3):483-493
    [54]Monreal J, Reese E T. The chitinase of Serratia marcescens[J]. Can J Microbiol, 1969, 15(7): 689-696.
    [55]Jones J D, Grady K L, Suslow T V, et al. Isolation and characterization of genes encoding two chitinase enzymes from Serratia marcescens[J]. EMBO J, 1986, 5(3): 467-473.
    [56]Sundheim L, Poplawsky A R, Ellingboe A H. Molecular cloning of two chitinase genes from Serratia marcescens and their expression in Pseudomonas species[J]. Phys. Mol. Plant Pathol. 1988, 33:483-491
    [57]Brurberg M B, Haandrikman A J, Leenhouts K J, et al. Expression of a chitinase gene from Serratia marcescens in Lactococcus lactis and Lactobacillus plantarum[J]. Appl Microbiol Biotechnol, 1994, 42(1):108-115.
    [58]Brurberg M B, Eijsink V G, Nes I F. Characterization of a chitinase gene (chiA) from Serratia marcescens BJL200 and one-step purification of the gene product.FEMS Microbiol Lett, 1994, 124(3):399-404.
    [59]Brurberg M B.,. Eijsink VG , HaandrikmanA J, et al. Chitinase B from Serratia marcescens BJL200 is exported to the periplasm without processing[J]. Microbiology, 1995, 141:123-131
    [60]Brurberg M B, Nes I F, Vincent G. et al. Comparative studies of chitinases A and B from Serratia marcescens[J]. Microbiology, 1996, 142:1581-1589
    [61]Synstad B, Vaaje-Kolstad G, Cederkvist F H, et al. Expression and characterization of endochitinase C from Serratia marcescens BJL200 and its purification by a one-step general chitinase purification method[J]. Biosci Biotechnol Biochem, 2008, 72(3):715-723.
    [62]K Suzuki, M Taiyoji, N Sugawara, et al. The third chitinase gene (chiC) of Serratia marcescens 2170 and the relationship of its product to other bacterial chitinases[J]. Biochem J, 1999, 343(3):587-596.
    [63]Suzuki K, Suzuki M, Taiyoji M, et al. Chitin binding protein (CBP21) in the culture supernatant of Serratia marcescens 2170[J]. Biosci Biotechnol Biochem, 1998, 62(1):128-35.
    [64]Vaaje-Kolstad G, Horn S J, Aalten D, et al. The Non-catalytic Chitin-binding Protein CBP21 from Serratia marcescens Is Essential for Chitin Degradation[J]. The Journal of Biological Chemistry, 2005, 280: 28492-28497.
    [65]Perrakis A, Ouzounis C, Wilson K S. Evolution of immunoglobulin-like modules in chitinases: their structural flexibility and functional implications[J]. Fold Des, 1997, 2(5): 291-294.
    [66]Uchiyama T, Katouno F, Nikaidou N, et al. Roles of the Exposed Aromatic Residues in crystalline chitin hydrolysis by chitinase A from Serratia marcescens 2170[J]. The Journal of Biological Chemistry, 2001, 276:41343-41349.
    [67]Aronson N N, Halloran B A, Alexeyev M F, et al. Mutation of a conserved tryptophan in the chitin-binding cleft of Serratia marcescens chitinase A enhances transglycosylation[J]. Biosci Biotechnol Biochem, 2006, 70(1):243-251.
    [68]Aalten D M, Synstad B, Brurberg M B, et al. Structure of a two-domain chitotriosidase from Serratia marcescens at 1.9-? resolution[J]. PNAS 2000, 97(11):5842-5847
    [69]AaltenD M, Komander D, Synstad B, et al. Structural insights into the catalytic mechanism of a family 18 exo-chitinase[J]. PNAS, 2001, 98(16):8979-8984
    [70]Katouno F, Taguchi M, Sakurai K, et al. Importance of Exposed Aromatic Residues in Chitinase B from Serratia marcescens 2170 for Crystalline Chitin Hydrolysis[J]. J Biochem., 2004, 136 (2):163-168.
    [71]Vaaje-Kolstad G, Houston D R, Rao F V, et al. Structure of the D142N mutant of the family 18 chitinase ChiB from Serratia marcescens and its complex with allosamidin[J]. Biochim Biophys Acta, 2004, 1696(1):103-111.
    [72]Zakariassen H, Aam B B, Horn S J, et al. Aromatic Residues in the catalytic center of chitinase A from Serratia marcescens affect processivity, enzyme activity, and biomass converting efficiency[J]. The Journal of Biological Chemistry, 2009, 284:10610-10617.
    [73]Watanabe T, Kimura K, Sumiya T, et al. Genetic analysis of the chitinase system of Serratia marcescens 2170[J]. J. Bacteriol., 1997, 179(22):7111-7117.
    [74]Suzuki K, Uchiyama T, Suzuki M, et al. LysR-type transcriptional regulator ChiR is essential for production of all chitinases and a chitin-binding protein, CBP21, in Serratia marcescens 2170[J]. Biosci Biotechnol Biochem, 2001, 65(2):338-347.
    [75]Uchiyama T, Kaneko R, Yamaguchi J, et al. Uptake of N,N'-Diacetylchitobiose [(GlcNAc)2] via the phosphotransferase system is essential for chitinase production by Serratia marcescens 2170[J]. Journal of Bacteriology, 2003,1185(6):776-1782.
    [76]Toratani T, Shoji T, Ikehara T, et al. The importance of chitobiase and N-acetylglucosamine (GlcNAc) uptake in N,N'-diacetylchitobiose [(GlcNAc)2] utilization by Serratia marcescens 2170[J]. Microbiology, 2008, 154:1326-1332.
    [77]Watanabe T.,Oyanagi W.,Suzuki K. et al. Chitinase systerm of Bacillus circculans WL-12 and importance of chitinase A1 in chitin degradation[J]. J. Bacteriol., 1990.172(7):4017-4022
    [78]Watanabe T, Suzuki K, Oyanagi W, et al. Gene cloning of chitinase A1 from Bacillus circulans WL-12 revealed its evolutionary relationship to Serratia chitinase and to typeⅢhomology units of fibronectin[J]. J Biol Chem, 1990, 265: 15659-15665.
    [79]Watanabe T,Oyanagi W,Suzuki K, et al. Structure of the gene encoding chitinase D of Bacillus circulans WL-12 and possible homology of the enzyme to other prokaryotic chitinase and class III plant chitinase[J]. J. Bacteriol., 1992.174(1):408-414
    [80]Armand S, Tomita H, Heyraud A, et al. Stereochemical course of the hydrolysis reaction catalyzed by chitinases A1 and D from Bacillus circulans WL-12[J]. FEBS Lett, 1994, 343(2): 177-80.
    [81]Mitsutomi M, Kidoh H, Tomita H, et al. The action of Bacillus circulans WL-12 chitinases on partially N-acetylated chitosan[J]. Biosci Biotechnol Biochem, 1995, 59(3):529-531.
    [82]Honda Y, Tanimori S, Kirihata M, et al. Kinetic analysis of the reaction catalyzed by chitinase A1 from Bacillus circulans WL-12 toward the novel substrates, partially N-deacetylated 4-methylumbelliferyl chitobiosides[J]. FEBS Lett, 2000; 476(3):194-197.
    [83]Watanabe T, Kobori K, Miyashita K, et al. Identification of glutamic acid 204 and aspartic acid 200 in chitinase A1 of Bacillus circulans WL-12 as essential residues for chitinaseactivity[J]. The Journal of Biological Chemistry, 1993, 268:18567-18572.
    [84]Watanabe T, Uchida M, Kobori K, et al. Site-directed mutagenesis of the Asp-197 and Asp-202 residues in chitinase A1 of Bacillus circulans WL-12[J]. Biosci Biotechnol Biochem, 1994, 58(12):2283-2285.
    [85]Hashimoto M, Honda Y, Nikaidou N, et al. Site-directed mutagenesis of Asp280 suggests substrate-assisted catalysis of chitinase A1 from Bacillus circulans WL-12[J]. J Biosci Bioeng, 2000, 89(1):100-102.
    [86]Watanabe T, Ito Y, Yamada T, et al. The roles of the C-terminal domain and type III domains of chitinase A1 from Bacillus circulans WL-12 in chitin degradation[J]. J Bacteriol. 1994, 176(15):4465-4472
    [87]Hashimoto M, Ikegami T, Seino S, et al. Expression and characterization of the chitin-binding domain of chitinase A1 from Bacillus circulans WL-12[J]. Journal of Bacteriology, 2000, 182(11):3045-3054
    [88]Ikegami T, Okada T, Hashimoto M, et al. Solution structure of the chitin-binding domain of Bacillus circulans WL-12 chitinase A1[J]. J. Biol. Chem., 2000, 275:13654 - 13661.
    [89]Jee J G, Ikegami T, Hashimoto M, et al. Solution structure of the fibronectin type III domain from Bacillus circulans WL-12 chitinase A1[J]. J. Biol. Chem., 2002, 277:1388-1397.
    [90]Ferrandon S, Sterzenbach T, Mersha F B, et al. A single surface tryptophan in the chitin-binding domain from Bacillus circulans chitinase A1 plays a pivotal role in binding chitin and can be modified to create an elutable affinity tag[J]. Biochim Biophys Acta, 2003, 1621(1):31-40.
    [91]Hardt M, Laine R A. Mutation of active site residues in the chitin-binding domain ChBDChiA1 from chitinase A1 of Bacillus circulans alters substrate specificity: use of a green fluorescent protein binding assay[J]. Arch Biochem Biophys, 2004, 426(2):286-297.
    [92]Kezuka Y, Bando K, Kobayashi H, et al .Crystallization and preliminary X-ray analysis of the catalytic domain of chitinase D from Bacillus circulans WL-12[J]. Protein Pept Lett, 2006, 13(9):951-954
    [93]Wang S L, Shih I L, Liang T W, et al. Purification and characterization of two antifungal chitinases extracellularly produced by Bacillus amyloliquefaciens V656 in a shrimp and crabshell powder medium[J]. J Agric Food Chem, 2002, 50(8):2241-2248.
    [94]Wang S L, Lin T Y, Yen Y H. Bioconversion of shellfish chitin wastes for the production of Bacillus subtilis W-118 chitinase[J]. Carbohydr Res, 2006, 341(15):2507-2515.
    [95]Swain M R, Ray R C, Nautiyal C S. Biocontrol efficacy of Bacillus subtilis strains isolated from cow dung against postharvest yam (Dioscorea rotundata L.) pathogens[J]. Curr Microbiol, 2008, 57(5):407-411.
    [96]Chang W T, Chen C S, Wang S L. An antifungal chitinase produced by Bacillus cereus with shrimp and crab shell powder as a carbon source[J]. Curr Microbiol, 2003, 47(2):102-108
    [97]Chang W T, Chen Y C, Jao C L, Antifungal activity and enhancement of plant growth by Bacillus cereus grown on shellfish chitin wastes[J]. Bioresour Technol, 2007, 98(6):1224- 1230.
    [98]Kishore G K, Pande S. Chitin-supplemented foliar application of chitinolytic Bacillus cereus reduces severity of Botrytis gray mold disease in chickpea under controlled conditions[J]. Lett Appl Microbiol, 2007, 44(1):98-105.
    [99]Chen C Y, Wang Y H, Huang C J. Enhancement of the antifungal activity of Bacillus subtilis F29-3 by the chitinase encoded by Bacillus circulans chiA gene[J]. Can J Microbiol, 2004, 50(6):451-454.
    [100]Kramer K J, Muthukrishnan S. Insect chitinases: molecular biology and potential use as biopesticides[J]. Insect Biochem Mol Biol, 1997, 27(11):887-900.
    [101]Merzendorfer H, Zimoch L. Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. J. Exp. Biol., 2003, 206:4393-4412.
    [102]Shapiro M, Preisler HK, Robertson JL. Enhancement of baculovirus activity on gypsy moth (Lepidoptera:Lymantriidae) by chitinase[J]. Journal of Economic Entomology, 1987, 80(6):1113-1116.
    [103]Fan Yanhua, Fang Weiguo, Guo Shujuan, et al. Increased Insect Virulence in Beauveria bassiana Strains Overexpressing an Engineered Chitinase[J]. Applied and Environmental Microbiology, 2007, 73(1):295-302
    [104]Siaens R, Eijsink V, Dierckx R, et al. 123I-Labeled chitinase as specific radioligand for in vivo detection of fungal infections in Mice[J]. Journal of Nuclear Medicine, 2004, 45(7):1209-1216
    [105]Zhu Z, Zheng T, Homer R J, et al. Acidic mammalian chitinase in asthmatic Th2 inflammation and IL-13 pathway activation[J]. Science, 2004. 304(11):1678-1682
    [106]Suzuki K, Tokoro A, Okawa Y, et a1. Effect of N-acetylchito-oligosaccharides on activation of phagocytes, Microbiol Immunol, 1986, 30(8):777-787
    [107]Tokoro A, Suzuki K, Matsumoto T, et al. Chemotactic response of human neutrophils to N- acetyl chitohexaose in vitro[J]. Microbiol Immunol, 1998, 32(4):387-395
    [108]Suzuki K, Mikami T, Okawa Y, et al, Antitumor effect of hexa-N-acetylchitohexaose and chitohexaose. Carbohydrate Research, 1986.15l:403-408
    [109]Suzuki K,Tokoro A, Okawa Y, et al. Enhancing effect of N-acetyl-chito- oligosacchartides on the active oxygen-generating and microbicidal activities of peritoneal exudate ceils in mice[J]. Chem Pharm Bull, 1985, 33(2):886-888
    [110]Snaar-Jagalska B E, Krens S, Robina I, et al. Specific activation of ERK pathways by chitin oligosaccharides in embryonic zebrafish cell lines[J]. Glycobiology, 2003, 13:725-732
    [111]Ruby D, Gadelle A, Toppan A. Chitin oligosaceharides as elicitors of chitinase activity in melon plants[J]. Biochemical and Biophysical Research Communications, 1987, 43(3):885- 892
    [112]杜昱光.白雪芳.虞星炬等,寡聚糖类物质生理话性的研究.中国生化药物杂志. 1997, 18(5):268-273
    [113]Lopez-Lara I M, Berg J D, Thomas-Oates J E, et al. Structural identification of the lipo-chitin oligosaccharide nodulation signals of Rhizobium loti[J]. Mol Microbiol, 1995, 15(4):627-638
    [114]Mathesius U, Schlaman H, Spaink H, et al. Auxin transport inhibition precedes root nodule formation in white clover roots and is regulated by flavonoids and derivatives of chitin oligosaccharides[J]. Plant J., 1998, 14(1):23-34.
    [115]Soria-Diaz M E, Tejero-Mateo P, Espartero J L, et al. Structural determination of the lipo-chitin oligosaccharide nodulation signals produced by Rhizobium giardinii pv. giardinii H152[J]. Carbohydr Res, 2003, 338(3):237-50.
    [116]姚婉生,王雪,侯海荣等.几丁寡糖制备的研究进展[J].山东科学, 2006, 19(3):27-31
    [117]Wiwat C, Thaithanun S, Pantuwatana S, et al. Toxicity of chitinase-producing Bacillus thuringiensis ssp. kurstaki HD-1 (G) toward Plutella xylostella[J]. J Invertebr Pathol, 2000, 76(4):270-277.
    [118]卢伟,赵秋敏,陈艳玲等.几丁质酶在苏云金芽胞杆菌中的分布及抑小麦赤霉菌菌株的筛选[J].南开大学学报(自然科学版), 2007, 40(3):97-101
    [119]Thamthiankul S, Suan-Ngay S, Tantimavanich S, et al. Chitinase from Bacillus thuringiensis subsp. pakistani[J]. Applied Microbiology and Biotechnology, 2001, 56(3-4): 395-401.
    [120]Barboza-Corona J E, Nieto-Mazzocco E, Velázquez-Robledo R, et al. Cloning, sequencing, and expression of the chitinase gene chiA74 from Bacillus thuringiensis[J]. Appl. Envir. Microbiol., 2003, 69:1023-1029.
    [121]钟万芳,姜丽华,阎文昭等.苏云金杆菌以色列亚种几丁质酶基因的克隆及序列分析[J].遗传学报, 2003, 30(4):364-369.
    [122]Lin Y, Guan X. Molecular cloning and sequence analysis of the chitinase gene from Bacillus thuringiensis serovar alesti[J]. Biotechnol Lett, 2004, 26(8):635-639.
    [123]Zhong W F, Fang J C, Cai P Z, et al.Cloning of the Bacillus thuringiensis serovar sotto chitinase (Schi) gene and characterization of its protein[J]. Genetics and Molecular Biology, 2005, 28(4):821-826
    [124]Driss F, Kallassy-Awad M, Zouari N, Molecular characterization of a novel chitinase from Bacillus thuringiensis subsp. kurstaki[J]. J Appl Microbiol, 2005, 99(4):945-953.
    [125]Driss F, Baanannou A, Rouis S, et al. Effect of the chitin binding domain deletion from Bacillus thuringiensis subsp. kurstaki chitinase Chi255 on its stability in Escherichia coli[J]. Mol Biotechnol, 2007, 36(3):232-237.
    [126]Vega L M, Barboza-Corona J E, Aguilar-Uscanga M G, et al. Purification and characterization of an exochitinase from Bacillus thuringiensis subsp. aizawai and its action against phytopathogenic fungi[J]. Can J Microbiol, 2006; 52(7):651-657.
    [127]JE Barboza-Corona, DM Reyes-Rios, R Salcedo-Hernandez, et al. Molecular and biochemical characterization of an endochitinase (ChiA-HD73) from Bacillus thuringiensis subsp. kurstaki HD-73. Mol Biotechnol, 2008, 39(1):29-37.
    [128]李力,黄胜元,关雄.产几丁质酶的苏云金杆菌菌株筛选及酶合成条件研究[J].中国病毒学, 2000, 15:94-97.
    [129]黄小红,陈清西,王君等.苏云金芽胞杆菌几丁质酶的分离纯化及性质[J].应用与环境生物学报, 2004, 10(6):771-773.
    [130]黄小红,陈清西,王君等.有机溶剂对苏云金芽胞杆菌几丁质酶的影响[J].应用与环境生物学报, 2005, 11(1):71-73.
    [131]黄小红,陈清西,王君等.金属离子对苏云金芽胞杆菌几丁质酶活力的影响[J].农业生物技术学报, 2004, 13(2):264-265.
    [132]Cai Wenxuan, Sha Li, Zhou Jiawei, et al. Functional analysis of active site residues of Bacillus thuringiensis WB7 chitinase by site-directed mutagenesis[J]. World Journal of Microbiology & Biotechnology, 2009, 25(12):2147-2155
    [133]Arora N, Ahmad T, Rajagopal R, et al. A constitutively expressed 36kDa exochitinase from Bacillus thuringiensis HD-1[J]. Biochem. Biophysi. Res. Communi, 2003, 307:620–625.
    [134]陈艳玲,卢伟,陈月华等.苏云金芽胞杆菌chiA,chiB全基因的克隆、表达及其序列分析.微生物学报, 2007, 47(5):843-848.
    [135]刘东,陈月华,蔡峻等.苏云金芽胞杆菌几丁质酶B特性及其杀虫抑真菌的作用[J].微生物学报, 2009, 49(2):180-185.
    [136]Liu D, Cai J, Xie C C, et al. Purification and partial characterization of a 36-kDa chitinase from Bacillus thuringiensis subsp colmeri and its biocontrol potential[J]. Enzyme and Microbial Technology, 2010, 46(3-4):252-256.
    [137]Smirnoff W A. Effect of chitinase on the action of Bacillus thuringiensis[J]. Canadian Entomologist, 1971, 103(12):1829-1831.
    [138]Smirnoff W A, Randall A P, Martineau R, et al. Field test of the effectiveness of chitinase additive to Bacillus thuringiensis against Choristoneura fumiferana[J]. Canadian Journal of Forest Research, 1973, 3(2):228-236
    [139]Smirnoff W A. The possible use of Bacillus thuringiensis plus chitinase formulation for the control of spruce budworm outbreaks[J]. Journal of the New York Entomological Society, 1973, 81(4):196-200
    [140]Wiwat C, Monton L, Patcharaporn S, et al. Expression of chitinase-encoding genes fromAeromonas hydrophila and Pseudomonas maltophilia in Bacillus thuringiensis subsp. israelensis. Gene (Amsterdam), 1996, 179(1):119-126
    [141]Downing K J, Leslie G, Thomson J A. Biocontrol of the Sugarcane Borer Eldana saccharina by Expression of the Bacillus thuringiensis cry1Ac7 and Serratia marcescens chiA Genes in Sugarcane-Associated Bacteria[J]. Applied and Environmental Microbiology, 2000, 66(7): 2804-2810
    [142]Okay S, Tefon B E, Ozkan M, et al. Expression of chitinase A (chiA) gene from a local isolate of Serratia marcescens in Coleoptera-specific Bacillus thuringiensis[J]. J Appl Microbiol, 2008, 104(1):161-170.
    [143]Sirichotpakorn N, Rongnoparut P. Choosang K, et al .Coexpression of chitinase and the cry11Aa1 toxin genes in Bacillus thuringiensis serovar israelensis[J]. Journal of Invertebrate Pathology, 2001, 78(3):160-169
    [144]Thamthiankul S, Moar W J, Miller M E, et al. Improving the insecticidal activity of Bacillus thuringiensis subsp. aizawai against Spodoptera exigua by chromosomal expression of a chitinase gene[J]. Appl Microbiol Biotechnol, 2004, 65(2):183-192.
    [145]Lertcanawanichakul M, Wiwat C. Improved shuttle vector for expression of chitinase gene in Bacillus thuringiensis[J]. Lett Appl Microbiol, 2000, 31(2):123-128.
    [146]Lertcanawanichakul M, C Wiwat, A Bhumiratana, Expression of chitinase-encoding genes in Bacillus thuringiensis and toxicity of engineered B. thuringiensis subsp. aizawai toward Lymantria dispar larvae[J]. Curr Microbiol, 2004, 48(3):175-181.
    [147]Ding X, Luo Z, Xia L, et al. Improving the insecticidal activity by expression of a recombinant cry1Ac gene with chitinase-encoding gene in acrystalliferous Bacillus thuringiensis[J]. Curr Microbiol, 2008, 56(5):442-446.
    [148]Liu M, Cai Q X, Liu H Z, et al. Chitinolytic activities in Bacillus thuringiensis and their synergistic effects on larvicidal activity[J]. J Appl Microbiol, 2002, 93(3):374-379.
    [149]Hu S B, Liu P, Ding X Z, et al. Efficient constitutive expression of chitinase in the mother cell of Bacillus thuringiensis and its potential to enhance the toxicity of Cry1Ac protoxin[J]. Appl Microbiol Biotechnol, 2009, 82(6):1157-1167.
    [150]Barboza-Corona J E, Ortiz-Rodriguez T, Fuente-Salcido N, et al. Hyperproduction ofchitinase influences crystal toxin synthesis and sporulation of Bacillus thuringiensis. Antonie Van Leeuwenhoek, 2009, 96(1):31-42.
    [151]Driss F, Rouis S, Azzouz H, et al. Integration of a Recombinant Chitinase into Bacillus thuringiensis Parasporal Insecticidal Crystal. Curr Microbiol, 2011, 62(1):281-288.
    [152]Reyes-Ramirez A, Escudero-Abarca B, Aguilar-Uscanga G, et al. Antifungal activity of Bacillus thuringiensis chitinase and its potential for the biocontrol of phytopathogenic fungi in soybean seeds[J]. Journal of Food Science, 2004, 69(5):131-134
    [153]J.萨姆布鲁克,D.W.拉塞尔.分子克隆实验指南(第三版)[M]北京:科学出版社
    [154]郑毅,周琥,黄勤清等.产耐温蛋白酶苏云金芽胞杆菌FS140液体发酵条件优化[J].应用与环境生物学报, 2007, 13(5):708-712
    [155]Pichyangkura R, Kudan S, Kuttiyawong K, et al. Quantitative production of 2-acetamido-2-deoxy-D-glucose from crystalline chitin by bacterial chitinase. Carbohydr Res, 2002, 337(6):557-559.
    [156]Xu GY, Ong E, Gilkes NR, et al. Solution structure of a cellulose-binding domain from Cellulomonas fimi by nuclear magnetic resonance spectroscopy[J]. 1995, Biochemistry, 34(21):6993-7009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700