用户名: 密码: 验证码:
Mitosin与ATF4的功能性相互作用及其对细胞和病毒cAMP效应元件的调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
着丝点在有丝分裂染色体忠实地传递给子代细胞的过程中起重要作
    用,对于遗传物质的稳定性及生物的正常发育有重要影响。Mitosin为一分
    子量350kDa的着丝点蛋白,它在有丝分裂期短暂定位于着丝点动粒的外层
    和纺缍体极。本研究利用已经鉴定的mitosin两个动粒定位功能域
    ATK(mitosin氨基酸序列2094~2487+2792~2887)和TG(mitosin氨基酸序列
    2488~3113)作为诱饵,通过酵母双杂交系统从胎盘库中筛选出mitosin结合蛋
    白ATF4/CREB2 N端缺失的两个部分编码区,分别位于ATF4氨基酸序列
    56~351和185~351。缺失实验表明,ATF4/CREB2的bZip功能域和mitosin
    的中心区(mitosin氨基酸序列2792~2887位置)以及2864位置的半胱氨酸是
    二者相互作用所必需的。利用GST融合蛋白的体外结合实验同样证实了二
    者的相互作用。从而表明mitosin和ATF4的结合与mitosin和动粒的相互作
    用存在类似的机制。凝胶延迟实验证实,体外表达的ATF4能特异结合于通
    用CRE位点(TGACGTCA),而mitosin氨基酸序列2488~2644功能区干扰
    ATF4与CRE形成复合物;相反,mitosin 2645~3113功能区则能够与ATF4
    以及CRE形成一个稳定的三元复合物,提示两个蛋白可能存在二聚化。与
    ATF4抑制内啡肽启动子下的报告基因类似的是,本研究通过CHO细胞中
    的短暂转染实验发现,ATF4和mitosin协同抑制E-selectin启动子下游的荧
    光素酶报告基因,而ATF4虽然同样能抑制Ⅰ型T细胞的白血病病毒末端重
    复序列下的报告基因,但mitosin 2488~3113功能域却具有激活病毒LTR下
    游报告基因的功能,这表明mitosin通过与ATF4的相互作用,可能调节细
    胞基因的表达并可能在部分病毒感染所引起的细胞转化过程中起一定作用。
Faithful segregation of chromosome to daughter cells during mitosis is
     critical for the stabilization of genetic materials and normal development of
     organism. Mitosin is a 35OkDa nuclearprotein that transiently localized to the
     outerplate of kinetochore and spindle pole in mitotic phase and its expression is
     cell-cycle dependent. Preliminary investigations have found that mitosin can
     regulate cell cycle and may acts as a mitotic checkpoint. In order to further
     investigate the function of mitosin, the yeast two-hybrid screening utilizing two
     kinetochore targeting domains of mitosin ATK(mitosin 2094?487+2792---2887)
     and TG(mitosin 2488? 113) as baits was performed against a placental cDNA
     library, two positive clones encoding the amino acid residue 56?5 I and
     185?51 of ATF4/CREB2 was identified, then the full-length ATF4 was gained
     by PCR from the placental library. Deletion analysis indicated that the
     C-terminal domain of ATF4 containing basic and leucine zipper and the core
     region(2792?887) of mitosin was necessary for the interaction of the two
     proteins, further more, the cystein at 2864 was also indispensable for mitosin
     associated with ATF4, mutation of cystein to serine also abolished the interacton
     of the two proteins, suggesting heterodimer may happened between the Ieucine
     zipper. Full length and thc N-terminal truncated form of ATF4 can interact with
     mitosin 2488? 113 was also confirmed by GST-pull down assay, which
     suggested that same mechanism may underlied in the interaction between the
     two proteins and the interaction of mitosin with the kinetochore. Although the
     ATF/CREB protein family have similar bZip domain, but the homologous region
     of ATF proteins to the mitosin binding domain of ATF4 can not interact with
     mitosin in the yeast two-hybrid system which validated the specificity of the
     interaction between mitosin and ATF4. It was also shown that ATF4 expressed in
     E. coIl can specifically binds to the artificial probe containing consensus cAMP
     responsive element(CRE) TGACGTCA in electrophoretic mobility gel shift
     assay(EMSA), and mitosin 2488?644 can interfere with the interaction between
     ATF4 and CRE, while mitosin 2645-1 113 can form a ternary structure with
    
     74
    
    
    
    
    ATF4 and CRE, this indicate that mitosin may regulate ATF4 by a rather
     complicated machanism. By using a luciferase gene driven by the E-selectin
     promoter, ATF4 and mitosin can coordinately down-regulate the reporter gene,
     while mitosin can transactivate the luciferase gene driven by the HTLV- 1 LTR,
     this result presented a novel pathway from nuclear matrix protein to transcription
     factor, and indicate that mitosin may regulate cellular genes and may also play an
     important role in facilitating the changing of cell-cycle and the transformation of
     cells infected by virus containing CRE.
引文
1. Hook E: The impact of aneuploidy upon public health: monalily and morbidity associated with human hromosomal abnormalities. In Aneuploidy: Etiology & Mechanisms, vol. 36. Edited by Dellarco V. Voylek P, Hollaender A. New York: Plenum press; 1985:7-33.
    2Mitelman F: Catalog of Chromosome Aberrations in Cancer, 5th Edition. New York: Wiley; 1994.
    3. Earnshaw WC and Ratter JB. 1989. A map of the centromere (primary constriction) in vertebrate chromosomes at metaphase. In "Aneuploidy: Mechanisms of Origin, " A.R.Liss, New York.
    4. Ratter, J.B., Kingwell. B.C., and Fritzler, M.J. 1988, Detection of distinct stnictural domains within the primary constriction using autoantibodies. Chromosoma (Berlin) 96. 360-367.
    5. Cooke, C.A., Heck. M.M.S. and Kamshaw. W.C. 1987. The 1NCENP antigens: Movement from the inner centromere to the midbody during mitosis. J. Cell Biol. 105. 2053-2067.
    6. Moroi. Y.. Peebles, C.. Fritaler, M. Steigerwald. J.. and Tan, E. 1980, Autoantibody to centromere (kinetochore) in Scleroderma sera. Proc. Natl. Acad. Sci. USA 77, 1627-1631.
    7. Brenner, S.. Pepper. D.. Berns. M.W.. Tan. E., and Brinkley, B.R. 1981. Kinetochore structure, duplication and distribution in mammalian cells: analysis by human autoantibodies from scleroderma patients. J. Cell Biol. 91,95-102.
    8. Earnshaw, W.C.. and Rothfield, N.F. 1985, Identification of a family of three related
    
    centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma91,3l3-321.
    9. Earnshaw, W.C., Bordwell, B., Marino, C. and Rothfield, N. 1986, Three human chromosomal autoantigens are recognized by sera from patients with anti-centromere antibodies. J. Clin. Invest. 77,426-430.
    10. Weiner, E.S., Hildebrandt, S., Senecal, J.L., Daniels, U Noell, S., Joyal,F.,Roussin, A.,Earnshaw,W., and Rothfield, N.F. 1991, Prognostic significance of anticentromere antibodies and anti-topoisomerase I antibodies in Raynaud's disease. Arthritis Rheum. 34,68-77.
    11. Tuffanelli, D.L., McKeon, R, Kleinsmith, D.A.M Burnham, T.K. and Kirschner. M. 1983,Anticentromere and anticentriole antibodies in the scleroderma spectrum. Arch.Dermatol. 119,560-566.
    12. Clarke L: Centromeres: 1998, Centromeres: proteins, protein complexes, and repeated domains at centromeres of simple eukaryotes. Curr Opin Genet Dev 1998, 8:212-218.
    13. Meluh, P.B., and Koshland, D. 1997, Budding yeast centromere composition and assembly as revealed by in vivo cross-linking. Genes. Dev. 11,3401-3412.
    14. Wiens, G.R., and Sorger, P.K. 1998, Centromeric chromatin and epigenetic effects in kinetochore assembly. Cell, 93,313-316.
    15. Ekwall, K., Olsson, T., Turner, B.M., Cranston, G., and Allshire, R.C. 1997, Transient inhibition of histone deacetylation alters the structural and functional imprint at fisson yeast centromeres. Cell, 91:1021-1032.
    16. Csink, A.K., and Henikoff, S, 1998, Something from nothing: the evolution and utility of satellite repeats. Trends Genet, 14,200-204.
    17. Karpen, G.H., and Allshire, R.C. 1997, The case for epigenetic effects on centromere identity and function. Trends Genet. 13,489-496
    18. Choo,K.H.A. 1997, The centromere, Oxford University Press.
    19. Buchwitz BJ, Ahmad K, Moore LL, Roth MB, Henikoff S. 1999, A histone-H3-like protein in C.elegans. Nature 401,547-548.
    20. Howman EV, Fowler KJ, Newson AJ, Redward S, MacDonald AC, Kalitsis P, Choo KH. 2000, Early disruption of centromeric chromatin organization in centromere protein A(Cenpa) null mice Proc.Natl.Acad.Sci.USA 97,1148-1153.
    21. Van Hooser AA, Mancini MA, Allis CD, Sullivan KF, Brinkley BR 1999 The mammalian centromere: structural domains and the attenuation of chromatin modeling. FASEB J. 13(Suppl.) S216-S220
    22. Masumoto, H., Masukata, H., Muro, Y., Nozaki, N., and Okazaki, T. 1989, A human centromere antigen (CENP-B) interacts with a short specific sequence in alphoid DNA,a human centromeric satellite. J.Cell.Biol.109, 1963-1973
    23. Cooke,CA.,Bemat,RL.,Earnshaw,WC 1990 CENP-B:A major human centromere
    
    protein located beneath the kinetochore. JCell Biol. 110,1475-1488
    24. Pluta, A.F.. Saitoh, N., Goldberg, I., and Earnshaw, W.C. 1992 Identification of a subdomain of CENP-B that is necessary and sufficient for localization to the human centromere, J.Cell Bil. 116,1081-1093.
    25. Cooke, CA., Bernat, RL., Earnshaw, WC 2000 Uterine dysfunction and genetic modifiers in centromere protein B-deficient mice. Genome Res. 10,30-41.
    26. Saitoh, H., Tomkiel, J.E., Cooke, CA. Ratrie, H.R., Maurer, M., Rothfield, N.F., and Earnshaw, W.C. 1992, CENP-C, an autoantigen in scleroderma,is a componet of the human inner kinetochore plate. Cell, 70,115-125
    27. Sugimoto, K... Yata, H., Muro.Y., and Himeno, M. 1994 Human centromere protein C(CENP-C) is a DNA-binding protein which possesses a novel DNA-binding motif. J Biolchem. 116877-881
    28. Fukagawa. T, and Brown, W.R.A. 1997, Efficient conditional mutation of the vertebrate CENP-C gene Hum.Mol.Genet. 6,2301-2308.
    29. Kalitsis, P., Fowler, KJ., Earle, E., Hiii, J., and Choo,K.H.A. 1998,Targcted disruption of mouse centromere protein C gene leads to mitotic disarray and early embryo death. Proc.Natl.Acad.Sci.USA 95,1136-1141
    30. Pluta, AF., Earnshaw, WC Goldberg,lG 1998 Interphase-specific association of intrinsic centromere protein CENP-C wiht HDaxx.a death domain-binding protein implicated in Fas-mediated cell death J.Cell.Sci 111, 2029-2041
    31. Pluta,A.F., Earnshaw,W.C. 1996 Specific interaction bewteen human kinetochore protein CENP-C and a nucleolar transcriptional regulator. J. Bio. Chem. 271, 18767-18744.
    32. Tomkiel, JE. Cooke.CA, Saitoh.H. 1994. CENP-C is required for maintaining proper kinetochore size and for a timely transition to anaphase. J Cell Biol 125,531-545.
    33. Yang, C.1996, Identification of overlapping DNA-binding and centromere-targeting domains in the human kinetochore protein CENP-C Mol.Cell Biol. 16,3576-3586.
    34. Fukagawa T, Pendon C, Morris J, Brown W. 1999 CENP-C is necessary but not sufficient to induce fromation of a functional centormere. EMBO J. 18,4196-4209.
    35. Knehr M, Poppe M, Schroeter D. Eickelbaum W, Finze EM, Kiesewettcr UL, Enulescu M, Aland M. Paweletz N. 1996 Cellular expression of human centromere protein C demonstrates a cyclic behavior with highest abundance in the Gl phase. Proc.Natl.Acad.Sci.USA 93,10234-10239.
    36. Everett RD, Earnshaw WC, Findlay J, Lomonte P. 1999 Specific dstruction of kinetochore protein CENP-C and disruption of cell division by herpes simplex virus immediated-early protein Vmw 110. EMBO J. 18,1526-1538.
    37. He D, Zeng C, Woods K, Zhong L, Turner, D., Busch,R.K., Brinkley,B.R.,Busch H. 1998, CENP-G: a new centromeric protein that is associated with the alpha-1 satellite DNA subfamily. Chromosoma 107:189-197.
    
    
    38. Sugata N, Munekata E, Todokoro K.: Characterization of a novel kinetochore protein, CENP-H. J Biol Chem 1999, 274, 27343-27346.
    39. Eamshaw,WC.,Cooke,CA., 1991 Analysis of the ditribution of the INCENPs throughout mitosis reveals the existence of three distinct substages of metaphase and early events in cleavage furrow formation. J Cell Sci 98,443-461
    40. Mackay, A.M. Eckley, D.M.,Chue,C., Earnshaw.W.C. 1993, Molecular analysis of the INCENPs (inner centromere proteins): Separate domains are required for association with microtubules during interphase and with the central spindle during anaphase, J.Cell. Bio. 123,373-385
    41. Mackay,A.M.,Ainsztein,A.,Eckley,D.M. Earnshaw,W.C. 1998. Adominat mutant of inner centromere protein (1NCENP), a chromosomal protein, disrupts prometaphase congression and cytokinesis. J.Cell Biol 140,991-1002
    42. Pfarr CM, Coue M, Grissom PM et al. Cytoplasmic dynein is localized to kinetochores during mitosis. Nature 1990, 345:263-265.
    43. Steuer ER, Wordeman L, Schroer TA et al. Localization of cytoplasmic dynein to mitotic spindles and kinetochores. Naturel990, 345:266-268.
    44. Echeverri CJ, Paschal BM, Vaughan KT et al. Molecular characterization of the 50-kD subunit of dynactin reveals function for the complex in chromosome alignment and spindle organization during mitosis. J Cell Biol 1996, 132:617-633.
    45. Vig BK: Recognition of mammalian centromeres by anti-dynein and anti-dynactin components. Mutagenesis 1998,13:391-396.
    46. Starr DA, Williams BC, Hays TS, Goldberg ML: ZW10 helps recruit dynactin and dynein to the kinetochore. J Cell Biol 1998,142:763-774.
    47. Williams,B.C.,Karr,T.L..Montgomery,J.M. 1992 The Drosophila L(l)ZwlO gene product .required for accurate mitotic chromosome segregation, is redistributed at anaphase onset. J.Cell Biol. 118,759-774
    48. Williams,B.C.,Gatti,M..Goldberg,M.L. 1996 Bipolar spindle attachments affect redistributions of ZW10. a Drosophila centromere/kinetochore component required for accurate chromosome segregation. J.Cell Bio. 134. 1127-1140
    49. Starr, D.A.,Williams, B.C.,Li,Z., et al. 1997 Conservation of the centromere/kinetochroe protein ZW10. J.Cell Biol 138,1289-1301
    50. Starr, D.A., Williams, B.C.,Li,Z.,et al 1997 Evidence that the essential kinetochroe componet ZW10 recruits dynein and dynactin to eht kinetochore . Mol. Biol.Cell 8,107a
    51. Karess, R.E., Glover, D.M. 1989 rough deal:A gene required for proper mitotic segregation in Drosophila. J.Cell Biol 109,2951-2961
    52. Faulkner, N.E., Vig,B.,Echeverri.C.J.,Wordeman,L.. and VaIlee,R.B. 1998 Localization of motor-related proteins and associated complexes to active,but not inactive,centromeres. Hum.Mol.Genet. 7,671-677
    
    
    53. Thrower, DA., Jordan.MA, Schaar,BT et al. 1995,Mitotic Hela cells contan a CENP-E associated minus end-directd microtubule motor EMBO J 14,918-926
    54. Wood, KW, Sakowicz, R., Goldstein,LSB 1997 CENP-E is a plus end-directed kinetochore motor required for metaphase chromosome alignment. Cell 91,357-366
    55. Schaar BT, Chan GK, Maddox P, Salmon ED, Yen TJ: CENP-E function at kinetochores is essential for chromosome alignment. J Cell Biol 1997, 139:1373-1382.
    56. Schaar, KD, Wood, KW, Cleveland DW 1996,The kinesin-like protein CENP-E is kinetochore-associated throughout poleward chromosome segregation during anaphase-A. J Cell.Sci 109,961-969
    57. Lombillo, VA, Nislow, C.,Yen, TJ 1995 Antibodies to the kinesin motor domain and CENP-E inhibit microtubule depolymerization-dependent motion of chromosomes in vitro. J Cell Biol 128,107-115.
    58. Chan GK, Schaar BT, Yen TJ: Characterization of the kinetochore binding domain of CENP-E reveals interactions with the kinetochore proteins CENP-F and hBUBR1. J Cell Biol 1998,143:49-63.
    59. Dujardin D, Wacker Ul. Moreau A, Schroer TA, Rickard JE, De Mey JR: Evidence for a role of CLIP-170 in the establishment of metaphase chromosome alignment. J Cell Biol 1998, 141:849-862.
    60. Doe CL, Wang G, Chow C, Fricker MD. Singh PB, Mellor EJ: The fission yeast chromo domain encoding gene chpl(+) is required for chromosome segregation and shows a genetic interaction with alpha-tubulin. Nucleic Acids Res 1998, 26:4222-4229.
    61. Huyett A, Kahana J, Silver P, Zeng X. Saunders WS: The Kar3p and Kip2p motors function antagonistically at the spindle poles to influence cyloplasmic microtubule numbers. J Cell Sci 1998, 111:295-301.
    62. Severin FF, Sorger PK, Hyman AA: Kinetochores distinguish GTP from GDP forms of the microtubule lattice. Nature 1997. 388:888-891.
    63. Biggins S. Severin FF, Bhalla N. Sassoon I. Hyman AA, Murray AW: The conserved protein kinase Ipll regulates microtubule binding to kinetochores in budding yeast. Genes Dev 1999. 13:532-544.
    64. Sassoon I, Severin FF, Andrews PD, Taba MR, Kaplan KB, Ashford AJ, Stark MJ, Sorger PK, Hyman AA: Regulation of Saccharomyces cerevisiae kinetochores by the type I phosphatase Glc7p. Genes Dev 1999, 13:545-555.
    65. Bloecher A, Tatchell K: Defects in Saccharomyces cerevisiae protein phosphatase type 1 activate the spindle/kinetochore checkpoint. Genes Dev 1999, 13:517-522.
    66. Shapiro PS, Vaisberg E, Hunt AJ, Tolwinski NS, Whalen AM, Mclntosh JR, Ahn NG: Activation of the MKK/ERK pathway during somatic cell mitosis: direct interactions of active ERK with kinetochores and regulation of the mitotic 3F3/2 phosphoantigen. J Cell Biol 1998, 142:1533-1545.
    
    
    67. Zecevic M, Catling AD, Eblen ST. Renzi L, Hittle JC, Yen TJ, Gorbsky GJ, Weber MJ: Active MAP kinase in mitosis: localization at kinetochores and association with the motor protein CENP-E. J Cell Biol 1998. 142: 1547-1558.
    68. Steuer, E.R., Wordeman,L.,Schroer,T.A. 1990 Localization of cytoplasmic dynein to mitotic spindles and kinetochores. Nature 345,266-268.
    69. Faulkner, N.E.. Vig, B., Echeverrim, C.J. et al 1998 Localization of motor-related proteins and associated complexes to active.but not inactive.centromeres, Hum.Mol.Genet. 7,671-677
    70. Wordeman, L., Mitchison,T.J. 1995 Identification and partial characterization of mitotic centromere-associated kinesin.a kinesin-related protein that associates with centromeres during mitosis. J.Cell Bil. 128,95-105
    71. Rieder ,CL., Cole, RW Khodjakov, A 1995 The checkpoint delaying anaphase in response to chromosome monoorientation is mediated by an inhibitory signal produced by unattached kinetochores, J.Cell Biol. 130,941-948
    72. Zirkle,R.E. 1970 Involvement of the prometaphase kinetochore in prevention of precocious anaphase. J.Cell Biol 47,235a
    73. Bemat,R.L.,Borisy,G.G.,RothfieId,N.F. and Earnshaw.W.C. 1990 Injection of anticentromere antibodies in interphase disrupts events required for chromosome movement at mitosis. J.Cell Biol.111,1519-1533.
    74. Simerly.C., Balczon,R., Brinkley, B.R., and Schatten.G. 1990 Microinjected kinetochroe antibodies interfere with chromosome movement in meiotic and mitotic mouse embryos J.Cell Biol 111,1491-1504.
    75. Bemat, R.L., Delannoy, M.R., Rothfield, N.F., and Earnshaw,W.C. 1991 Disruption of centromere assembly during interphase ingibits kinetochroe morphogenesis and function in mitosis. Cell 66,1229-1238.
    76. Cyert,M.S., SchersonJ., Kirschner.M.W. 1988 Monoclonal antibodies specific for thiophosphorylated proteins recognize Xenopus MPF. Dev.Biol 129,209-216.
    77. Li X, Nicklas RB: Tension-sensitive kinetochore phosphorylation and the chromosome distribution checkpoint in praying mantid spermatocytes. J Cell Sci 1997, 110:537-545.
    78. Guacci V, Koshland D, Strunnikov A: A direct link between sister-chromatid cohesion and chromosome condensation through the analysis of MCD1 in S. cerevisiae. Cell 1997, 91:47-57.
    79. Michaelis C, Ciosk R, Nasmyth K: Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 1997, 91:35-45.
    80. Wells WA, Murray AW: Aberrantly segregating centromeres activate the spindle assembly checkpoint in budding yeast. J Cell Biol 1996, 133:75-84.
    81. Wang Y, Burke DJ: Checkpoint genes required to delay cell division in response to nocodazole respond to impaired kinetochore function in the yeast Saccharomyces
    
    cerevisiae. Mol Cell Biol 1995. 15:6838-6844.
    82. Tavormina PA, Burke DJ: Cell cycle arrest in cdc20 mutants of Saccharomyces cerevisiae is independent of NdclOp and kinetochore function but requires a subset of spindle checkpoint genes. Genetics 1998, 148:1701-1713.
    83. Cohen-Fix, O.,Peters, JM, Kirschner, MW , and Koshland,D., 1996, Anaphase initiation in Saccharomyces cerevisiae is controlled by the APC-dependent degradation of the anaphase inhibitor Pdslp. Genes Dev, 10. 3081-3093.
    84. Zou, H., McGarry, TJ, Bemal T., and Kirschner,M.W., 1999 Identification of a vertebrate sisteer-chromatid separation inhibitor in transformation and tumorigenesis Science 285,418-422.
    85. Ciosk, R ,Zachariae, W., Michaelis, C.,Shevchenko,A.,Mann,M., and Nasmyth.K. 1998 An ESP1/PDS1 complex regulates loss of sister chromatid cohesion at the metaphase to anaphase transition in yeast. Cell 93,1067-1076.
    86. Hoyt, M.A.,Totis,L, Roberts.B.T. 1991 S.cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell 66,507-517.
    87. Li.R. Murray.A.W. 1991 Feedback control of mitosis in budding yeast.Cell 66,519-531.
    88. Jin,D.Y.,Spencer,F.,Jeang,K.T. 1998 Human T cell leukemia virus type 1 oncoprotein Tax targets the human mitotic checkpoint protein MADI. Cell 93,81-91.
    89. Tayloar.S.S. McKeon.F. 1997,Kinetochore localization of murine Bub I is required for normal mitotic timing and checkpoint response to poindle damage. Cell 89,727-735.
    90. Jab!onski.S.A.,Chan,G.K. Cooke.C.A.. et al 1998 The hBUBl and hBUBRIkinases sequentially assemble onto kinetochores during prophase with hBUBRl concentrating at the kinetochore plates in mitosis. Chromosoma 107,386-396.
    91. Taylor,S.S.,Ha,E., McKeon,F 1998 The human homologue of Bub3 is required for kinetochore localization of Bub I and a Mad3/bUBl related protein kinase. J.Cell Biol 142,1-11.
    92. Chen,R.H.,Shevchenko,A.,Mann,M., et al,1998 Spindle checkpoint protein Xmadl recruits Xmad2 to unattached kintochorcs.J.Cell.Biol. 143,283-295.
    93. Chen,R.H.,Waters,J.C.,Salmon,E.D.,Murray,A.W. 1996 Association of spindle assembly checkpoint component XMAD2 with unattached kinetochores. Science 274,242-246.
    94. Li, Y., and Benezra,R. 1996 Identification of a human mitotic checkpoint gene:hsMAD2. Science 274,246-248.
    95. Chan,G.K.,Jablonski,S.A.,Sudakin,V.,Hittle,J.C., Yen,T.J. ,1999 Human BUBR1 is a mitotic checkpoint kinase that monitors CENP-E functions at kinetochores and binds the cyclosome/APC. J.Cell Biol. 146,941-954.
    96. Wang,X.M.,Zhai,Y.,Ferrell,J.E.,Jr ,1997,A role for mitogen-activated protein kinase in the spindle assembly checkpoint in XTC cells. J.Cell Biol.137,433-443.
    97. Cahill,D.P..Lengauer,C.,Yu, j. Et al.1998,Mutations of mitotic checkpoint genes in human
    
    cancers. Nature 392,300-303.
    98. Kinzler KW, Vogelstein B: Mutations of mitotic checkpoint genes in human cancers. Nature 1998,392:300-303.
    99. Martinez-Exposito MJ, Kaplan KB, Copeland J, Sorger PK: Retention of the BUB3 checkpoint protein on lagging chromosomes. Proc.Natl.Acad.Sci.USA 1999, 96:8493-8498.
    100. Waters,J.C.,Chen,R.H. Murray,A.W. Salmon.E.D. 1998, Localization of Mad2 to kinetochores depends on microtubule attachment,not tension. J.Cell Biol. 141,1181-1191.
    101. Chen,R.H.,Waters,J.C.,Salmon,E.D. Murray.A.W. 1996 Association of spindle assembly checkpoint component XMAD2 with unattached kinetochores. Science 274,242-246144.
    102. Li,Y.,Corbea,C.,Mahaffey,D.,Rechsteiner,M. Benezra,R. 1997, MAD2 associates with the cyclosome/anaphase-promoting complex and inhitits its activity.Proc.Natl.Acad.Sci. USA.94 12431-12436.
    103. Kallio,M.,Weinstein,J.,Daum,J.R.,Burke,D.J. Gorbsky,G.J. 1998 Mammalian p55CDC mediates association of the spindle checkpoint protein mad2 with the cyclosome/ anaphase-promoting complex, and is involed in regulating anaphase onset and late mitotic events. J.Cell Biol. 141,1393-1406.
    104. Jorgensen, P.M., Brundell,E., Starborg,M.Hoog,C.1998 A subunit of the anaphase-promoting complex is a centromere-associated protein in mammalian cells. Mol.Cell Biol. 18,468-476.
    105. Shapiro,P.S.,Vaisberg,E.,Hunt,AJ.,Tolwinski,N.S.,Whalen,A.M.,Mclntosh,J.R., Ahn,N.G. 1998 Activation of the MKK/ERK pathway during somatic cell mitosis:direct interactions of active ERK with kinetochores and regulation fo mitotic 3F3/2 phosphoantigen.J.Cell Biol. 142,1533-1545.
    106. Wassmann,K., and Benezra,R. 1998 Mad2 transiently associates with an APC/p55Cdc complex during mitosis. Proc.Natl.Acad.Sci. USA 95,11193-11198.
    107. Fang G, Yu H, Kirschner MW: The checkpoint protein MAD2 and the mitotic regulators CDC20 form a ternary complex with the anaphase-promoting complex to control anaphase initiation. Genes Dev 1998,12:1871-1883.
    108. Kim SH, Lin DP, Matsumoto S, Kitazono A, Matsumoto T: Fission yeast Sipl: an effector of the Mad2-dependent spindle checkpoint. Science 1998, 279:1045-1047.
    109. Fair KA, Hoyt MA: Bublp kinase activates the Saccharomyces cerevisiae spindle assembly checkpoint. Mol Cell Biol 1998, 18:2738-2747.
    110. Abrieu,A.,Kahana,J.A.,Wood,K.W., and Cleveland D.W. 2000, CENP-E as and essential componet of the mitotic checkpoint in vitro. Cell
    111. Hwang LH, Lau LF, Smith DL, Mistrot CA, Hardwick KG, Hwang ES,Amon A, Murray AW: Budding yeast Cdc20: a target of the spindle checkpoint. Science 1998, 279:1041-1044.
    
    
    112. Fang G, Yu H, Kirschner MW: Direct binding of CDC20 protein family members activates the anaphase-promoting complex in mitosis and Gl. Mol Cell 1998, 2:163-171. 17:3565-3575.
    113. Dawson I A, Roth S, Artavanis-Tsakonas S: The Drosophila cell cycle gene fizzy is required for normal degradation of cyclins A and B during mitosis and has homology to the CDC20 gene of Saccharomyces cerevisiae. J Cell Bio! 1995, 129:725-737.
    114. Lorca T, Castro A, Martinez AM, Vigneron S, Morin N, Sigrist S,Lchner C, Doree M, Labbe JC: Fizzy is required for activation of the APC/cyclosome in Xenopus egg extracts. EMBOJ 1998,17:3565-3575.
    115. Sigrist SJ, Lehner CF: Drosophila fizzy-related down-regulates mitotic cyclins and is required for cell proliferation arrest and entry into endocycles. Cell 1997,90:671-681.
    116. Zhu,X.,Mancini,M.A.,Chang,K.-H. ,Liu,C.Y.,Chen,C.F.,Shan,B., Jones, Yang-Feng,T.L.. and Lee.W.-H. 1995, Characterization of a novel 350-kilodalton nuclear phosphoprotein that is sccifically involved in mitotic-phase progression.Mol.Cell.Biol. 15:5017-5029.
    117. Liao,H.,Winkfein,R.J.,Mack,G..Rattncr,J.B.Yen,T.J. 1995 CENP-F is a protein of the nuclear matrix thai assembles onto kinetochorc at late G2 and is rapidly degraded after mitosis. 130. 507-518.
    118. Rattner,J.B..Rao,A.,Fritzlcr,M.J.,Valcncia,D.W.,and Yen,T.J. 1993, CKNP-F is a .ca 400kDa kinetochore protein that exhibits, a cell cycle dependent localization. Cell Motility and the Cytoskcleton 26,214-226.
    119. Carlos AC, Rene LH.Carol P et al 1995, Autoimmunity to the cell cycle-dependent centromere protein p330d/CENP-F in disorders assoaciated with cell proliferation 8,575-586.
    120. Clark, G.M..Allred, C.,Hilscnbeck,S.G.,Chamness,G.C.,Osbornc.C.K.,Jones,D.. and W_H, Lee, 1997 Mitosin(a new proliferation marker) correlates with clinical outcome in node-negative breast cancer. Cancer Research, 57. 5505-5508.
    121. Zhu,X.,Chang,K.H.,Mancini,M.A.,Brinkley.W.R., and Lee. W._H..1995 The-terminal of mitosin is essential for its nuclear localization.centromere/kinetochore targeting .and dimerization.J.Biol.Chem. 270. 19545-19550.
    122. Li,S.,Ku,C.Y.,Farmer,A.A.,Cong,Y.-S.Chen,C.-F.,Lee,W.-H. 1998, Identification of a novel cytoplasmic protein that specifically binds to nuclear localization signal motifs. J.Biol.Chem 273,6183-6189.
    123. Zhu, x.,Ding, L.,and Pei,G. 1997 Carboxyl terminus of mitosin is sufficient to confer spindle localization. J.Cell.Biochem, 66,441-449.
    124. Shan,B.,C.-Y.Cang,D.Jones.W.-H. Lee. 1994 The transcription factor E2F-1 mediates the autoregulation of RBgene expression. Mol.CEll.Biol. 14,299-309.
    125. Zhu,XL.1999, Structural requirements and dynamics of mitosin-kinetochore interaction in M phase, Mol. Cell. Biol. 19(2) ,1016-1024.
    
    
    126. Goodwin,R.L.,Pabon-Pena,L.M.,Foster,G.C., and Bader,D, 2000 The cloning and analysis of LEK1 identifies variations in the LEK/Centromer protein F/mitosin gene family J.BioI.Chem 274,18597-18604.
    127. Pabon-Pena,L.,.,Goodwin,R.L.,Cise,L.J.,Bader,D. 2000 Analysis of CMF1 reveals a bone morphogenetk protein-independent componet of the cardiomyogenic pathway. J.BioI.Chem. 275(28) , 21453-21459.
    128. Moore LL, Morrison M, Roth MB: HCP-1, a protein involved in chromosome segregation, is localized tothe centromere of mitotic chromosomes in caenorhabditis elegans. J Cell Biol 1999,147:471-480.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700