用户名: 密码: 验证码:
猪IGF-I基因及MyoG基因分子遗传多态性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肉的生长速度直接关系到养猪生产的经济效益,肉生长主要指骨骼生长。肉生长潜力与肌纤维数量和肌纤维生长有关。细胞生成素(MyoG)基因是骨骼转录因子MyoD 家族的一员,在细胞生成过程中起着中心调控作用。胰岛素样生长因子I (IGF-I),是生长激素发挥促生长作用的重要调节因子。在细胞形成过程中,IGF-I 促进细胞分化。在骨骼生长过程中,IGF-I 调节骨骼的生长。IGF-I 通过诱导细胞生成素(MyoG)基因表达而刺激成细胞的终末端分化。胰岛素样生长因子I(IGF-I)和细胞生成素(MyoG)基因与猪肉的生长速度有关。
    本研究对猪IGF-I 基因(外显子3 和外显子4)和MyoG 基因(5'-调控区及所有外显子区)做了单核苷酸多态性(SNPs)分析,并确立了最佳PCR-SSCP 分析条件。检测结果发现,在IGF-I 基因的外显子3 和外显子4,以及MyoG 基因外显子3、MyoG5'-1 和MyoG5'-3 共5 个座位上存在多态性。对存在多态性的5 个座位分别克隆和测序,测序结果显示在IGF-I 外显子3 有C→T,在IGF-I 外显子4 有C→T;在MyoG 基因外显子3 有T→C,在MyoG5'-1 有C→A(-473),C→A(-456),在MyoG5'-3 有A→T(-44)。6 个多态性位点文献中均未见报道。
    猪MyoG 基因的5'-区存在多态性,对5'-区DNA 多态性位点的调控因子结合情况进行预测。结果显示,在-473、-44 位置碱基多态性引起了转录因子结合的变动,这些位置的碱基多态性可能会引起调控元件的变化。将存在多态性的外显子(IGF-I 基因外显子3和外显子4、MyoG 基因外显子3)不同纯合基因型个体的核苷酸序列分别翻译成氨基酸序列,然后进行氨基酸序列的同源性比较,结果显示,所有检测到的外显子序列上碱基的多态性并没有引起氨基酸序列的变化,说明这几个外显子上核苷酸序列的差异是遗传密码子的摇摆性所致。
    对IGF-I基因和MyoG基因上所检测到的多态性片段分别做了基因频率和基因型频率统计。结果显示,在3 个外显子(IGF-I 基因外显子3 和外显子4 以及MyoG 基因外显子3)上,不同品种间基因频率的分布存在差异;而在MyoG5'-1 和MyoG5'-3 两个座位上,不同品种间基因频率的分布基本上是一致的。
    对包括品种、场-年-季和IGF-I 基因以及MyoG 基因的基因型效应进行最小二乘分析,
The growth rate of porcine muscle is directly related to the economic benefits of pig production, and skeletal muscle growth is an important part of muscle growth in pig. Meat production capacity is related to muscle fiber numbers and growth. Myogenin belongs to the MyoD gene family and fulfills a key function in muscle differentiation by controlling the onset of myoblast fusion and the establishment of myofibers. Insulin-like growth factor I (IGF-I) is an important regulation factor for the functioning of growth hormon.
    IGF-I stimulates differentiation through a myogenin pathway and functions in the regulation of muscle growth, it also stimulates terminal myogenic differentiation by induction of myogenin gene expression. Insulin –like growth factor I and myogenin are related to the growth rate of porcine skeletal muscle . IGF-I gene (exon3 and exon4) and MyoG gene (5’-regulation region and all exons) were amplified to identify the nucleotide diversity. IGF-I exon3, IGF-I exon4, MyoG exon3, MyoG5’-1 and MyoG5’-3 appeared polymorphic. The results of polymorphisms are IGF-I exon3 c→t, IGF-I exon4 c→t, MyoG exon3 t→c, MyoG5’-1 c→a(-473), c→a(-456), MyoG5’-3 a→t (-44).The five polymorphic loci were not reported in the document.
    The potential elements and protein factors binding to the 5’-region of myogenin gene were predicted and different regulatory elements between polymorphisms of two loci (-473 and -44) were discovered. On these two sites, the changes of regulation elements were possibly made by the base changes. The alteration of a single base in exons (IGF-I exon3, IGF-I exon4 and MyoG exon3) are all silent mutation, no substitution of amino acid happened. The alteration of a single base in these exons were caused by the swinging of genetic coden.
    Gene and genotype frequencies were calculated for the polymorphic loci in IGF-I gene and MyoG gene. Some differences of gene frequency between different breeds in IGF-I exon3, IGF-I exon4 and MyoG exon3 were discovered. No significant differences for the distribution of gene frequency were discovered between breeds on MyoG5’-1 and MyoG5’-3 loci.
    The least square means of different IGF-I and MyoG genotype for growth traits were estimated with the fixed model. Backfat thickness and body weight at six months were influenced by the loci of IGF-I exon3 and 5’-1 in MyoG (P<0.05) respectively; Breed had significant effects on birth weight, weaning weight, body weight at six months at level of P<0.01 and on backfat thickness at level of P<0.05.
    The results suggested that insulin-like growth factor I (IGF-I) gene and myogenin (MyoG) gene are potential genetic markers in the study on porcine muscle growth and could be used as markers in marker assisted selection to improve the efficiency and accuracy of selection.
引文
1. 陈海燕,朱海平,吕鸿等.影响外来猪种早期生长的固定效应.浙江大学学报(农业与生命科学版),2003,29(4):429~432
    2. 方美英,刘红林,姜志华等.6 个猪种胰岛素样生长因子-I(IGF-I)基因座位遗传多态性检测.畜牧与兽医,1999,31(1):12~13
    3. 华益民,林浩然. 胰岛素样生长因子(IGFs)研究概况.中山大学学报(自然科学版).1996,35(S2):105~110
    4. 姜运良,李宁,吴常信. 生成的分子生物学研究进展(综述). 农业生物技术学报,1999,7(2):1~4
    5. 林万华,高军,陈克飞等.猪MyoG 基因的PCR-RFLP 多态性分析.遗传,2003,25(1):22~26
    6. 林万华, 黄路生. 猪细胞生成素基因的研究进展.国外畜牧科技,2000,27(1):29~31
    7. 鲁绍雄,吴常信.动物遗传标记辅助选择及其应用.遗传,2002,24(3):359~362
    8. 鲁绍雄,吴常信.动物育种方法的回顾与展望. 国外畜牧科技,2000,27(1):24~28
    9. 王文君,任军,陈克飞等.胰岛素样生长因子-I 基因多态性与猪部分生长性能的关系.畜牧兽医学报,2002,33(4):336~339
    10. 张细权,李加琪,杨关福. 动物遗传标记.中国农业出版社.1997
    11. Ajmone-Marsan P, Valentini A, Cassandro M, Vecchiotti-Antaldi G, Bertoni G, Kuiper M. AFLP markers for DNA fingerprinting in cattle. Anim Genet. 1997 Dec;28(6):418-26
    12. Anthony-Cahill SJ, Benfield PA, Fairman R, Wasserman ZR, Brenner SL, Stafford WF 3rd, Altenbach C,Hubbell WL, DeGrado WF. Molecular characterization of helix-loop-helix peptides. Science. 1992 Feb 21;255(5047):979-83
    13. Armour JA, Jeffreys AJ. Recent advances in minisatellite biology. FEBS Lett. 1992 Jul 27;307(1):113-5
    14. Arnold HH, Winter B. Muscle differentiation: more complexity to the network of myogenic regulators. Curr Opin Genet Dev. 1998 Oct;8(5):539-44
    15. Atchley WR, Fitch WM, Bronner-Fraser M. Molecular evolution of the MyoD family of transcription factors. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11522-6
    16. Barroso A, Dunner S, Canon J. A multiplex PCR-SSCP test to genotype bovine beta-casein alleles A1, A2, A3, B, and C. Anim Genet. 1999 Aug;30(4):322-3
    17. Barroso A, Dunner S, Canon J. Technical note: Detection of bovine kappa-casein variants A, B, C, and E by means of polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP). J Anim Sci. 1998 Jun;76(6):1535-8
    18. Barroso A, Dunner S, Canon J. Technical note: use of PCR-single-strand conformation polymorphism analysis for detection of bovine beta-casein variants A1, A2, A3, and B. J Anim Sci. 1999 Oct;77(10):2629-2632
    19. Beamer WG, Donahue LR, Rosen CJ. Insulin-like growth factor I and bone: from mouse to man. Growth Horm IGF Res. 2000 Apr;10 Suppl B:S103-5
    20. Blagden CS, Fromm L, Burden SJ. Accelerated response of the myogenin gene to denervation in mutant mice lacking phosphorylation of myogenin at threonine 87. Mol Cell Biol. 2004 Mar;24(5):1983-9
    21. Botstein D, White RL, Skolnick M, Davis RW. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet. 1980 May;32(3):314-31
    22. Broussard SR, McCusker RH, Novakofski JE, Strle K, Shen WH, Johnson RW, Freund GG, Dantzer R, Kelley KW. Cytokine-hormone interactions: tumor necrosis factor alpha impairs biologic activity and downstream activation signals of the insulin-like growth factor I receptor in myoblasts. Endocrinol. 2003 Jul;144(7):2988-96
    23. Buckingham M, Bajard L, Chang T, Daubas P, Hadchouel J, Meilhac S, Montarras D, Rocancourt D, Relaix F. The formation of skeletal muscle: from somite to limb. J Anat. 2003 Jan;202(1):59-68
    24. Buckingham M, Kelly R, Tajbakhsh S, Zammit P. The formation and maturation of skeletal muscle in the mouse: the myosin MLC1F/3F gene as a molecular model. Acta Physiol Scand. 1998 Jul;163(3):S3-5
    25. Buckingham M. Making muscle in mammals. Trends Genet. 1992 Apr;8(4):144-8
    26. Buckingham M. Molecular biology of muscle development. Cell. 1994 Jul 15;78(1):15-21
    27. Buckingham M. Muscle differentiation. Which myogenic factors make muscle? Curr Biol. 1994 Jan 1;4(1):61-3
    28. Buckingham M. Skeletal muscle development and the role of the myogenic regulatory factors. Biochem Soc Trans. 1996 May;24(2):506-9
    29. Buckingham M. Skeletal muscle formation in vertebrates. Curr Opin Genet Dev. 2001 Aug;11(4):440-8
    30. Buckingham ME. Muscle: the regulation of myogenesis. Curr Opin Genet Dev. 1994 Oct;4(5):745-51
    31. Burke T, Bruford MW. DNA fingerprinting in birds. Nature. 1987 May 14-20;327(6118):149-52
    32. Burrin DG, Davis TA, Fiorotto ML, Reeds PJ. Role of milk-borne vs endogenous insulin-like growth factor I in neonatal growth. J Anim Sci. 1997 Oct;75(10):2739-43
    33. Casas-Carrillo E, Prill-Adams A, Price SG, Clutter AC, Kirkpatrick BW. Relationship of growth hormone and insulin-like growth factor-1 genotypes with growth and carcass traits in swine. Anim Genet. 1997 Apr;28(2):88-93
    34. Chang KC, Fernandes K, Chantler PD. Cloning and in vivo expression of the pig MyoD gene. J Muscle Res Cell Motil. 1995 Jun;16(3):243-7
    35. Cheema U, Yang SY, Mudera V, Goldspink GG, Brown RA. 3-D in vitro model of early skeletal muscle development. Cell Motil Cytoskeleton. 2003 Mar;54(3):226-36
    36. Cushwa WT, Dodds KG, Crawford AM, Medrano JF. Identification and genetic mapping of random amplified polymorphic DNA (RAPD) markers to the sheep genome. Mamm Genome. 1996 Aug;7(8):580-5
    37. Daughaday WH and Rotwein P. Insulin-like growth factor 1 and 2: peptide ,messenger ribonucleic acid and genes structure, serum,and tissue concentrations. Endocr Rev.1989,10:68-91
    38. Davis TA, Fiorotto ML, Burrin DG, Vann RC, Reeds PJ, Nguyen HV, Beckett PR, Bush JA. Acute IGF-I infusion stimulates protein synthesis in skeletal muscle and other tissues of neonatal pigs. Am J Physiol Endocrinol Metab. 2002 Oct;283(4):E638-47
    39. Deng SH, Gao J, Ren J, Chen KF, Ding NS, Ai HS, Lin WH, Wang WJ, Liu BS, Lai FJ, Huang LS. Studies of the relationship of melanocortin receptor 1(MC1R) gene with coat color phenotype in pigs. Yi Chuan Xue Bao. 2003 Oct;30(10):949-54
    40. Dodou E, Xu SM, Black BL. mef2c is activated directly by myogenic basic helix-loop-helix proteins during skeletal muscle development in vivo. Mech Dev. 2003 Sep;120(9):1021-32
    41. Doumit ME, Cook DR, Merkel RA. Fibroblast growth factor, epidermal growth factor, insulin-like growth factors, and platelet-derived growth factor-BB stimulate proliferation of clonally derived porcine myogenic satellite cells. J Cell Physiol. 1993 Nov;157(2):326-32
    42. Edmondson DG, Olson EN. Helix-loop-helix proteins as regulators of muscle-specific transcription. J Biol Chem. 1993 Jan 15;268(2):755-8
    43. Ernst CW, Mendez EA, Robic A, Rothschild MF. Rapid communication: myogenin (MYOG) physically maps to porcine chromosome 9q2.1-q2.6. J Anim Sci. 1998 Jan;76(1):328
    44. Ernst CW, Vaske DA, Larson RG, Rothschild MF. Rapid communication: MspI restriction fragment length polymorphism at the swine myogenin locus. J Anim Sci. 1993 Dec;71(12):3479
    45. Evans GJ, Giuffra E, Sanchez A, Kerje S, Davalos G, Vidal O, Illan S, Noguera JL, Varona L, Velander I, Southwood OI, de Koning DJ, Haley CS, Plastow GS, Andersson L. Identification of quantitative trait loci for production traits in commercial pig populations. Genetics. 2003 Jun;164(2):621-7
    46. Evock CM, Walton PE, Etherton TD. Effect of GH status on IGF-I and IGF-II concentrations and serum IGF binding profiles in pigs. J Anim Sci. 1990 Jul;68(7):1953-64
    47. Falcone G, Ciuffini L, Gauzzi MC, Provenzano C, Strano S, Gallo R, Castellani L, Alema S. v-Src inhibits myogenic differentiation by interfering with the regulatory network of muscle-specific transcriptional activators at multiple levels. Oncogene. 2003 Nov 13;22(51):8302-15
    48. Fanzani A, Giuliani R, Colombo F, Zizioli D, Presta M, Preti A, Marchesini S. Overexpression of cytosolic sialidase Neu2 induces myoblast differentiation in C2C12 cells. FEBS Lett. 2003 Jul 17;547(1-3):183-8
    49. Figueroa A, Cuadrado A, Fan J, Atasoy U, Muscat GE, Munoz-Canoves P, Gorospe M, Munoz A. Role of HuR in skeletal myogenesis through coordinate regulation of muscle differentiation genes. Mol Cell Biol. 2003 Jul;23(14):4991-5004
    50. Firulli AB, Olson EN. Modular regulation of muscle gene transcription: a mechanism for muscle cell diversity. Trends Genet. 1997 Sep;13(9):364-9
    51. Florini J.R.,Ewton D.z.,Roof S.L. Insulin-like growth factor-I stimulates terminal myogenic differentiation by induction of myogenin gene expression. Mol.Endocrinol.1991,5:718-724
    52. Florini JR,Ewton DZ and Coolican SA.Growth hormon and the insulin-like growth factor system in myogenesis.Endocr Rev.1996,17:481-517
    53. Forrest RH, Hickford JG, Hogan A, Frampton C. Polymorphism at the ovine beta3-adrenergic receptor locus: associations with birth weight, growth rate, carcass composition and cold survival. Anim Genet. 2003 Feb;34(1):19-25
    54. Friday BB, Mitchell PO, Kegley KM, Pavlath GK. Calcineurin initiates skeletal muscle differentiation by activating MEF2 and MyoD. Differentiation. 2003 Apr;71(3):217-27
    55. Gaboli M, Kotsi PA, Gurrieri C, Cattoretti G, Ronchetti S, Cordon-Cardo C, Broxmeyer HE, Hromas R, Pandolfi PP. Mzf1 controls cell proliferation and tumorigenesis. Genes Dev. 2001 Jul 1;15(13):1625-30
    56. Georges M. Towards marker assisted selection in livestock. Reprod Nutr Dev. 1999 Sep-Dec;39(5-6):555-61
    57. Gerrard DE, Okamura CS, Ranalletta MA, Grant AL. Developmental expression and location of IGF-I and IGF-II mRNA and protein in skeletal muscle. J Anim Sci. 1998 Apr;76(4):1004-11
    58. Gotz W, Dittjen O, Wicke M, Biereder S, Kruger U, von Lengerken G. Immunohistochemical detection of components of the insulin-like growth factor system during skeletal muscle growth in the pig. Anat Histol Embryol. 2001 Feb;30(1):49-56
    59. Han M, Robinson MA. PCR-SSCP analysis of polymorphism: a simple and sensitive method for detecting differences between short segments of DNA. Methods Mol Biol. 2003;226:327-34
    60. Hasty P, Bradley A, Morris JH, Edmondson DG, Venuti JM, Olson EN, Klein WH. Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature. 1993 Aug 5;364(6437):501-6
    61. Hausman GJ, Campion DR, Buonomo FC. Concentration of insulin-like growth factors (IGF-I and IGF-II) in tissues of developing lean and obese pig fetuses. Growth Dev Aging. 1991 Spring;55(1):43-52
    62. Hayashi K, Yandell DW. How sensitive is PCR-SSCP? Hum Mutat. 1993;2(5):338-46
    63. Hayashi K. PCR-SSCP: a simple and sensitive method for detection of mutations in the genomic DNA. PCR Methods Appl. 1991 Aug;1(1):34-8
    64. Hayashi K. Recent enhancements in SSCP. Genet Anal. 1999 Feb;14(5-6):193-6
    65. Hayashi T, Ogawa T, Sato M, Tsuchida N, Fotovati A, Iwamoto H, Ikeuchi Y, Cassens RG, Ito T. S-myotrophin promotes the hypertrophy of myotube as insulin-like growth factor-I does. Int J Biochem Cell Biol. 2001 Aug;33(8):831-8
    66. Hembree JR, Hathaway MR, Dayton WR. Isolation and culture of fetal porcine myogenic cells and the effect of insulin, IGF-I, and sera on protein turnover in porcine myotube cultures. J Anim Sci. 1991 Aug;69(8):3241-50
    67. Highsmith WE Jr, Nataraj AJ, Jin Q, O'Connor JM, El-Nabi SH, Kusukawa N, Garner MM. Use of DNA toolbox for the characterization of mutation scanning methods. II: evaluation of single-strand conformation polymorphism analysis. Electrophoresis. 1999 Jun;20(6):1195-203
    68. Hoshino S, Kimura A, Fukuda Y, Dohi K, Sasazuki T. Polymerase chain reaction--single-strand conformation polymorphism analysis of polymorphism in DPA1 and DPB1 genes: a simple, economical, and rapid method for histocompatibility testing. Hum Immunol. 1992 Feb;33(2):98-107
    69. Ishido M, Kami K, Masuhara M. Localization of MyoD, myogenin and cell cycle regulatory factors in hypertrophying rat skeletal muscles. Acta Physiol Scand. 2004 Mar;180(3):281-9
    70. Jacobs K, Van Poucke M, Mattheeuws M, Chardon P, Yerle M, Rohrer G, Van Zeveren A, Peelman LJ. Characterization of the porcine melanocortin 2 receptor gene (MC2R). Anim Genet. 2002 Dec;33(6):415-21
    71. Janssen P, Coopman R, Huys G, Swings J, Bleeker M, Vos P, Zabeau M, Kersters K. Evaluation of the DNA fingerprinting method AFLP as an new tool in bacterial taxonomy. Microbiology. 1996 Jul;142 ( Pt 7):188bp1-93
    72. Jeffreys AJ, MacLeod A, Tamaki K, Neil DL, Monckton DG. Minisatellite repeat coding as a digital approach to DNA typing. Nature. 1991 Nov 21;354(6350):204-9
    73. Jeffreys AJ, Monckton DG, Tamaki K, Neil DL, Armour JA, MacLeod A, Collick A, Allen M, Jobling M. Minisatellite variant repeat mapping: application to DNA typing and mutation analysis. EXS. 1993;67:125-39
    74. Jeffreys AJ, Neumann R, Wilson V. Repeat unit sequence variation in minisatellites: a novel source of DNA polymorphism for studying variation and mutation by single molecule analysis. Cell. 1990 Feb 9;60(3):473-85
    75. Jeffreys AJ, Royle NJ, Patel I, Armour JA, MacLeod A, Collick A, Gray IC, Neumann R, Gibbs M, Crosier M, et al. Principles and recent advances in human DNA fingerprinting. EXS. 1991;58:1-19
    76. Jeffreys AJ, Wilson V, Thein SL. Hypervariable 'minisatellite' regions in human DNA. Nature. 1985 Mar 7-13;314(6006):67-73
    77. Jeffreys AJ, Wilson V, Thein SL. Individual-specific 'fingerprints' of human DNA. Nature. 1985 Jul 4-10;316(6023):76-9
    78. Jiang YL, Li N, Plastow G, Liu ZL, Hu XX, Wu CX. Identification of three SNPs in the porcine myostatin gene (MSTN). Anim Biotechnol. 2002 May;13(1):173-8
    79. Johnson BJ, White ME, Hathaway MR, Dayton WR. Decreased steady-state insulin-like growth factor binding protein-3 (IGFBP-3) mRNA level is associated with differentiation of cultured porcine myogenic cells. J Cell Physiol. 1999 May;179(2):237-43
    80. Johnson BJ, White ME, Hathaway MR, Dayton WR. Effect of differentiation on levels of insulin-like growth factor binding protein mRNAs in cultured porcine embryonic myogenic cells. Domest Anim Endocrinol. 2003 Jan;24(1):81-93
    81. Joulia D, Bernardi H, Garandel V, Rabenoelina F, Vernus B, Cabello G. Mechanisms involved in the inhibition of myoblast proliferation and differentiation by myostatin. Exp Cell Res. 2003 Jun 10;286(2):263-75
    82. Komaki M, Asakura A, Rudnicki MA, Sodek J, Cheifetz S. MyoD enhances BMP7-induced osteogenic differentiation of myogenic cell cultures. J Cell Sci. 2004 Apr 15;117(Pt 8):1457-68
    83. Lamberson WR, Safranski TJ, Bates RO, Keisler DH, Matteri RL. Relationships of serum insulin-like growth factor I concentrations to growth, composition, and reproductive traits of swine. J Anim Sci. 1995 Nov;73(11):3241-5
    84. Lander ES, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 1989 Jan;121(1):185-99
    85. Lander ES, Botstein D. Strategies for studying heterogeneous genetic traits in humans by using a linkage map of restriction fragment length polymorphisms. Proc Natl Acad Sci U S A. 1986 Oct;83(19):7353-7
    86. Langley B, Thomas M, Bishop A, Sharma M, Gilmour S, Kambadur R. Myostatin inhibits myoblast differentiation by down-regulating MyoD expression. J Biol Chem. 2002 Dec 20;277(51):49831-40. Epub 2002 Sep 18
    87. Lee CY, Chung CS, Simmen FA. Ontogeny of the porcine insulin-like growth factor system. Mol Cell Endocrinol. 1993 May;93(1):71-80
    88. LeRoith D,L Scavo and A Butle. What is the role of circulating IGF-I? TREND in Endocrinology and Metabolism.2001,12:48-52
    89. Li JQ, Chen ZM, Liu DW et al. Genetic effects of IGF-I gene on the performance in Landrace ×Lantang pig resource population. Yi Chuan Xue Bao. 2003 Sep;30(9):835-9
    90. Li SH, Xiong YZ, Zheng R, Li AY, Deng CY, Jiang SW, Lei MG, Wen YQ, Cao GC. Polymorphism of porcine myostatin gene. Yi Chuan Xue Bao. 2002 Apr;29(4):326-31
    91. Li T, Chen YH, Liu TJ, Jia J, Hampson S, Shan YX, Kibler D, Wang PH. Using DNA microarray to identify Sp1 as a transcriptional regulatory element of insulin-like growth factor 1 in cardiac muscle cells. Circ Res. 2003 Dec 12;93(12):1202-1209
    92. Li Y, Foster W, Deasy BM, Chan Y, Prisk V, Tang Y, Cummins J, Huard J. Transforming growth factor-beta1 induces the differentiation of myogenic cells into fibrotic cells in injured skeletal muscle: a key event in muscle fibrogenesis. Am J Pathol. 2004 Mar;164(3):1007-19
    93. Lin JJ, Kuo J, Ma J. A PCR-based DNA fingerprinting technique: AFLP for molecular typing of bacteria. Nucleic Acids Res. 1996 Sep 15;24(18):3649-50
    94. Lopez-Casillas F, Riquelme C, Perez-Kato Y, Ponce-Castaneda MV, Osses N, Esparza-Lopez J, Gonzalez-Nunez G, Cabello-Verrugio C, Mendoza V, Troncoso V, Brandan E. Betaglycan expression is transcriptionally up-regulated during skeletal muscle differentiation. Cloning of murine betaglycan gene promoter and its modulation by MyoD, retinoic acid, and transforming growth factor-beta. J Biol Chem. 2003 Jan 3;278(1):382-390
    95. Louveau I, Bonneau M, Salter DN. Age-related changes in plasma porcine growth hormone (GH) profiles and insulin-like growth factor-I (IGF-I) concentrations in Large White and Meishan pigs. Reprod Nutr Dev. 1991;31(3):205-16
    96. Louveau I, Combes S, Cochard A, Bonneau M. Developmental changes in insulin-like growth factor-I (IGF-I) receptor levels and plasma IGF-I concentrations in large white and Meishan pigs. Gen Comp
    Endocrinol. 1996 Oct;104(1):29-36
    97. Louveau I, Quesnel H, Prunier A. GH and IGF-I binding sites in adipose tissue, liver, skeletal muscle and ovaries of feed-restricted gilts. Reprod Nutr Dev. 2000 Nov-Dec;40(6):571-8
    98. Ma R, Rundle D, Jacks J, Koch M, Downs T, Tsiokas L. Inhibitor of myogenic family, a novel suppressor of store-operated currents through an interaction with TRPC1. J Biol Chem. 2003 Dec 26;278(52):52763-72
    99. Masojc P. The application of molecular markers in the process of selection. Cell Mol Biol Lett. 2002;7(2A):499-509
    100. Mendez EA, Ernst CW, Rothschild MF. Rapid communication: a novel DNA polymorphism of the porcine myogenin (MYOG) gene. J Anim Sci. 1997 Jul;75(7):1984
    101. Mesires NT, Doumit ME. Satellite cell proliferation and differentiation during postnatal growth of porcine skeletal muscle. Am J Physiol Cell Physiol. 2002 Apr;282(4):C899-906
    102. Miller JB, Everitt EA, Smith TH, Block NE, Dominov JA. Cellular and molecular diversity in skeletal muscle development: news from in vitro and in vivo. Bioessays. 1993 Mar;15(3):191-6
    103. Nakajima E, Matsumoto T, Yamada R, Kawakami K, Takeda K, Ohnishi A, Komatsu M. Technical note: use of a PCR-single strand conformation polymorphism (PCR-SSCP) for detection of a point mutation in the swine ryanodine receptor (RYR1) gene. J Anim Sci. 1996 Dec;74(12):2904-6
    104. Oldham JM, Martyn JA, Sharma M, Jeanplong F, Kambadur R, Bass JJ. Molecular expression of myostatin and MyoD is greater in double-muscled than normal-muscled cattle fetuses. Am J Physiol Regul Integr Comp Physiol. 2001 May;280(5):R1488-93
    105. Olson E, Edmondson D, Wright WE, Lin VK, Guenet JL, Simon-Chazottes D, Thompson LH, Stallings RL, Schroeder WT, Duvic M, et al. Myogenin is in an evolutionarily conserved linkage group on human chromosome 1q31-q41 and unlinked to other mapped muscle regulatory factor genes. Genomics. 1990 Nov;8(3):427-34
    106. Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2766-70
    107. Palmer BR, Su HY, Roberts N, Hickford JG, Bickerstaffe R. Single nucleotide polymorphisms in an intron of the ovine calpastatin gene. Anim Biotechnol. 2000;11(1):63-7
    108. Pampusch MS, Kamanga-Sollo E, White ME, Hathaway MR, Dayton WR. Effect of recombinant porcine IGF-binding protein-3 on proliferation of embryonic porcine myogenic cell cultures in the presence and absence of IGF-I. J Endocrinol. 2003 Feb;176(2):227-35
    109. Parakati R, DiMario JX. Sp1-and Sp3-mediated transcriptional regulation of the fibroblast growth factor receptor 1 gene in chicken skeletal muscle cells. J Biol Chem. 2002 Mar 15;277(11):9278-85
    110. Patel SG, DiMario JX. Two distal Sp1-binding cis-elements regulate fibroblast growth factor receptor 1 (FGFR1) gene expression in myoblasts. Gene. 2001 May 30;270(1-2):171-80
    111. Peng M, Pelletier G, Palin MF, Veronneau S, LeBel D, Abribat T. Ontogeny of IGFs and IGFBPs mRNA levels and tissue concentrations in liver, kidney and skeletal muscle of pig. Growth Dev Aging. 1996 Autumn-Winter;60(3-4):171-87
    112. Peterson MJ, Morris JF. Human myeloid zinc finger gene MZF produces multiple transcripts and encodes a SCAN box protein. Gene. 2000 Aug 22;254(1-2):105-118
    113. Razzaghi H, Kamboh MI. A highly sensitive and nonradioactive mutation detection method based on vertical gradient temperature single-strand conformation polymorphism. Electrophoresis. 2001 Aug;22(13):2665-9
    114. Rohrer GA, Alexander LJ, Hu Z, Smith TP, Keele JW, Beattie CW. A comprehensive map of the porcine genome. Genome Res. 1996 May;6(5):371-91
    115. Rosen CJ, Churchill GA, Donahue LR, Shultz KL, Burgess JK, Powell DR, Ackert C, Beamer WG. Mapping quantitative trait loci for serum insulin-like growth factor-1 levels in mice. Bone. 2000 Oct;27(4):521-8
    116. Rothschild MF. From a sow's ear to a silk purse: real progress in porcine genomics. Cytogenet Genome Res. 2003;102(1-4):95-9
    117. Ruane J, Colleau JJ. Marker assisted selection for genetic improvement of animal populations when a single QTL is marked. Genet Res. 1995 Aug;66(1):71-83
    118. Ryan AM, Schelling CP, Womack JE, Gallagher DS Jr. Chromosomal assignment of six muscle-specific genes in cattle. Anim Genet. 1997 Apr;28(2):84-7
    119. Saleri R, Baratta M, Mainardi GL, Renaville R, Giustina A, Quintavalla F, Tamanini C. IGF-I, IGFBP-2 and -3 but not GH concentrations are different in normal and poor growing piglets. Reprod Nutr Dev. 2001 Mar-Apr;41(2):163-72
    120. Sassoon D, Lyons G, Wright WE, Lin V, Lassar A, Weintraub H, Buckingham M. Expression of two myogenic regulatory factors myogenin and MyoD1 during mouse embryogenesis. Nature. 1989 Sep 28;341(6240):303-7
    121. Schmidt K, Glaser G, Wernig A, Wegner M, Rosorius O. Sox8 is a specific marker for muscle satellite cells and inhibits myogenesis. J Biol Chem. 2003 Aug 8;278(32):29769-75
    122. Sekiya T. Single-strand conformation polymorphism (SSCP) analysis: a convenient, rapid method for detection of single-base changes in DNA. Tanpakushitsu Kakusan Koso. 1996 Apr;41(5):539-45
    123. Shoba L,An MR,Frank SJ,et al.Devolopmental regulation of insulin-like growth factor-I and growth hormon receptor gene expression. Mol Cell Endocrinol.1999,152(12):125-136
    124. Soumillion A, Erkens JH, Lenstra JA, Rettenberger G, te Pas MF. Genetic variation in the porcine myogenin gene locus. Mamm Genome. 1997 Aug;8(8):564-8
    125. Soumillion A, Rettenberger G, Vergouwe MN, Erkens JH, Lenstra JA, te Pas MF. Assignment of the porcine loci for MYOD1 to chromosome 2 and MYF5 to chromosome 5. Anim Genet. 1997 Feb;28(1):37-8
    126. Spelman RJ, Bovenhuis H. Moving from QTL experimental results to the utilization of QTL in breeding programmes. Anim Genet. 1998 Apr;29(2):77-84
    127. Sterle JA, Boyd C, Peacock JT, Koenigsfeld AT, Lamberson WR, Gerrard DE, Lucy MC. Insulin-like growth factor (IGF)-I, IGF-II, IGF-binding protein-2 and pregnancy-associated glycoprotein mRNA in pigs with somatotropin-enhanced fetal growth. J Endocrinol. 1998 Dec;159(3):441-50
    128. Takeda K, Onishi A, Ishida N, Kawakami K, Komatsu M, Inumaru S. SSCP analysis of pig mitochondrial DNA D-loop region polymorphism. Anim Genet. 1995 Oct;26(5):321-6
    129. Tan X, Hoang L, Du S. Characterization of muscle-regulatory genes, myf5 and myogenin, from striped bass and promoter analysis of muscle-specific expression. Mar Biotechnol (NY). 2002 Dec;4(6):537-45
    130. Tang H, Macpherson P, Argetsinger LS, Cieslak D, Suhr ST, Carter-Su C, Goldman D. CaM kinase II-dependent phosphorylation of myogenin contributes to activity-dependent suppression of nAChR gene expression in developing rat myotubes. Cell Signal. 2004 May;16(5):551-63
    131. Tawata M, Iwase E, Aida K, Onaya T. A mass screening device of genome by polymerase chain reaction-restriction fragment-single strand conformation polymorphism analysis. Genet Anal. 1996 Jan;12(3-4):125-7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700