用户名: 密码: 验证码:
半夏遗传多样性分子标记及质量评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半夏[Pinellia ternata(Thunb.)Breit.]为天南星科半夏属植物,以其干燥块茎入药,药材名半夏(Rhizoma Pinelliae)。半夏为东亚特有种,分布于中国、朝鲜和日本。在我国大部分省区有分布。半夏是我国传统的大宗药材,因其疗效确切、临床应用范围广泛,近年来国内外需求逐渐增加,5年内市场价格增长近一倍,出现了供不应求局面。由于人们长期过度采挖、耕作方式改变和自然环境恶化等原因,半夏野生资源急剧减少。20世纪70年代半夏开始家种后,出现了许多栽培类型,但由于连年栽培,品种严重退化,极大地影响了半夏生产,致使半夏供求缺口日益增大。另外,栽培类型混乱也严重影响着半夏用药稳定性。因此半夏种质资源亟待整理和评价,以便为半夏核心种质资源库的建立提供有力保障。
     本研究收集了我国半夏分布区大部分种质,在分子水平上分析了半夏遗传多样性,了解其群体遗传结构和多态性水平,并进行了类群的划分,为制定和实施半夏资源保护利用策略提供有力理论依据。其次,采用3种方法分离获得了半夏的微卫星序列,并分析了其特点,为SSR分子标记在半夏中的应用奠定了基础。最后,本文进行了半夏种质资源药用品质、安全性和农艺性状质量评价。具体研究内容和结果如下:
     1.利用分子标记技术分析我国半夏种质资源遗传多样性
     以取自全国半夏主要分布区的16个省的24份种质的240个样本进行遗传多样性分析。利用RAPD标记技术分析,结果表明在物种水平上,多态位点百分率(PPL)为68.77%,Nei’S基因多样性指数(He)为0.2062.居群水平上的多态位点百分率在9.88%-58.02%之间,平均为27.21%,最高为沅陵居群,其次为南宁和贵阳居群,最低为南昌居群。群体间遗传分化系数(G_(ST))为0.5282,居群间基因流(Nm)为0.4466。数据显示居群间分化较大,居群内存在一定程度变异。聚类分析显示,当相似系数为0.896时,可将24份材料分为5个类群,其中南宁、昭阳、芜湖和运城四个居群与其它大部分半夏居群相似性较低。
     利用ISSR分子标记技术分析半夏遗传多样性,结果表明,在物种水平上,PPL为97.92%,He为0.308。居群水平上的PPL在14.0%~72.9%之间,平均为41.1%,最高为菏泽居群(72.92%),其次为磐安(68.75%),最低为泰州居群(14.58%).G_(ST)为0.4765,Nm为0.5494。结果也表明半夏居群间存在遗传分化程度较高,居群内也存在一定的遗传变异。聚类分析表明,当相似系数为0.820时,可将供试的24个半夏居群分为5个类群。
     SRAP标记是一种新型技术,本文分析SRAP标记在半夏遗传多样性研究适用性。结果表明在物种水平上,PPL为97.86%,He为0.330。居群水平上PPL在35.04%~68.80%之间,平均为48.25%,最高南宁居群(68.80%),其次为运城(68.38%),最低为彝良居群(35.04%)。G_(ST)为0.4006,Nm为0.7482。聚类分析显示,当相似系数为0.862时,可将24个居群分为7个类群。将SRAP标记结果同RAPD和ISSR结果分析比较,认为该新型标记可以用于半夏遗传多样性研究。
     通过测定半夏核糖体ITS碱基序列,分析其特点,了解种内变异类型。结果得到我国半夏主要的15个居群18个样本rDNA中的ITS和5.8SrDNA完全序列。ITS1、5.8s和ITS2序列长度分别为276bp、162bp和246bp。ITS2碱基频率差异显著,ITS1较为保守。根据两者序列以邻接法建立分子系统发生树,表明半夏种内至少存在7个类型。结合RAPD、ISSR和SRAP三种分子标记的研究结果,可将供试材料分为四个等级加以保护和利用。
     2.半夏微卫星的开发
     SSR标记具有共显性特点,开发半夏微卫星对于遗传多样性研究具有重要意义。通过分析评价几种有代表性的SSR标记开发方法,为微卫星开发方法的选择提供参考信息。在现有方法基础上提出两种半夏微卫星序列开发的策略。
     其一,根据链亲和素磁珠和生物素特异结合的特性,将微卫星探针5’端生物素化后与链亲和素磁珠特异结合,用磁珠和探针的结合物与两端连接已知序列人工接头的半夏基因组DNA酶切片段杂交,洗脱未杂交DNA片断后,建立微卫星文库。以此为模板用人工接头序列为引物进行PCR扩增,产物直接克隆,经菌液PCR筛选后测序分析.
     其二,将特异接头连接到限制性内切酶消化的基因组DNA上,以此为模板用兼并引物抑制性PCR获得SSR文库,克隆后经过两次菌液PCR筛选进行测序分析。结果表明,这两种方法可以快速、高效地开发出微卫星序列。
     最后,搜索了数据库中半夏微卫星序列,结合前面从基因组DNA中已开发的微卫星序列,分析了半夏SSR特点。结果发现二核苷酸重复类型在半夏SSR占绝对优势,出现频率近80%,二核苷酸重复中以(AC)n重复基元为主,达67.57%。此外,对SSR位点总共设计了62对引物。
     3.半夏种质资源的质量评价
     利用RAPD技术鉴别了半夏的混淆植物水半夏、滴水珠和虎掌半夏.结果筛选到12条随机引物可用于半夏分子鉴别,并将引物P26转化为SCAR标记。
     半夏块茎中含有多种化学成分,但《中国药典》(2005年版)没有规定半夏质量评价的指标成分.本研究将不同地区半夏种质栽培于同一生境,以鸟苷和总生物碱为指标成分,结合农艺性状单株产量,比较分析其差异。测得半夏鸟苷和生物碱含量分别为0.0136%~0.0264%和0.0155%~0.0652%,单株产量为0.5536~2.9740g。居群间单株产量、鸟苷和生物碱含量存在显著差异。聚类分析将半夏居群分为3类,认为应加强第Ⅱ类型类群的选育工作。
     另外,测定了6个半夏居群药材(生半夏)及其土壤中的Mg、Ca、Fe、Zn、Ni、Se6种人体必需元素(前5种为植株必需元素)。通过比较含量差异,了解半夏对元素吸收特性,分布规律,为半夏的品质评价提供参考依据。结果显示,各元素在皮中含量最高。不同半夏居群各元素含量存在着显著性差异,磐安居群含量最高,西和居群含量最低。药材中元素间Zn和Se、Fe和Ni、Fe和Ca相关性显著。药材和土壤元素含量相关性不显著,说明半夏主动吸收矿质元素。
     为评价药材安全性,测定不同居群半夏药材及其土壤Cu、Pb、Cd、As、Hg、Cr6种重金属和有机氯农药的残留。结果表明,药材中昭阳、菏泽居群As元素含量超标,磐安居群Cd元素超标,昭阳、菏泽、芜湖和磐安居群Pb元素超标,昭阳和菏泽居群半夏重金属总量超标。各居群均未检测到Cr元素含量。土壤中,西和居群Hg元素超标,昭阳、泰州、磐安和西和居群Cd元素超标,昭阳居群Cu元素超标。各居群半夏药材及其土壤中没有检测到六六六、DDT两种有机氯农药的残留。同时分析了半夏对重金属的吸收特性,半夏对重金属没有显著的富集作用,为低积累植物。结合各居群重金属含量的水平认为《中国药典》(2005年版)对西洋参等6种药材重金属限量标准可以适用于半夏的质量控制。
     半夏对环境胁迫的适应性是一个重要的农艺性状,本文研究了不同半夏居群生理指标对高温胁迫响应。高温处理(35℃/25℃)结果表明,各居群半夏SOD活性先增高后下降,与脯氨酸含量趋势相同,MDA含量持续升高,根系活力则显著下降。居群间对高温胁迫响应差异显著。
Pinellia ternata(Thunb.) Breit. is from Genus Pinellia of Araceae Family, with dry tubers into medicine, named Rhizoma Pinelliae. P. ternata is endemic to East Asia, distributed in China, Korea and Japan. Most provinces and autonomous regions in China have distribution. P. ternata is Chinese traditional staple ingredient, because of the exact effect and a broad range of clinical applications. In recent years, domestic and foreign demand is growing, at five years the market price growth nearly doubled. Due to over exploitation, fanning changes and the reasons for the deterioration of the natural environment, P. ternata wild resources drop dramatically. After success of P. ternata cultivation in the 1970s, many"local variety" appeared. However, variety degraded seriously for consecutive cultivation, which greatly influenced the P. ternata production and resulted in P. ternata growing supply shortfall. In addition, chaos of variety is serious impact on the stability of Rhizoma Pinelliae. Therefore, germplasm resources of P. ternata need collation and evaluation to protect and exploit resources effectively
     Germplasm were collected in most P. ternata distribution of the provinces of china. By analysis of P. ternata genetic diversity at the molecular level, we understand its genetic structure and level of polymorphism. Moreover, the delineation of the group provided the strong theoretical basis for the development and implementation of source protection-use strategy. Secondly, we successfully isolated microsatellite sequence of P. ternata by three methods, and analyze its characteristics for SSR markers application in P. ternata. Finally, we evaluated quality of germplasm resources of P. ternata in this paper on chemical composition, safety, and agronomic traits. Specific studies and results as follow:
     1. Analysis of the genetic diversity of P. ternata germplasm resources in China by Molecular marker technology
     240 samples were utilized which from 24 germplasm resources in 16 provinces of P. ternata main distribution. Based on analysis of RAPD data, the results showed.that at species level polymorphic loci percentage(PPL) is 68.77%, Nei'S gene diversity index(He) 0.2062. At population level, PPL is 9.88%~58.02%, averaging at 27.21%, Yuncheng the highest population, followed by the Nanning and Guiyang populations, Nanchang, the lowest of populations. Groups of genetic differentiation factor(Gst) is 0.5282, population gene flow(Nm=0.4466). Data show that among populations much differentiation. Cluster analysis revealed that when similar coefficient of 0.896, 24 can be divided into five material groups. Nanning, Zhaoyang, Wuhu and Yuncheng four populations was low similar to most of the other populations.
     Analysis genetic diversity based on P. ternata ISSR data, the results showed that at species level PPL is of 97.92%, He 0.308. At population level PPL is in 14.0%~72.9%, averaging at 41.1%, Heze highest population(72.92%), followed by Pan'an(68.75%), Taizhou the lowest population(14.58%). G_(ST) is to 0.4765, and Nm of 0.5494. The results also show populations have much differentiation, and the population has a certain level of genetic differentiation. Cluster analysis showed that as the coefficient of 0.820, 24 populations of P. ternata were divided into five groups.
     SRAP marker is a new technology. It was tested that SRAP marker applicability in analysis of the genetic diversity of P. ternata. The results show that at species level, PPL of 97.86%, He 0.330. While at population level PPL is in 35.04%~68.80%, averaging at 48.25%. Nanning, the highest population(68.80%), followed by Yuncheng(68.38%), Yiliang is the lowest population(35.04%). G_(ST) is to 0.4006, Nm of 0.7482. Cluster analysis revealed that as coefficient of 0.862, 24 populations were divided into 7 groups. By comparing SRAP, RAPD, ISSR data, the new technology can be used in P. ternata genetic structure study.
     To understand types of variability within species and genetic diversity, ribosomal ITS characteristics Were analyzed based on sequence results. rDNA ITS complete sequences were obtained which from 18 samples of 15 main P. ternata populations. ITS1, 5.8s and ITS2 length was 276bp, 162bp, and 246bp respective. ITS1 was more conservative than ITS2. According to the sequences phylogenetic dendrogram establishment by Neighbor-adjacent method, it showed there are at least seven varaties in P. ternata. Combined with RAPD, ISSR, and SRAP molecular markers data, it was suggested that 24populations should be divided into four grades to be protected and utilized.
     2. Micro-satellite development of P. ternata
     The main strategies of micro-satellites development were reviewed in the paper. Analysis and evaluation of several representative methods are to select appropriate method. In addition, two micro-satellites development strategies for P. ternata were provided based on the existing methods.
     First method: Because of the strong affinity of biotin for streptavidin, microsatellite probe of the 5'end biotin was combined with magnesphere paramagnetic particles, and then combinations hybridization with the digested P. ternata DNA fragments both ends of them connected with special adaptor. Elution of the other DNA fragments, the micro-satellite library was established. The adaptors as PCR primers clone the products directly, and screening the results by technology of bacteria PCR amplification in the end.
     Second method: Connect the special adaptors to digested genomic DNA fragments, as a template. The micro-satellite library was established by inhibition PCR with mergers primer. Then analyze results of clone sequence after two screening by bacteria PCR. The results show that the two methods are fast, efficient to develop micro-satellite.
     Finally, by searching NCBI database micro-satellites of P. ternata were obtained.With the developed micro-satellites, the characteristics of P. ternata SSR was analysized. The results showed dinucleotide repeat type in P. ternata SSR is absolute advantage, frequency nearly 80%. Dinucleotide repeat motif(AC)n is up to 67.57%. In addition, 62 pairs of SSR primers were designed.
     3. Quality asseccment of P. ternata germplasm
     RAPD technology was used to identify Pinellia ternata, Typhonium flagelliforrne, Pinellia cordata and Pinellia pedatisecta. The results showed that 12 random primers can identify P. ternata at molecular level. Primer P26 was converted into SCAR marker successfully.
     P. ternata tubers contain a variety of chemical ingredients, but the Chinese Pharmacopoeia does not rule evaluation index components. P. ternata from different areas was planted in the same ecological environment in the study. Guanosine and total alkaloid of index components combined with yield of agronomic traits were measured to comparative analyze their differences in the study. The result showed that guanylin and total alkaloid content is in 0.0136%~0.0264% and 0.0155%~0.0652% respectively, the yield per plant in 0.5536~2.9740g.There are significant differences between populations. Cluster dendrogram reveal that 24 populations were divided into three categories, and category II should be strengthen in breeding work.
     Beside, it were measured that Ca, Fe, Zn, Ni, Se six essential elements(the first five are plant indispensable elements)contents in the six P. ternata populations of P. ternata and soil samples. Compare the differences in content, in order to provide quality asseccment reference. Understanding absorption and distribution characteristics of the P. ternata, the results showed that elements content in the epidermal is the highest. In total element contents, there are significant differences between populations, Pan'an the highest and Xihe the lowest. In herb, elements Zn and Se, Fe and Ni, Fe and Ca were correlation with each other significantly. It is not significantly relation between herbs and soil content, which illustrate that P. ternata is initiative of absorption elements.
     To evaluate the safety of herbs from different populations, Cu, Pb, Cd, As, Hg, Cr heavy metals and organic pesticide residues were detected in P. ternata herbs and soil. The results showed that As content of Zhaoyang, Heze populations exceeded the limit, Cd of Pan'an, Pb of Zhaoyang, Heze, Wuhu, Pan'an, total heavy metal of Zhaoyang and Heze also exceeding the limit. All the populations were not detected Cr. In soil, Hg contents of Xihe population exceeding the limit, Cd of Zhaoyang, Taizhou, Pan'an, Xihe, Cu of Zhaoyang exceeding the limit. All the herbs and soil samples from the different population were not detected 666, DDT organic pesticide residues. It is analyzed absorption properties of heavy metals. There is no significant role of P. ternatain the heavy metal enrichment. Combining the level of heavy metal content in P. ternata, it showed that the limit rule of heavy metals for American ginseng et al six materials in the 2005 version Pharmacopoeia can be applicable to the quality control of P. ternata.
     Adaptability of P. ternata to the environment stress is an important agronomic trait. It studied response of different P. ternata populations to high temperature stress in this paper. By high temperature(35℃/25℃) treatment, it was measured SOD activity, MDA and the proline in leaves and root vigor. The results showed that SOD activity increased then dropped the same to proline content trend. MDA continues to rise, and root activity has dropped significantly. Different populations respond to heat stress significantly differently.
引文
1. Ainouche M L, Bayer R. On the origins of the tetraploid B romus species (section B romus, Poaceae): insights from internal transcribed spacer sequences of nuclear ribosomal DNA[J]. Genome, 1997, 40: 730-743
    2. Areshchenkova T, Ganal M W. Comparative analysis of polymorphism and chromosomal location of tomato microsatellite markers isolated from different sources[J]. Theoretical and Applied Genetics, 2002, 104: 229-235
    3. Arnholdt S B. RAPD analysis: a method to investigate aspects of the reproductive biology of Hypericum perforation L.[J]. Theoretical and Applied Genetics, 2000, 100(6): 906-911
    4. Bao Y, Ge S. Identification of Oryza species with the CD genome based on RFLP analysis of nuclear ribosomal ITS sequences[J].Acta Bot Sin, 2003, 45(7): 762-765.
    5. Baum B R, Mechanda S, Livesey J F, et al. Predicting quantitative phytochemical markers in Echinacca plants or clones from their DNA fingerprints[J]. Phytochemistry, 2001, 56(6): 543-549
    6. Brooks R R, Lee J, Reeves R D, el al. Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants[J]. Journal of Geochemical Exploration, 1997, 7: 49-77
    7. Brown A DH, Clegg M T, Kahler A L, et al. Plant population genetics, breeding and genetics resources[J]. Sinauer. Sunderland, 1989, 43-63
    8. Brown A H D. Enzyme polymorphism in plant population[J].Theoret Pop Biol, 1979, (15): 31-42.
    9. Bussell J D. The distribution of random amplified polymorphic DNA (RAPD)diversity among populations of Isotoma petraea {Lobeliaceae)[J]. Molecular Ecology, 1999, 8: 775-789
    10. Cao G X, Zhong Z C, Xie D T, et al. RAPD analysis of Camellia rosthornlana populations in different communities in Jinyun Mountain[J]. Acta Ecologica Sinica, 2003, 23(8): 1583-1589
    11. Cardie L, Ramsay L, Milbourne D, et al. Computational and experimental characterization of physically clustered simple sequence repeats in plants[J]. Genetics, 2000, 156: 847-854
    12. Chancy R L, Malik M, Li Y M, et al. Phytoremedition of soil metals[J]. Current Opinions in Biotechnology, 1997, 8(3): 279-284
    13. Cho Y G, Iahii T. Diversity of microsatellite derived from genomic libraries and Genbank sequences in rice (Oryza saliva L. )[J]. Theoretical and Applied Genetics, 2000, 100: 713-722
    14. Choi B W, Lee B H, Kang K J, et al. Screening of the tyrosinase inhibitors from marine algae and medicinal plants[J]. Journal of Pharmacognosy, 1998, 29(3): 237-242
    15. Cifarelli R A, Gallitelli M, Cellini F. Random amplified hybridiza microsatellites (RAHM): isolation of a new class of microsatellite-containing DNA clones[J]. Nucleic Acids Research, 1995, 23: 3802-3803
    16. Claire A, Maurizio R, Jody M, et al. The application of SSRs characterized for grape(Vitis vinifera) to conservation studied in Vitaceae[J]. American Journal of Botany, 2002, 89(1): 22-28
    
    17. Dangi R S, Lagu M D, Choudhary L B. et al. Assessment of genetic diversity in Trigonella foenum-graecum and Trigonella caerulea using ISSR and RAPD markers[J]. BMC Plant Biology, 2004, 4: 13-16
    18. Darokar M P, Khanuja S P, Shasany A K, et al. Low levels of genetic diversity detected by RAPD analysis in geographically distinct accessions of Bacopa monnieri[J]. Genetic Resources and Crop Evolution. 2001, 48(6): 555-558
    19. Das M, Raychaudhuri S. Estimation of genetic variability in Plantago ovata cultivars[J]. Biologia-Plantarum, 2004, 47(3): 459-462
    20. Dayanandan S, Kamaljit S, B, Rick K. Conservation of microsatellites among tropical trees (Leguminosae)[J]. American Journal of Botany, 1997, 84(12): 1658-1663
    21. Dover G A. Molecular drive: a cohesive mode of species evolution[J]. Nature, 1982, 299: 111
    22. Downie S R, Katz D S. A molecular phylogeny of Apiaceae subfamily Apioideae: evidence from nuclear ribosomal DNA internal transcribed spacer sequences[J]. American Journal of Botany, 1996, 83: 234-237
    23. Eldridge K, Davidson J, Harwood C, et al. Eucalypt domestication and breeding[J]. New York: Oxford Science publications, 1993, 162-180
    24. Ellstrand N C, Elam D R. Population genetic consequences of small population size:implications for plant conservation[J]. Annual Review of Ecology and Systematics, 1993, (24): 217-242
    25. Eujayl I, Sorrells M E, Baum M, et al. Isolation of EST-derived microsatelite markers for genotyping the A and B genomes of wheat[J]. Theoretical and Applied Genetics, 2002, 104: 399-407
    26. Excoffier L G, Laval S, Schneider. Arlequin ver.3.0: An integrated software package for population genetics data analysis[J]. Evolutionary Bioinformatics Online, 2005, 1: 47-50
    27. Fazio G, Chung S M, Staub J E. Comparative analysis of response to phenotypic and marker assisted selection for multiple lateral branching in cucumber(Cucumu sativus L. )[J]. Theoretical and Applied Genetics, 2003, 107(5): 875-883
    28. FerriolM, Pico B, Nuez F. Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers[J], Theoretical and Applied Genetics, 2003, 107: 271-282
    
    29. Ferriol M, Pico B, Nuez F. Genetic diversity of some accessions of Cucurbita maxima from Spain using RAPD and SRAP markers[J]. Genetic Resources and Crop Evolution, 2003, 50(3): 227-238
    
    30. Fischer M, Husi R, Prati D, et al. BAPD variation among and within small and large population of the rare clonal plant Ranunctdus reptans (Ranunculaeeae)[J]. American Journal of Botany, 2000, 87(8): 128-1137
    31. Fisher P J, Gardner R C, Richardson TE. Single locus microsatellites isolated using 5'anchored PCR[J]. Nucleic Acids Research, 1996, 24: 4369-4371
    32. Fitzsimmons N, Moritz C, et al. Conservation and dynamics of microsatellite loci over 300 million years of marine turtle evolution. Mol. Biol[J]. Evol. 1995, 12: 594-603
    33. Francisco O J, Santos G A, Hines A, et al. Molecular evidence for a mediterranean origin of the macaronesian endemic genus a rgyranthemum (Asteraceae)[J]. American Journal of Botany, 1997, 84: 1595
    34. Fraser L G, Harvey C F, Crowhurst R N, et al. EST-derived microsatellites from Actinidia species and their potential for mapping[J]. Theoretical and Applied Genetics, 2004, 108: 1010-1016
    35. Fu C X, Qiu Y X, Kong H H. RAPD analysis for genetic diversity in Changium smyrnioides (Apiaceae), an endangered plant[J]. Botanical Bulletin of Academia Sinica, 2003, 44(1): 13-18
    36. Grant V. Periodicities in the chromosome numbers of the angiosperms[J]. Bot Gaz, 1981, 143(3): 379.
    37. Grayum MH. Evolution and phylogeny of the Araceae[J]. Ann Missouri BotGard, 1990, 77(4): 628.
    38. Hamada H, Petrino M G, Kakunaga Y. A novel repeated dement with Z-DNA forming potential is widely found in evolutionarily diverse eukaryotic genomes[J]. Proceedings of the National Academy of Sciences of the United States of America. 1982, 9(21): 6465-6469
    39. Hamrick J L. Loveless M D. Factor's influencing levels of genetic diversity in wood plant species[J]. New Forests, 1992, (6): 95-124
    40. Hayden M J, Sharp P J. Sequence-tagged microsatellite profiling (STMP): a rapid technique for de veloping SSR makers[J]. Nucleic Acids Research, 2001, 29(8): 43
    41. Hayden M J, Sharp P J. Sharp Targeted development of informative microsatellite (SSR) markers[J]. Nucleic Acids Research, 2001, 29(8): 44
    42. Huang H, Dane F, Kubisiak T L. Allozyme and RAPD analysis of the genetic diversity and geographic variation in wild populations of the American chestnut(Fagaceae)[J]. American Journal of Botany, 1998, 85(7): 1013-1021
    43. Huang S W, Zhang B X, Milbourne D, et al. Development of pepper SSR markers from sequence databases[J]. Euphytica, 2001, 117(2): 163-167
    44. Huang S, Zhang B, Dan M. Development of pepper SSR markers from sequence databases[J]. Euphytica, 2000, 117: 163-167
    45. Joshi S P, Gupta V S, Aggarwal R K, et al. Genetic diversity and phylogenetic relationship as revealed by inter simple sequence repeat (ISSR) polymorphism in the genus Oryza[J]. Theoretical and Applied Genetics, 2000, 100(8): 1311-1314
    46. Kandpal R P, Kandpal G, Weissman S M. Construction of libraries enriched for sequence repeats and jumping clonesand hybridization selection for region-specific markers [J]. Proceedings of the National Academy of Sciences of the United States of America, 1994, 9(1): 88-92
    47. Kantety R V, RotaM L, Matthews D E, et al. Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat[J]. Plant Molecular Biology, 2002, 48: 501-510
    48. karagyozov L. Kalcheva I D, Chapman V M. Construction of randam small-insert genomic libraries highly enriched for simple sequence repeats[J]. Nucleic Acids Research. 1993, 21, 3911-3912
    49. Kasahara Y, Hikino H. Cultivation conditions and anti-emetic activity of Pinellia ternata[J]. [Japanese] Shoyakugaku Zasshi, 1983, 37(40): 367-373
    50. Kijas J M H, howler J C S, Thomas M R. An evaluation of sequence tagged microsatellite site markers for genetic analysis within Citrus and related species[J]. Genome, 1995, 38: 349-355
    51. Kim Y J, Park M S, Park H K, et al. Cultural environments on growth and tuberlet yield of Pinellia ternata (Thunb. )Breit[J]. Korean Journal of Medicinal Crop Science, 1995, 3(3): 240-245
    52. Kollipara K P, Singh R J, Hymowitz T. Phylogenetic and genomic relationships in the genus Glycine willd. Based on sequences from the ITS region of nuclear rDNA[J]. Genome, 1997, 40:57-68
    53. Kondo K, Terbayashi S, Higuchi M, at al. Discrimination between "P. ternata" and "Tiannanxing"based on rbcLsequence[J]. Natural Medicines, 1998, 52(3): 253-258
    54. Lara A, Valverde R, Rocha O, et al. Genetic diversity and differentiation of four populations of the medicinal plant Psychotria acuminata in Costa Rica[J]. Agronomia Costarricense, 2004, 27(2): 29-42
    55. Lee S Y, Kim T S. Kim H S. et al. Embryological and histological studies on propagation of Pinellia ternata(Thunb. )Breit. in vivo and in vitro[J]. Research Reports of the Rural Development Administration. Biotechnology. Korea Republic, 1988, 30(1): 80-88
    56. Lench N J, Norris A, Bailey A, et al. Vectorette PCR isolation of microsatellites repeat sequences using anchored dinucleotide repeats primers[J]. Nucleic Acids Research, 1996, 24: 2190-2191
    57. Levi D A, Kemter H W. Gene flow in seed plants[J]. Evolutionary Biology, 1974, 7: 139-142
    58. Li G, Quiros C F. Sequence—related amplified polymorphism(SRAP), A new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica[J]. Theoretical and Applied Genetics, 2001, 103: 455-461
    59. Lian C L, Zhoi Z H, Hogetsu T. A simple method for developing microsatellite markers using amplified fragments of inter-simple sequence repeat[J]. Plant Research, 2001, 114: 381-385
    60. Liu H F, Gao Y B, Wang D, et al. Genetic diferentiation in eight populations of Leymus chinensis in inner Mongolia Steppe[J].Acta Ecologica Sinica, 2004, 24(3): 423—431
    61. Lui Z W, Biyashev R M, MA S M. Development of simple sequence repeat DNA markers and their integration into a barly linkage map[J]. Theoretical and Applied Genetics, 1996, 93: 869-876
    62. Lunt D H, Hutchinson W F, Carvalho G R. An efficient method for PCR-based identification of microsatellite arrays(PIMA)[J]. Molecular Ecology, 1999, 8: 893-894
    63. MarionS, Roder, Victor Korzun, et al. A Microsatellite Map of Wheat[J]. Genetics, 1998, 149: 2007-2023
    64. Martineau J R, Specht J E. Temperature tolerance in soybeans[J]. Crop Science, 1979, 19: 75
    65. Mayr C, Wild B. , Wagner H. , et al. Chinese Drug Monographs and Analysis-Rhizoma Pinelliae (P. ternata). [M]. Verlag fur Ganzheitliche Medizin Dr. Erich Wuhr GmbH, Kotzting/Bayer. Wald, Germany: 1997, 1 (7)
    66. Michael L B, Guillermo O. Microsatellite loci orpatemity analysis in the fathead minnow, Pimephales promelas (Teleostei: Cyprinidae)[J]. Molecular Ecology Notes, 3(4), 532-534
    67. Miyao A, Zhang H S. Characterization and genetic mapping of simple sequence repeats in the rice genome[J]. DNA Research, 1996, 3: 233-238
    68. Mizuknuni H, Hao RS, Tanaka T. Nuclcoride soqucnce of 5s rRNA imtergenie specer region in Angelica acuilogba[J]. Natural Med, 1997, 51: 37
    69. Morgante M, Hanafey M, Powell W. Microsatellites are preferentially associated with nonrepeatitive DNA in plant genomes[J].Nat.Genet., 2002, 30: 194-200
    70. Morgante M, Olivieri A M. PCR-amplified microsatellites as markers in plant genetics[J]. The Plant Journal, 1993.3: 175-182
    71. Nagao Y. The effect of the environmental conditions on the growth of Pinellia ternata Breit. [J]. [Japanese] Weed Research, 1977, 22(4): 189-193
    72. Nebauer S G, Castillo AL, Segura J. RAPD variation within and among natural populations of outcrossing willow-leaved foxglove (Digitalis obscura L.)[J]. Theoretical and Applied Genetics, 1999, 98(6/7): 985-994
    73. Nei M. Analysis of gene diversity in subdivided populations[J]. Proceedings of the National Academy of Sciences, USA, 1973, 70: 3321-3323
    74. Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals[J]. Genetics, 1978, 89, 583-590
    75. Nicolas B. Early efrect of inbreeding as revealed by microsatellite analyses on Ostrea edulis larvae[J]. Genetics, 1998, 148: 1893-1906
    76. Nicot N, Chiquet V, Gandon B, et al. Study of simp le sequence repeat (SSRs) markers from wheat exp ressed sequence tags (ESTs)[J]. Theoretical and Applied Genetics, 2004, 109: 800-805
    77. Norri A, Bradley D G, Cunningham E P. Microsatellite genetic variation between and within farmed and wild Atlantic salmon (Salmo salar) populations[J]. Aquaculture, 1999, 180: 247-264
    78. Orit G, Pearse D E, Avise J. Phylogenetic assessement of length variation at a microsatellite locus[J]. Proc Nati Acad Sci USA, 1997, 94: 10745-10749
    79. Ostrander E A, Jong P M, Rine J, et al. Construction of small-insert genomic DNA Libraries highly enriched for microsatellite repeat sequences[J]. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89: 3419-3423
    80. Paetkau D. Microsatellites obtained using strand extension[J]. An enrichment protocol Biotechniques, 1999, 26: 690-697
    81. Powell W, Morgante M, Andre C. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis[J]. Molecular Breeding, 1996, 2: 225-238
    82. Prathepha P, Baimai, V. Genetic differentiation in Thai populations of the rare species Afgekia sericea Craib (Leguminosae) revealed by RAPD-PCR assays[J]. Genetica, 1999, 105(2): 193-202
    83. Proberki S L, Bailey G, Baum R B. Modification of a CTAB DNA extraction proted for plant containing high polysaccharide and polyphenol components[J]. Plant Molecular Report, 1997, 12: 8-15
    84. Pugh T, Fouet O, Risterucci AM, et al. A new cacao linkage map based on codominant markers:development and integration of 201 new microsatellite markers[J]. Theoretical and Applied Genetics, 2004, 108(6): 1151-1161
    85. Qu R Z, Hou L, Lu H L, et al. The gene flow of population genetic structure[J]. HEREDAS, 2004, 26(3): 377-382
    86. Ramsay L, Macaulay M, Ivanissevich S, et al. A simple sequence repeat-based linkage map of barley Genetics. 2000, 156: 1997-2005
    87. Rassmann K, Schlotterer C, Tautz D. Isolation of simple sequence loci for use in polymerase chain reaction-based DNA fingerprinting[J]. Electrophoresis, 1991, 12: 113-118
    88. Rico CI, Rico G, Hewitt. 470 million years of conservation microsatellite loci among fish species[J]. Proceedings of the Royal Society of London Series B, Biological Sciences, 1996, 263: 549-557
    89. Rod P, Simon G, Wes K, et al. Cross-species amplification of soybean(Glycine max)simple sequence repeats(SSRs) within the Genus and other legume genera: implications for the transferability of SSRs in plants[J]. Molecular Biology and Evolution, 1998, 15(10): 1275-1287
    90. RoderMS, KorzunV, WendehakeK, et al. A microsatellite map of wheat[J]. Genetics, 1998, 149: 2007-2023
    91. Roh M S, Kurita S, Zhao X Y, et al. Identification and classification of the genus Lycoris using molecular markers [J]. Journal of the Korean Society for Horticultural Science, 2002, 43(2): 120-132
    92. Rohlf F J. NTSYS-pc. Numerical Taxonomy and Multi-variety Analysis System, Version 2. 1. Exeter Software, Setauket, New York, 2000
    93. Rongwen J, Akkaya M S, Bhagwat, et al. The use of microsatellite DNA markers for soybean genotype identification[J]. Theoretical and Applied Genetics, 1995. 90: 43-49
    94. Rossetto M. Sourcing of SSR markers from related plant species[M]. Plant Genotyping: the DNA Fingerprinting of Plant. 2001, 211-224
    95. Salt E D. Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants[J]. Biotechnology, 1995, 13: 468
    96. Sangwan R S, Sangwan N S, Jain DC, et al. RAPD profile based genetic characterization of chemotypic variants of Artemisia annua L. [J]. Bioche Mol Biol Int, 1999, 47(6): 935-944
    97. Scott K D, Eggler P, Seaton G, et al. Analysis of SSRs derived from grape ESTs[J]. Theoretical and Applied Genetics, 2000, 100: 723-726
    98. Sehmidt K, Jemen K. Genetic structure and AFLP variation of remnant population in the rare plant and its relation to population size and reproductive Pedicularis palustris (Scrophulariaceae) components[J]. American Journal of Botany, 2000, 87: 678-689
    99. Sharma K D, Singh B M, Sharma T R, et al. Molecular analysis of variability in Podophyllum hexandrum Royle-an endangered medicinal herb of northwestern Himalaya[J]. Plant Genetic Resources Newsletter, 2000, 124: 57-61
    100. Shasany AK, DarokarM P, Saikia D, et al. Genetic diversity and species relationship in Asparagus spp. using RAPD analysis[J]. Journal of Medicinal and Aromatic Plant Sciences, 2003, 25(3), 698-704
    101. Silberstein L, Kovalski I, Brotman Y, et al. Linkage map of Cucumis melo including phenotypic traits and sequence characterized genes[J]. Genome, 2003, 46(5): 761-73
    102. Slatkin M, Barton N H. A comparison of three indirect methods for estimating average levels of gene flow[J]. Evolution, 1989, 43: 1349-1368
    103. Slatkin M. Gene flow in natural populations[J]. Annual Review of Ecology and Systematics, 1985, 16, 393-430
    104. Slatkin M. Gene flow in natural populations[J]. Annual Review of Ecology and Systematics, 1985, 16: 393-430
    105. Sobral W S, Honeycutt R. High output genetic mapping of polyploids using PCR-generated markers[J]. Theoretical and Applied Genetics, 1993. 85(1): 105
    106. Stockburge E M, Green R D, Wood WO, et al. Determination of the stringency of DNA microsatellite marker genotypes for use in individual animal identcation[J]. Animal Genetics, 2000, 3: 345-348
    107. Stoltz E, Ggreger M. Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on sub-mergedminetailing[J]. Environ Exp. Bot. , 2002, 47: 271-280
    108. Thiel T, Michalek W, Varshney R K, et al. Exploiting EST databases for the development and characterization of gene2derived SSRs markers in barley (Hordeum vulgare L. )[J]. Theoretical and Applied Genetics, 2003, 106: 411-422
    109. Valdges A M, Slatkin M, Freimer N B. Allele frequencies at microsatellite loci: the stepwise mutation model revisited[J]. Genetics, 1993, 133: 737-749
    110. Van Z E, Guthridge K M, Spangenberg G C, et al. Development and cha racterization of EST derived simple sequence repeat(SSR) markers for pasture grass endophytes[J]. Genome, 2003, 46(2): 277-290
    111. Wang Z, Weber J L, Zhing G, et al. Survey of plant short tandem DNA repeat[J]. The Applied Genetics, 1994, 88: 1-6
    112. Watanabe A, Araki S, Kobari S, et al. In vitro propagation, restriction fragment length polymorphism, and random amplified polymorphic DNA analyses of Angelica plants[J]. Plant Cell Reports, 1998, 18(3/4): 187-192
    113. WeberJ L. Informativeness of human (dC-dA)n (dG-dT)n polymorphisms[J]. Genomics, 1990, 7:524-530
    114. Wen J, Zimmer EA. Phylogeny and biogeography of Panax L. (the Ginseng Genus, Araliaceae): inferences from ITS sequences of nuclear ribosomal DNA[J]. Mol Phylogenet Evol, 1996, 6:167
    115. Wendel J F. Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium)[J]. Proc Natl Acad, 1995, 92:280
    116. Williams J G K, Kubelik A R, Livak K J, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers[J]. Nucleic Acids Res, 1990, 18(22): 6531-6535
    117. Wu K, Tanksley S D. Abundance polymorphism and genetic mapping of microsatellites in rice[J]. Molecular and General Genetics, 1993, 241: 225-235
    118. Wu K, Tanksley S D. Abundance, polymorphism and genetic mapping of microsatellites in rice[J]. Molecular and General Genetics, 1993, 241:225-235
    119. Yeh F C, Yang R C, Boyle T. POPGENE Version 1.31, Microsoft Window—based Freeware for Population Genetic Analysis. University of Alberta and Centre for International Forestry Research.1999
    120. Yi T S, Li H, Li D Z. Chromosome variation in the genus Pinellia (Araceae)in China and Japan[J]. Botanical Journal of the Linnean Society, 2005, 147(4): 449
    121. Yi T S, Li H, Li D Z. Chromosome variation in the genus Pinellia (Araceae)in China and Japan[J]. Bot J LinnSoc, 2005, 147: 449.
    122. Yi T S, Li H, Li D Z. Chromosome variation in the genus Pinellia (Araceae)in China and Japan[J]. Bot J Linn Soc, 2005, 147:449-453
    123. Zane L, Bargelloni L, Patarnello T. Strategies for microsatellite isolation-a review[J]. Molecular Ecology, 2002, 11:1-16
    124. Zhao Q H, Jiang S A, Yah G P. Analysis on the level of metallic elements in traditional Chinese medicine for treatment of cerebrovascular disease[J]. Chinese Journal of Clinical Rehabilitation, 2006, 10(43): 225-228
    125. Zietkiewi C Z, Rafalak I A, Labud A, et al. Genome fingerprinting by simple sequence repeat(SSR)-anchored polymerase chain reaction amplification[J]. Genomics, 1994, 20(2): 176-183
    126.白权,李敏,贾敏如,等.南充地区半夏资源调查及与省外半夏形态特征的比较[J].华西药学杂志,2004,19(5):351-354
    127.白权,赵淑芝,孙琪华,等.半夏水半夏叶片细胞叶绿体超微结构的研究[J].川北医学院学报,2000,15(1):64-66
    128.蔡金娜,周开亚,徐珞珊.中国不同地区蛇床的rDNA ITS序列分析[J].药学学报,2000,35(1):56-59
    129.曹晖.中国和日本产姜黄属Curcuma植物的基因分析—基于叶绿体基因trnk的分子系统学研究[J].中国实验方剂学杂志,2001,s1
    130.巢建国,崔小兵,谷巍,等.组培半夏中鸟苷的含量分析[J].中国中药杂志,2005,30(2):1701
    131.陈军辉.谢明勇,傅博强.等.西洋参中矿质元素的主成分分析和聚类分析[J].光谱学与光谱分析,2007,26(7):1326-1329
    132.陈坤全,张淮祥.中药材与矿质元素[J].中华实用医药杂志,2003,2(2):157
    133.陈立松,刘星辉.植物抗热性鉴定指标的种类[J].干旱地区农业研究,1997,15(4):72
    134.陈仲中,汪旭升,朱军.基于水稻基因组序列SSR的多态性分析[J].中国水稻科学,2005,19(4):303-307
    135.崔光红,唐晓晶,黄璐琦,等.应用等位基因特异聚核酶链式反应鉴别半夏类药材.中国药学杂志,2007,42(1):17-20
    136.单莹,张立军,郑熙,等.海滨锦葵微卫星位点的开发[J].安徽农业科学,2006,34(23):6134-6135,6176
    137.丁建弥,万树文,梅其春.野山参与移山参、栽培参的鉴定技术研究[J].上海预防医学杂志,2001,13(8):369-371
    138.丁士友,顾红雅,瞿礼嘉,等.PCR产物的RFLP分析在黄芪亚族(豆科)系统学研究中的应用初探[J].植物学报,1995,37(2):97-102
    139.丁小余,王峥涛,徐红.枫斗类石斛rDNA ITS区的全序列数据库及其序列分析鉴别[J].药学学报,2002,37(7):567-573
    140.丁小余,王峥涛,徐珞珊.F型、H型居群的Fe皮石斛rDNAITS区序列差异及SNP现象的研究[J].中国中药杂志,2002,27(2):85-89
    141.董玉琛.生物多样性及作物遗传多样性检测[J].作物品种资源.1995,3:1-5
    142.杜娟,马小军,李学东,等.半夏不同种质资源AFLP指纹系谱分析及其应用[J].中国中药杂志,2006,31(1):30-33
    143.杜娟,马小军,李学东.半夏不同种质资源AFLP指纹系谱分析及其应用.2006,31(1):30-33
    144.费永俊,王燕,赵庆华,等.无土基质立体栽培条件下半夏主要农艺性状的研究[J].安徽农业科学,2004,32(3):520-521
    145.费永俊,吴楚,王艳安,等.无土基质立体栽培条件下半夏生物量分配格局[J].安徽农业大学学报,2004,31(3):292-297
    146.冯学锋,胡世林,郭宝林,等.黄芩居群遗传多样性初步研究[J].世界科学技术-中药现代化,2002,4(4):38-43
    147.高凯,李名旺,顾德兴.华东地区半夏属群体营养器官的比较解剖及其演化[J].南京农业大学学报,1998,21(2):11-17
    148.高文远,秦恩强,肖小河,等.当归药材道地性的RAPD分析[J].中草药,2001,32(10):926-929
    149.顾得兴,郭巧生.半夏群体生物学特性的研究[J].南京农业大学学报,1990,13(2):11-16
    150.顾德兴,李云香,徐炳声.半夏的繁殖生物学研究[J].植物资源与环境,1994,3(4):44-48
    151.顾德兴,徐炳声.南京两种半夏群体水平变异式样的比较[J].植物分类学报,1991,29(5):423-430
    152.顾华,盖玲,周铜水,等.中药材连翘道地性的分子生物学探讨[J].复旦学报,2002,41(6):664-668
    153.郭宝林,林生,冯毓秀.丹参主要居群的遗传关系及药材道地性的初步研究[J].中草药,2002,33(12):1113-1116
    154.郭美丽,姜伟,张志珍,等.红花种质的随机扩增多态性DNA分子鉴定.第二军医大学学报,2003,24(10):1116-1119
    155.郭巧生,段金廒.赞善安.半夏不同居群3种化学成分的动态比较研究[J].中国中药杂志,2001,26(5):296-299
    156.郭巧生,贺善安,刘丽.半夏种内不同居群生长节律的研究[J].中国中药杂志,2001,26(4):233-237
    157.郭巧生,贺善安.半夏种内居群形态变异的模糊聚类分析[J].植物资源与环境,1997,6(3):29-34
    158.郭巧生,沈文飚,刘丽,等.半夏种内不同居群酯酶和超氧化物歧化酶同工酶酶谱特征分析[J].植物资源与环境学报,2001,10(2):42-46
    159.郭巧生,王庆亚,史红专.半夏种内不同居群花粉粒形态比较研究[J].中国中药杂志,2006,31(1):27-32
    160.郭巧生.半夏研究进展[J].中药研究与信息,2000,2(10):13-19
    161.国家药典委员会.中华人民共和国药典[S].2005版.北京:化学工业出版社,2005:78
    162.韩金土,刘彦明,王辉.原子吸收光谱法测定清热解毒类中草药中的11种矿质元素[J].光谱学与光谱分析,2006,26(10):1931-1934
    163.何道文,黄雪菊.半夏栽培生态学研究[J].中草药,2003,34(12):1133-1135
    164.何桥,梁国鲁,谢江辉.莲雾ISSR反应体系的优化与应用[J].果树学报,2005,22(2):186-189
    165.洪德元.植物细胞分类学[M].北京:科学出版社,1990,184
    166.侯大斌,任正隆,舒光明.附子野生资源群体遗传多样性的RAPD分析[J].生态学报,2006,26(6):1833-1841
    167.侯典云,王荔,杨艳琼,等.半夏不同居群的细胞学研究.云南农业大学学报,2005,20(2):159-162
    168.侯万儒,彭正松,杨军,等.半夏绒毡层细胞降解的显微观察及花粉活力检测[J].西华师范大学学报(自然科学版),2004,25(4):394-396
    169.胡昌江,李国民,方蓉修.半夏炮制研究进展[J].中草药,1998,29(4):271-274
    170.胡昌江.半夏临床现代研究进展[J].吉林中医药,1997,1:42-43
    171.胡珊梅,张启国,周涵韬,等.RAPD法在金线莲的鉴别研究中的应用[J].中草药,2002,33(10):949-950
    172.季文兰,杨权海.不同种质半夏氨基酸含量测定[J].时珍国药研究,1997,8(6):554
    173.季旭明.半夏毒性毒理研究进展[J].山东中医药大学学报,2004,28(1):74-76
    174.姜立春,彭正松,阮期平.微卫星DNA标记技术及其在植物研究中的应用[J].生物技术通讯,2006,4(17):654-657
    175.蒋志毅,黄晓玲.矿质元素肥料使用技术[M].贵州:贵州科技出版社,1999
    176.解红娥,解晓红,李江辉,等.半夏的病毒危害及脱毒快繁技术研究[J].中草药,2005,36(11):1697-1700.
    177.康明,黄宏文.湖北海棠的等位酶变异和遗传多样性研究[J].生物多样性,2002,10(4):376-38
    178.李海生.ISSR分子标记技术及其在植物遗传多样性分析中的应用[J].生物学通报,2004,39(2):19-21
    179.李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000
    180.李恒.从生态地理探索天南星科的起源[J].云南植物研究,1996,18(1):14
    181.李俊清.植物遗传多样性保护及其分子生物学研究方法[J].生态学杂志,1994,13(6):27-33
    182.李莉.彭建营.白瑞霞,等.SK4P与TRAP标记及其在园艺植物研究中的应用[J].西北植物学报,2006,26(8):1749-1752
    183.李丽,王慧娟,盖成万.半夏的药理和临床研究进展[J].中医药信息,2006,23(5):39-40
    184.李丽.部分国产半夏属植物的微形态特征和同工酶分析及其分类学意义[J].云南植物研究,1999,21(4):442-448
    185.李名旺,顾德兴,刘友良,等.半夏属的染色体数目、倍性与珠芽发生的关系[J].植物分类学报,1997,35(3):208-214
    186.李名旺,仰中胜,顾德兴,等.半夏属(PINELLIA)植物的叶绿素含量和光合速率日变化[J].安徽农业科学,1999,27(2):199-200
    187.李名旺,於丙军,顾德兴,等.半夏属(PINELLIA)的花粉粒和醇溶蛋白比较.武汉植物学研究,2000,18(3):250-252
    188.李明芳,郑学勤.荔枝SSR标记的研究[J].遗传,2004,26(6):911-916
    189.李强,万建民.SSR Hunter,一个本地化的SSR位点搜索软件的开发[J].遗传,2005,27(5):808-810
    190.李先瑞,胡世林,杨连菊.半夏不同加工品的矿质元素分析[J].中国中药杂志,1991,16(5):279-283
    191.李雪玲,戴云,崔秀明,等.半夏中重金属和农药残留的测定.中成药,2006,28(3):400-403
    192.李晔.碘·生命·健康[M].北京:科学出版社,1998:69-124
    193.李永强,李宏伟,高丽锋,等.基于表达序列标签的微卫星标记(EST-SSRs)研究进展[J].植物遗传资源学报,2004,5(1):91-95
    194.李玉先,刘晓东,朱照静.半夏药理作用的研究述要[J].辽宁中医学院学报,2004,6(6):459-460
    195.刘华清,吴为人,段远霖,等.水稻小穗特征基因FZP的图位克隆[J].遗传学报,2003,30(9):811-6
    196.刘健全,陈之端,廖志新,等.“藏茵陈”原植物及其混淆种类的ITS序列比较[J].药学学报,2001,36(1):67-70
    197.刘文生,朱建明,何斌,等.中药材厚朴的随机扩增多态性DNA指纹图谱研究[J].中药材,2004,27(3):164-169
    198.刘玉萍,曹晖,韩桂茹,等.中日产川芎的mat K、ITS基因序列及其物种间的亲缘关系[J].药学学报,2002,37(1):63-68
    199.刘玉萍,曹晖,王孝涛.基因测序技术在中药质量研究中的应用(Ⅰ)-山东郓城猴头半夏基原的DNA测序鉴别.药物分析杂志,2001,21(6):423-427
    200.刘玉萍,曹晖,王孝涛.基因测序技术在中药质量研究中的应用(Ⅰ)-山东郓城猴头半夏基原的DNA测序鉴别[J].药物分析杂志,2001,21(6):423-427
    201.刘玉萍,何报作,曹晖.基因测序技术在中药质量研究中的应用(Ⅱ)-山药基原的DNA测序鉴别[J].中草药,2001,32(11):1026-1030
    202.刘玉萍,罗集鹏,冯毅凡,等.广藿香的基因序列与挥发油化学型的相关性分析[J].药学学报,2002,37(4):304-308
    203.柳李旺.龚义勤,黄浩,等.新型分子标记SRAP与TRAP及其应用[J].遗传,2004,26(5):777-781
    204 #12
    205.罗玉明,丁小余,徐珞珊,等.细叶石斛的位点特异性PCR鉴别[J].淮阴师范学院学报(白 然科学版),2002,1(1):82-86
    206.马开森,丁季春,钟国跃,等.不同来源地的半夏种源对比栽培试验[J].中国中药杂志,2004,29(2):184-185
    207.马小军,汪小全,肖培根,等.人参农家类型的AFLP指纹研究[J].中国中药杂志,2000,25(12):707-710
    208.马小军,汪小全,肖培根.野山参与栽培参rDNA内转录间隔区(ITS)序列比较[J].中国中药杂志,2000,25(4):206-209
    209.孟庆杰.半夏早春促成栽培技术[J].安徽农学通报,2004,10(3):64-65
    210.庞晓明,胡春根,邓秀新.用SSR标记研究柑橘属及其近缘属植物的亲缘关系[J].遗传学报,2003,30(1):81-87.
    211.彭延弟,李光胜.半夏植物形态变异的观察与研究[J].基层中药杂志,2001,15(5):30-31
    212.钱文成,张桂华,陈飞雪,等.SRAP在检测黄瓜基因组多态性中的特征[J].遗传,2006,28(11):1435-1439
    213.邱英雄,傅承新,吴斐捷.明党参与川明参群体遗传结构及分子鉴定的ISSR分析[J].中国中药杂志,2003,28(7):598-604
    214.任冰如,贺善安,放虹,等.用RAPD技术评估苍术居群间的亲缘关系[J].中草药,2000,31(6):458
    215.萨姆布鲁克J,拉塞尔D W.分子克隆实验指南[M].3版.黄培堂,译.北京:科学出版社,2002:667-671
    216.宋葆华,陈之端,汪小全,等.中国苋属nrDNA的ITS序列分析及其系统学意义[J].植物学报,2000,42(11):1184-1189.
    217.宋金斌,张国泰,郭巧生,等.不同半夏种质田间比较试验[J].中草药,1997,28(3):175-177
    218.苏应娟,朱建明,王艇,等.厚朴的任意引物PCR指纹图谱分析[J].中草药,2002,33(6):545-548
    219.孙洪,程静,詹克慧,等.ISSR标记技术及其在作物遗传育种中的应用[J].分子植物育种,2005,3(1):123
    220.孙效文,贾智英,魏东旺,等.磁珠富集法与小片段克隆法筛选鲤微卫星的比较研究[J].中国水产科学,2005,12(3):126-132
    221.孙岳,李景鹏,金元昌.南、北五味子ISSR鉴定研究[J].中医药学报,2003,31(1):29-30
    222.汤继凤,曾永生,高丽锋,等.用生物信息学技术构建cSSR分子标记开发体系[J].中国农业科学,2004,37(3):328-332
    223.汤章城.逆境条件下植物内源脯氨酸的积累及其可能的生态意义[J].植物生理学通讯,1984,(1):15-24
    224.王惠敏,李心河,陈克忠.矿质元素与中药五味[J].山东中医杂志,1999,18(10):466
    225.王慧琴,谢明勇,杨妙峰,等.不同产地红花中矿质元素的因子分析和聚类分析[J].厦门大学学报(自然科学版),2006,45(1):72-75
    226.王蕾,赵永娟,张嫒嫒,等.半夏生物碱含量测定及止呕研究.中国药理学通报2005,21(7):864-867
    227.王培训,黄丰,周联,等.商品西洋参DNA指纹图谱鉴别[J].中药新药与临床药理,1999,10(6):367-383
    228.王培训,李劲平.周联.南、北五味子的RAPD鉴别研究[J].中药新药与临床药理,2002,13(2):98-99
    229.王艇,苏应娟,朱建明,等.中药厚朴的DNA扩增产物指纹分析研究[J].中药材,2001,24(10):710-715
    230.王彦涵,张寿州,高建平,等.从叶绿体DNA rbc L序列分析探讨五味子科的系统发育[J].复旦学报:自然科学版,2003,42(4):550-554
    231.王彦华,侯喜林,徐明宇.正交设计优化不结球白菜ISSR反应体系研究[J].西北植物学报,2004,24(5):899
    232.王懿萍,张小荣,杨巧艳,等.中药矿质元素与药效的关系[J].陕西中医,2006,27(12):1573-1576
    233.王祖秀,彭正松,何奕昆.三叶半夏(Pinellis ternata)雄配子败育的遗传分析[J].作物学报,2000,26(1):83-86
    234.魏东旺,楼允东,孙效文,等.鲤鱼微卫星分子标记的筛选[J].动物学研究,2001,22(3):238-241
    235.魏淑红,彭正松,夏玲.狭叶半夏和普通半夏总生物碱含量比较[J].现代中药研究与实践,2003,17(2):19-20
    236.魏淑红,彭正松.半夏群体性状变异类型研究[J].江苏农业科学,2004,4:37-39
    237.魏树和,周启星,王新,等.杂草中具有重金属积累特征植物的筛选[J].自然科学进展,2003,13(12):1259-1265
    238.文晓鹏,庞晓明,邓秀新.不同自然分布区刺梨遗传多样性的RAPD分析[J].中国农业科学2003,36(7):823-82
    239.文雁成,王汉中,沈金雄,等.用SRAP标记分析中国甘蓝型油菜品种的遗传多样性和遗传基础[J].中国农业科学2006,39(2):246-256
    240.巫师明,钟学红.八种解表中草药中矿质元素的测定[J].广东矿质元素科学,2001,8(11):59-61
    241.吴皓,李伟,张科卫,等.半夏药材鉴别成分的研究.中国中药杂志,2003,28(9):836.
    242.吴耀生,Steve S.中药三七根核糖体18SrRNA基因的序列分析[J].中草药,2001,32(12):1116-1119
    243 #12
    244.夏剑秋,张毅方.大豆中主要营养成分和矿质元素的功能作用[J].中国油脂,2007,32(1):71-73
    245.夏立群,李建强,李伟.论克隆植物的遗传多样性[J].植物学通报2002,19(4):425-431
    246.肖小河,刘峰群,史成和,等.国产姜黄属药用植物RAPD分析与分类鉴定[J].中草药,2000,31(3):209-212
    247.谢中稳,蒋诗平.半夏居群遗传分化的同工酶和可溶性蛋白电泳的聚类分析[J].生物数学学报,1996,11(4):215-220
    248.忻雅,崔海瑞,卢美贞,等.白菜EST-SSR信息分析与标记的建立[J].园艺学报,2006,33(3):549-554
    249.徐海明,邱英雄,胡晋,等.不同遗传距离聚类和抽样方法构建作物核心种质的比较[J].作物学报,2004,30(9):932
    250.徐红,李晓波,丁小余.中药黄草石斛rDNA ITS序列分析[J].药学学报,2001,36(10):777-783
    251.许腊英,夏荃,刘先琼.半夏化学成分及饮片的现代研究进展[J].时珍国医国药,2004, 15(7):441-443
    252.许占友,邱丽娟,常汝镇,等.利用SSR标记鉴定大豆种质[J].中国农业科学,1999,32(增刊):40-48.
    253.薛华柏.果梅微卫星开发及应用[D].南京:南京农业大学,2005
    254.薛建平,丁勇,张爱民,等.高温胁迫下半夏倒苗前后保护酶活力的变化[J].中国中药杂志,2004,29(7):641-643
    255.薛建平,张爱民,葛红林,等.半夏的人工种子技术[J].中国中药杂志,2004,29(5):402-405
    256.杨俊宝,朱秀志,罗成科,等.半夏种质资源的随机扩增多态性DNA技术分析.2007,14(1):42-44,91
    257.杨克敌.矿质元素与健康[M].北京:科学出版社,2003
    258.杨玉琴,张丽艳,高言明.半夏及不同炮制品中矿质元素分析[J].矿质元素与健康研究,2002,19(2):33
    259.姚绳林.半夏的野生类型及其增殖率研究[J].基层中药杂志,1998,12(1):46-47
    260.于超,张明,王宇,等.栽培、野生及不同产地半夏总生物碱测定[J].中国中药杂志,2004,29(6):583-584
    261.于燕莉,梁爱君,潘菡清,等.随机扩增多态性DNA和同工酶分析鉴别金银花品系[J].解放军药学学报,2002,18(6):333-335
    262.余永邦,秦民坚,梁之桃.不同产区太子参的rDNA ITS区序列的比较[J].植物资源与环境学报,2003,12(4):1-5
    263.曾明,马雅军,郑水庆.中药葛根及其近缘种的rDNA ITS序列分析[J].中国药学杂志,2003,38(3):173-175
    264.张达治,张勉,许翔鸿.含吡咯里西啶生物碱的山紫菀类药材的分子鉴别[J].中国天然药物,2003,1(4):207-209
    265.张科卫,吴皓,崔小兵,等.不同产区半夏药材中鸟苷含量的测定[J].中成药,2000,22(1):769
    266.张明,钟国跃,马开森.半夏倒苗原因的实验观察研究[J].中国中药杂志,2004,29(3):273-274
    267.张巧艳,秦路平,于雁灵,等.不同地区蛇床子中矿质元素聚类分析[J].中药材,2001,24(4):245-247
    268.张廷燕.火焰原子吸收光谱法测定补肾中药、中成药中矿质元素的含量[J].中国医院药学杂志,1999,19(6):345-347
    269.张晓艳,覃章铮.半夏胚胎发育的研究[J].武汉植物学研究,1996,14(1):30-32
    270.张增翠,侯喜林.SSR分子标记开发策略及评价[J].遗传,2004,26(5):763-768
    271.赵凤泽,森田秀芳.吉林白何首乌中元素的高频等离子体原子光谱分析[J].延边医学院学报,1989,12(4):245-247
    272.赵凤泽,森田秀芳.吉林延边红参与朝鲜高丽红参中矿质元素的比较研究[J].延边医学院学报,1988,11(3):190-192
    273.赵忠堂,吴在军,张来启,等.半夏球茎与珠芽的生长状况研究[J].基层中药杂志,2001,15(3): 22-23
    274.郊国琦,王俊,许兴.宁夏枸杞道地性形成模式的探析[J].宁夏农学院学报,2004,25(2):85-87,91
    275.周涵韬,郑文竹,周以廷,等.不同作物问共用SSR引物的初步研究[J].厦门大学学报(白 然科学版),2002,47(1):89-94
    276.周红涛,胡世林,郭宝林,等.芍药野生与栽培群体的遗传变异研究[J].药学学报,2002,37(5):383-388
    277.周延清,景建洲,李振勇,等.怀区地黄遗传多样性的ISSR鉴定[J].中草药,2005,36(2):257-262
    278.周延清,景建洲,李振勇,等.利用RAPD和ISSR分子标记分析地黄种质遗传多样性[J].遗传,2004,26(6):922-928
    279.朱旭祥,茅涵斌.中药研究前沿—中药配位化学[J].中草药,1997,28(6):373-375
    280.左云娟,朱培林,刘强,等.地产药材江枳壳品种遗传学关系的ISSR证据[J].中国中药杂志,2005,30(18):1416-1420

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700