用户名: 密码: 验证码:
微管式质子交换膜燃料电池膜电极的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
质子交换膜燃料电池(PEMFC)是一种直接将储存在燃料和氧化剂中的化学能高效、无污染地转化为电能的发电装置。PEMFC的优点是工作温度低,启动性能好、无腐蚀性、电池堆设计简单、系统坚固耐用,被公认为最有希望成为航天、军事、电动汽车和区域性电站以及便携式设备的首选电源。目前质子交换膜燃料电池主要采用平板式结构,存在体积质量功率比较低、成本较高的问题,由于体积较大,很难应用于小型便携设备。
     针对以上问题,本文设计制备了一种以多孔中空碳纤维管为支撑管基体的微管式质子交换膜燃料电池的膜电极,研究了不同方法处理碳纤维管的方法以增大其反应表面积;制备了Pt催化剂和Ru催化剂作为膜电极的阳极催化剂,采用浸渍沉积的方法在阴极担载了E-TEKVulcan XC-72 Pt/C电催化剂,并对其催化剂颗粒的结构、催化性能和担载量进行了测试研究;在经过质子交换膜的涂覆后制备了微管式质子交换膜燃料电池膜电极,并对其单电池性能进行了测试。
     通过以上研究工作,我们得到以下结论:
     (1)聚丙烯腈(PAN)中空原丝的预处理采用50%DMSO对PAN原丝进行刻蚀的方法,有效地增加了表面孔洞使其获得了更大的比表面积。利用酸后处理的方法可以有效地去除经过预氧化与炭化制备的中空碳纤维管(PAN-CF)管壁上存在的无机盐及碳管碎片等杂质。
     (2)研究表明,甲醛方法制备的Pt催化剂在碳纤维管表面和内部分散均匀,Pt的担载量为0.4mg/cm~2,低于一般板式PEMFC的电催化剂的担载量,催化剂粒子尺径为4.4nm,有效电化学面积为41.32m~2g_(Pt)~(-1),Pt的利用率较高,电催化性能表现良好。
     (3)通过采用浸渍的方法将Nafion溶液涂覆在碳纤维管的表面,并且形成了连续的质子交换膜层,并且由FTIR的测试结果证明与商品Nafion膜的结构一致,在扫描电镜下观察厚度约为0.5μm。
     (4)通过采用氢气为燃料以及甲醇为燃料在室温常压环境下对微管式PEMFC的单电池的电化学性能进行了测试,研究表明,采用氢气作为燃料的单电池性能的最大功率密度为0.23 mW/cm~2,最大电流约为2.1mA/cm~2,开路电压为0.6V,单电池的电化学性能相对较差;而采用3mol/L的甲醇作为燃料测试电池的电化学性能较好,最大功率密度为1.75mW/cm~2,最大电流密度为14mA/cm~2,开路电压为0.82V,相比采用氢气作为燃料显示出了较好的单电池电化学性能。
Proton exchange membrane fuel cell (PEMFC) is a power package which could directly transform the chemical energy stored in the fuel and oxidizer into power by an efficient and pollution-free way. PEMFC is widely recognized as the most promising power supply used in the area of aerospace, military, electric vehicles and regional power stations because of its low working temperature, quick start-up and non-corrosion. More over, the cell stack system is simple and stable. Most PEMFC systems are currently designed as a plate structure, however, this structure has several flaws such as low power density, high cost and bulky volume etc., which made it hard to be used in small portable devices.
     In this work, a micro-tubular membrane electrode assembly (MEA) was prepared using porous hollow carbon fiber tube as a support. Different treatments of the PAN hollow fibers used to increase the reaction surface area of porous hollow carbon tube have been studied. Pt and Ru anode catalysts were deposited on the hollow carbon tubes and XC-72 Pt/C were used as the cathode catalysts. The micro-structures and the properties of the MEA have been investigated and the electrochemical properties of a single cell have also been tested.
     Based on the above work, we draw the conclusions as follows:
     (1) Etching the Polyacrylonitrile (PAN) hollow fibers by 50% DMSO can effectively increase the surface area of the hollow carbon tube products and make the holes in the tube wall internal and external linking. Acid washing method can remove the fractions and inorganic impurities on the hollow carbon tube products.
     (2) The result showed the Pt catalyst which was deposited by chemical reduction method on the hollow carbon tube has been well dispersed on both surface and inside holes of the hollow carbon tube. The loading of the Pt catalyst was 0.4 mg/cm~2 . The average size of Pt catalyst particles was 4.4nm and its electrochemical active area was calculated to be about 41.32 m~2g_(Pt)~(-1). Pt anode catalysts showed stable performance in 0.1mol/L H_2SO_4.
     (3) The nation was coated on the hollow carbon tube by impregnation method. The FTIR result showed the structure of the coated nafion film was similar to the commercial nafion(?) film. The thickness of the coated nafion film was about 1μm.
     (4) The electrochemical performance of a single micro-tubular fuel cell made of the above metioned membrane electrode assembly under passive and air breathing conditions at ambient temperature and pressure has been tested. When hydrogen was used as the fuel and air as the oxidizer, it showed a maximum power density of 0.23mW/cm~2 and a maximum current density of 2.1mA/ cm~2 . The open-circuit potential for hydrogen used as the fuel was 0.82V. However, when methanol was used as the fuel and air as the oxidizer, it exhibited a maximum power density of 1.75mW/cm~2and a maximum current density of 14mA/cm~2 and with the open-circuit potential of 0.82V which was proved to be superior to the one using hydrogen as the fuel.
引文
[1]黄镇江编著,刘凤君改编.燃料电池及其应用[M].北京:电子工业出版社,2005
    [2]尹德成,耿佃国,王晓原.燃料电池研究进展[J].云南大学学报,2005,27(5A):173-176
    [3]衣宝廉.燃料电池-原理·技术·应用[M].北京:化工出版社,2003
    [4]毛宗强等.燃料电池[M].北京:化学工业出版社,2005
    [5]衣宝廉.燃料电池—高效、环境友好的发电方式[M].北京:化工出版社,2000
    [6]庞志成,胡玉春.燃料电池技术原理和应用[J].节能与环保,2002,12(30):26-29
    [7]陈延禧.聚合物电解质燃料电池的研究进展[J].电源技术,1996,20(1):21-27
    [8]章文.燃料电池的发展及应用[J].润滑油与燃料,2003,13:7-9
    [9]刘建国、孙公权.燃料电池概述[J].物理学与新能源材料专题,2004,33(2):80-81
    [10]林维明.燃料电池系统[M].北京:化学工业出版社,1996
    [11]Rodatz P,Buchi.F,Onder F,et al.Operational aspects of a large PEFC stack under practical conditions[J].Power Source,2004,128:208-217
    [12]于景荣,邢丹敏,刘富强等.燃料电池用质子交换膜的研究进展[J].电化学,2001,7(4):385-395
    [13]Mehta V,Cooper J S.Review and analysis of PEM Fuel Cell design and manufacturing[J].Power Source,2003,114:32-53
    [14]Willson M S.PEM Fuel Cells for Transportation and Stationery Power Generation Applications[J].Hydrogen Energy,1997,22(12):1137-1144
    [15]Angelo,U Dufour.Fuel Cells-A new Contributor to Stationery Power[J].Power Sources,1998,71:15-19
    [16]Charles S,Anne E M.From curiosity to "Power to Change the world"[J].Solid State lonics,2002,152:1-13
    [17]Francesco M D,Arato E.Star-up Analysis for Automotive PEMFC System[J].Power Sources,2002,108:41-52
    [18]Zobel M,Polymer A.Electrolyte Membrane Fuel Cell System for Powering Portable Computers[J].Power Sources,2003,122:1-8
    [19]朱科.质子交换膜燃料电池Pt/C电催化剂和膜电极的研究[D].天津:天津大学,2005
    [20]Oshitani M,Takayarna T.A study on the swelling of a sintered nickel hyolroxida electrode[J].Appl.Electrochem.,1986,16:403-408
    [21]Wilson M S,Gottesfeld S.Thin-film catalyst layers for polymer electrolyte fuel cell electrodes[J].Appl.Electrochem.,1992,22:1-7
    [22]Kumar G.S,Raja M,Parthasarathy S.High performance electrodes with very low platinum loading for polymer electrolyte fuel cells[J].Electrochem.Acta,1995,40(3):285-290
    [23]Maloto M,Fukuoka F,Suquwara Y.Improved preparation process of very low platinum loading electrodes for polymer electrolyte fuel cell[J].Electrochem.Soc.,1998,145(1):3708-3717
    [24]李国欣.新型化学电源导论[M].上海:复旦大学出版社,1992
    [25]邵志刚,衣宝廉,韩明等.质子交换膜燃料电池电极的一种新的制备方法[J].电化学,2000,(6):317-323
    [26]王彪,温伟,王华平.一种膜电极和支撑管合为一体的列管式燃料电池[P].中国:CN 200910045390.3,2009-1-15
    [27]胡里清.一种具有高比功率的质子交换膜燃料电池[P].中国:CN 01126123.4,2003-02-19
    [28]STEYN W J.Tubular polymer electrolyte fuel cell assembly and method of manufacture[P].US:6007932 1999-11-01
    [29]于如军,刘秀清,王捷等.管状质子交换膜燃料电池[P].中国:CN 03217133.1,2004-04-21
    [30]Deryn Chu,Rongzhong Jiang.Performance of polymer electrolyte membrane fuel cell_PEMFC/stacks.Part Ⅰ.Evaluation and simulation of an air-breathing PEMFC stack[J].Power Sources.1999,83:128-133
    [31]毛宗强,阎军,何向明.列管式质子交换膜燃料电池[P].中国:CN 97201080.7,1998-11-25
    [1]Soffer A,Gilron J.Hollow carbon fiber membranes[P].EP 671202,1995-10-13
    [2]刘恩华,李树锋等.聚丙烯腈基中空碳纤维膜制备及结构研究[J].纺织学报,2006,4(27):19-21
    [3]Ming-Chien Yang,Da-Guang Yu.Influence of activation temperature on the properties of polyacrylonitrile-based activated carbon hollow fiber[J].Journal of Applied Polymer Science,1998,68(8):1331-1336
    [4]白金锋,段世慈,刘淑琴,等.PAN基中空纤维炭膜炭化条件的研究[J].燃料化学学报,1997,25(1):85-90
    [5]孙俊芬,聚丙烯腈基活性中空炭纤维结构和性能的研究[D].上海:东华大学,2004
    [6]毛宗强等.燃料电池[M].北京:化学工业出版社,2005
    [7]毛萍君,张国萍等.以NaSCN水溶液为溶剂的PAN干湿法纺丝工艺研究[J].纤维生产,2001,6(29):8-10
    [8]王茂章,贺福.炭纤维的制造、性质与应用[M].北京:科学出版社,1985
    [1]Iwasita T.Electrocatalysis of methanol oxidation[J].Electrochim Acta,2002,47:3663-3674
    [2]付川.质子交换膜燃料电池电催化剂研究[J].重庆三峡学院学报.2004,6(20):117-120
    [3]毛宗强等.燃料电池[M].北京:化学工业出版社,2005
    [4]梁宝臣,田建华.质子交换膜燃料电池Pt/C电催化剂的制备研究[J].天津理工学院学报,2002,3(18):9-11
    [5]Jusys Z,Schmidt T J,Dubau L,et al.Activity of PtRuMeO_x(Me=W,Mo or V)catalysts towards methanol oxidation and their characterization[J].Power Sources,2002,105:295-299
    [6]张军,许莉,王宇新.直接甲醇燃料电池膜电极研究的进展[J].化学通报,2002,65:1-5
    [7]Frey Th.,Linardi M.Effects of membrane electrode assembly preparation on the polymer electrolyte membrane fuel cell performance[J].Electrochimica Acta.2004,50:99-105
    [8]徐洪峰,林治银等.用于质子交换膜燃料电池的碳载铂电催化剂[J].催化学报,2003,24(2):143-148
    [9]陈继涛,周恒辉,常文保等.二元共聚物热解碳包覆的石墨负极材料[J].物理化学学报,2002,18(2):180-182
    [10]郑晓玲.活性炭为载体钌催化剂的制备及氨合成催化性能的研究[D].福建:福州大学,2002
    [11]陈胜洲,叶飞,刘自力等.Pt/CNTs电催化剂制备的UV-Vis、FTIR和XRD 光谱分析[J].光谱学与光谱分析,2009,29(3):840-843
    [12]赵吉诗.PEM燃料电池膜电极性能的研究[D].天津:天津大学,2003
    [13]K.Kionshita.Particle Size Effects for Oxygen Reduction on Highly Dispersed Platinum in Acid Electrolytes[J].Electrochem.Sot.,1990,137(3):845-848
    [14]石肇元.质子交换膜燃料膜电极性能的研究[D].天津:天津大学,2006
    [15]D.A.Stevens,M.T.Hicks,G.M.Haugen,et al.Ex situ and In situ Stability Studies of PEMFC Catalysts[J].Electrochem.Soc.2005,152(12):A2309-A2315
    [16]刘邦卫.质子交换膜燃料电池膜电极的组成和性能研究[D].天津:天津大学,2005
    [17]WU G,LIL,XU B Q.Effect of electrochemical polarization of PtRu/C catalysts on methanol electrooxidation[J].Electrochimica Acta,2004,50(1):1-10
    [18]陈旭光.PEMFC铂基催化剂的助催化剂及载体研究[D].大连:大连理工大学,2009
    [19]黄庆红.碳载铂和铂钴合金纳米粒子电催化剂对氧气还原的电催化[D].南京:南京师范大学,2005
    [1]邵志刚,衣宝廉,韩明等.PEMFC膜电极三合一组件的制备方法[J].电池,2000,30(6):269-271
    [2]徐麟.废旧全氟磺酸离子交换膜的回收和利用[D].大连:大连交通大学,2003
    [3]Jung D H,Cho S Y,Peck D H,et al.Preparation and performance of a Nafion/montmorillonite nanocompositite membrane for direct methanol fuel cell[J].J Power Sources,2003,160:309-315
    [4]石肇元.质子交换膜燃料电池膜电极性能的研究[D].天津:天津大学,2006
    [5]Srinivasan S,Ticianelli E A,Derouin C R,Redondo A.Advances in solid polymer electrolyte fuel cell technology with low platinum loading electrodes[J].Power Sources,1988,22:359-375
    [6]Ticianelli E A,Derouin C R,Srinvasan S.Localization of Platinum in low catalyst loading electrodes to attain high power densities in SPE fuel cell[J].Electroanal Chem,1988,251(2):275-295
    [7]毛宗强等.燃料电池[M].北京:化学工业出版社,2005
    [8]Ise M,Kreuer K D,Maier.Solid State Ionics,Electroosmotic Drag in Polymer Electrolyte Membranes:An Electrophoretic NMR Study[J].1999,125:213-223

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700