用户名: 密码: 验证码:
基于RSM的多响应稳健性设计方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究具有多质量特性的产品或过程的稳健性参数设计问题,重点对考虑设计参数波动及噪声时的多响应稳健性参数设计方法进行深入研究,具体从以下几个方面进行研究:
     首先,对最常用的多响应优化方法-满意度函数法进行了深入研究,指出了用其进行多响应参数设计时存在的问题,即该方法没有考虑响应的变异性、相关性和参数估计的不确定性,针对这些问题本文提出了改进方法,并通过实例分析证明了改进方法的有效性。
     其次,对考虑噪声因子时的多响应均值和方差进行了估计,并对多质量特性的方差估计进行了改进,然后,对多元损失函数法进行了改进,并提出了一个新的满意度函数法,使这两种方法均考虑了噪声因子产生的方差和拟合模型的预测方差,最后,通过一个实例分析了改进的多元损失函数法和新满意度函数法的应用效果,结果表明,这两种方法对噪声因子和参数估计的不确定都具有稳健性。
     再次,研究了考虑设计变量波动及噪声时的多响应稳健性参数设计问题。本文将设计变量的波动分为两种情况,即设计变量服从正态分布和设计变量退化两种情况。对于设计变量服从正态分布的情况,给出了考虑噪声因子时的响应均值及方差的估计,并用新的满意度函数法结合了响应的均方差和对可控因子的变化率,然后用该方法对实例进行了分析,结果表明,该方法进行优化得到的响应对设计变量的变化更具稳健性。对于设计变量退化的情况,给出了质量损失的计算方法,并研究了对设计变量进行简单周期性重置、改进的周期性重置及根据使用寿命进行重置或更换时的多响应参数设计方法。
     最后,对设计变量服从正态分布的情况,还研究了多响应参数与容差的并行设计方法,构建了总成本模型,通过使容差成本与质量损失最小化,可以同时得到设计参数的最优水平及容差。最后通过一个实例分析了参数与容差并行设计的有效性。此外,还探讨了设计变量退化时的多响应的参数、容差与维修集成设计问题,考虑了制造成本、维修成本与质量损失,通过使这三者的成本之和最小化可以获得设计参数的水平、容差及维修周期。
In this dissertation, the methodologies for Robust Parameter Design (RPD) of the products or processes with multiple characteristics are developed. The objective is to develop methods for mult-iresponse RPD when noise factors and fluctuations of design parameters are considered. The research includes the following aspects.
     First, it relates to the improvement of the traditional desirability function method. Desirability function method is the most popular approach for multi-response optimization, however, the variation, correlation and the uncertainty of parameter estimation of the responses are ignored in this approach. Thus an improved desirability function method is presented. The implementation and effectiveness of the proposed method are illustrated by an example from the literature. The result shows, the proposed method which is robust to prediction quality and variant of responses yields better results than traditional desirability function method.
     Secondly, it presents a method to multi-response RPD when noise factors are presented. The mean and variances of the responses are estimated, and the variance estimation is improved to avoid the possible nonpositive definiteness of estimated variance. Then the multivariate loss function method is improved to consider the influence of noise factors, and a new desirability function method is proposed to take into account the mean squared error of the responses. Both the mean value and variance models are incorporated into the two methods, in which the variance combines the variance due to the noise factors with the variance due to predictions, which lead to an unbiased estimator of the combined variance. Finally, an example is given where the two methodologies are applied to the data, the results show that the solutions obtained by proposed methods are robust to both noise factors and parameter estimation uncertainty.
     Thirdly, it addresses the multi-response RPD issue when both the fluctuations of design parameters and influences of noise factors are considered. When the design parameters follow normal distribution, the mean and variance estimated models are presented, and the new desirability function method which combines variances due to noise factors and the variation of the controllable factors, the sensitivisity of the responses to the fluctuation of controllable factors is given. The effectiveness of the proposed method is illustrated by an example from the literature. The result shows, compared with results from the literature, the robustness to the fluctuation of controllable factors is improved. When the design parameters drift or degraded over operation time, the quality losses are calculated, and the multi-response RPD methodology are explored when the design parameters are reset based on simple block reseeting policy, modified block resetting policy and age resetting policy.
     At last, it extends the concurrent optimization of parameter design and tolerance design to the case of multiple responses when the design parameters follow normal distribution. A total cost model is proposed by balancing multivariate losses incurred by parameter design and increased costs caused by tightening the tolerances of design parameter. And the variations of design parameter and economies of the process are considered by the proposed model. The implementation and advantages of the proposed method are illustrated by an example. The result indicates, compared with conventional parameter design, the variances of the responses and the total costs are all reduced dramatically. Furthermore, the integrated optimization of parameter design, tolerance design and maintenance is explored for products or processes with multiple characteristics when the design parameters degraded. The total cost function which consists of quality losses, manufacturing cost and maintenance is minimized to simultaneously obtain the optimal settings and tolerances of design parameter, as well maintenance policy.
引文
[1] Osborne D.M., Armacost R.L., Review of techniques for optimizing multiple quality characteristics in product development, 19th International Conference on Computers and Industrial Engineering, 1996: 24~30.
    [2] Kros J F,Mastrangelo C M, Comparing methods for the multi- response design problem, Quality and reliability engineering international, 2001, 17: 323~331.
    [3] 张于轩,多响应问题的稳健性设计优化研究,[硕士学位论文],天津,天津大学,2003.
    [4] Taguchi G, Introduction to quality engineering: designing quality into products and processes, Tokyo,Asian Productivity Organization ,Tokyo , 1986.
    [5] Kackar R.N., Off-line quality control, parameter design, and the Taguchi method, Journal of Quality Technology, 1985, 17: 176~188.
    [6] Phadke M.S., Quality enginnering using robust design,, New Jesery ,Prentice-hall, 1989, 168~190
    [7] Nair V.N., Taguchi’s parameter design: A panel discussion, Technometrics, 1992,34: 127~161.
    [8] Nair V.N., Pregibon D., Discussion of “Signal-to-noise ratios, performance criteria, and transformations”,Technometrics, 1988,30: 24~30.
    [9] 田口玄一,试验设计法(魏锡禄, 王世芳译),北京:机械工业出版社,1987.
    [10] 韩之俊,三次设计,北京:机械工业出版社,1992.
    [11] Box, G. E. P., Signal-to-noise ratios,performance criteria, and transformations (with discussion), Technometrics, 1988, 30(1):1~40.
    [12] Lin D.J., Tu W.Z., Dual response surface optimization, Journal of Quality Technology, 1995, 27(1): 34~38.
    [13] Goli T N. Taguchi methods: some technical , cultural , pedagogical perspective, Quality and Reliability Eng. International ,1993 ,9 :185~ 202.
    [14] Chen Wei , Lewis K A. Robust design approach for achieving flexibility in multidisciplinary design. AIAA Journal , 1999 , 37(8) :982 ~ 990.
    [15] Ouo K N , et al . Extensions to Taguchi method of product design, Journal of Mech. Design , 1993 ,115 :3~13.
    [16] Shoemake A C , Tsui K - L , Wu CFJ . Economical experimentation methods for robust design. Technometrics , 1991 ,33 (4) :415~421.
    [17] Lee Iing Tong , Su Chao - Ton. Optimizing multi - response problems in the taguchi method by multiple attribute design making, Quality and Reliability Engineering International , 1997 ,13 :25~34.
    [18] Myers R H. Response surface methodology in quality improvement . Communications in Statistics - Theory and Method ,1991 ,20 :156~476.
    [19] Michael W, Siddall J N. The optimization problem with optimal tolerance assignment and full acceptance. J . of Mech. Design , 1981 ,103 :842 - 848.
    [20] Bates R A , Wynn M P . Toleranceing and optimization for model- based robust engineering design, Quality and Reliability Engineering International , 1996 ,12 :119~ 127.
    [21] Kusiak A , Feng E X . Robust tolerance design for quality, .Journal of Eng. For Industry, 1996 ,118 :166~169.
    [22] 陈立周,翁海珊等,基于随机模型的产品质量设计原理与方法,工程设计,1995,(4):12~16.
    [23] Parakinson A. Mechanical design using engineering models, Journal of Mech. Design, 1995, 117: 48~54.
    [24] 陈立周, 基于质量- 成本模型的稳健优化设计-面向21世纪的工程设计. 北京:人民交通出版社,1998.
    [25] Dong Z, Hu W, Xue D. New production cost - tolerance models for tolerance synthesis, Journal of Eng. Industry, 1994, 116: 199~201.
    [26] 陈立周,稳健设计,北京:机械工业出版社, 2000.
    [27] Belegundu AD , Zhang S. Robustness of through minimum sensitivity, Journal of Mech. Design, 1992, 114: 213~217.
    [28] 张义民,贺向东,刘巧伶等,汽车零部件的可靠性稳健优化设计—理论部分, 中国工程学报,2004,6 (3):75~79.
    [29] Drerringer G.,Suich R., Simultaneous optimization of several response variables, Journal of Quality Technology, 1980, 12(4): 214~219
    [30] Harrington E.C.,The Desirability Function, Industrial Quality Control, 1965, 21: 494~498
    [31] Kim Kwang-Jae and Lin Dennis K J., Simultaneous optimization of mechanical properties of steel by maximizing exponential desirability functions, Appl. Statist., 2000, 49(3):311~325.
    [32] Khuri A.I., Conlon M., Simultaneous optimization of multiple response represented by polynomial regression functions, Technometrics, 1981, 23(4): 23~30
    [33] Kim, K. J., Lin, D. K. J., Optimization of Multiple Response Consideraing both location and Dispersion Effects, European Journal of Operational Reseach, 2006, 169(1): 133~145.
    [34] Pignetiello, J., Strategies for Robust multiresponse Quality Engineering, IIE Transactions, 1993, 25:5~15.
    [35] Chung-Ho Chen, Specification limit under a quality loss function, Journal of Applied Statistics, 1999, 26(8): 903~908
    [36] Saeed Maghsoodloo, Lien-Hai Huang, Quality loss functions and performance measures for a mixed bivariate response, Benchmarking for Quality Management & Technology, 1997, 4(2): 121~147
    [37] J.S.R. Jayaram and Yaacob Ibrahim, Robustness for multiple response problems using a loss model, International Journal of Quality Science, 1997,2(3): 199~205
    [38] Kapur C.K., Cho B.R.. Economic design of the specification region for multiole quality characteristics, IIE Transactions, 1996, 28(4):237~248.
    [39] A.E. Ames, Geza Szonyi, D.M. Hawkins, Quality loss functions for optimization across multiple response surfaces, Journal of Quality Technology, 1997, 29(3): 31~42
    [40] N. Artiles-leon. A pragmatic approach to multi-response problems using loss functions. Quality Engineering, 1996~97, 9(2):213~220.
    [41] Carlyle W. M., Montgomery D. C., Runger G. C.., Optimizaton problems and methods in quality control and improvement, Journal of Quality Technology, 2000, 32(1):1~31.
    [42] Kros J. K., Mastrangelo C. M., Comparing methods for the multi-response design problem, Quality and Reliability Engineering International, 2001, 17:323~331.
    [43] Wurl R. C., Albin S. L., A comparison of multiresponse optimization: Sensitivity to parameter selection, Quality Engineering, 1999, 11(3):405~415.
    [44] 马义中,徐济超,多指标稳健设计质量特性的度量,系统工程,1998,16 (6):34~37.
    [45] 刘玉敏,郭纯,多指标稳健设计的一般模型及其实现过程,河南科学,1995 ,13(4):295~300.
    [46] 徐济超,马义中,多指标稳健设计质量特性的度量,系统工程理论与实践,1999,8:45~48.
    [47] 朱学军,王安麟等,非稳态罚函数遗传算法及其用于机械/ 结构系统的健壮设计,机械科学与技术, 2000 ,19 (1) :49~51.
    [48] 何桢,张于轩,多响应试验设计的优化方法研究,工业工程,2003,6(4):35~38.
    [49] He Zhen, Zhang Yuxuan. Multiresponse surfaces optimization based on evidential reasoning theory, The Asian Journal on Quality, 2004,5(1):43~51
    [50] Creveling C. M., Tolerance Design: A Handbook for Developing Optimum Specification, Pearson Higher Education, 1997
    [51] Zhang G. (Ed.), Advanced Tolerancing Techniques, New York: Wiley & Sons, 1997
    [52] Yang K., Xie W. and He Y., Parameter and Tolerance Design in the Engineering Modeling Stage, International Journal of Production Research, 1994, 32(12): 2803~2916
    [53] Bisgaard. S.,Ankenman, B. Analytic parameter design, Quality Engineering, 1995, 8(1):75 ~91.
    [54] A Jeang and C.-L. Chang, Concurrent Optimization of Parameter and Tolerance Design Via Computer Simulation and Statistical Method, The International Journal of Advanced Technology, 2002, 19: 432~441
    [55] A. Jeang, Simultaneous Parameter and Tolerance Design for an Electronic Circuit Via Computer Simulation and Statistical Optimization, The International Journal of Advanced Technology, 2003, 21: 1035~1041
    [56] A. Jeang., Robust Computer-Aided Parameter and Tolerance Determination for an Electronic Circuit Design, International Journal of Production Research, 2003, 41(5): 883~895
    [57] William Li. and C.F.J. Wu, An Integrated Method of Parameter Design and Tolerance Design, Quality Engineering, 1999, 11(3):417~425.
    [58] Kim Y J, Cho B R. Economic integration of design optimization. Quality Engineering,2000, 12(4):561~567.
    [59] Gordon J. Savage, Ravi Seshadri, Minimizing cost of multiple response systems by probabilistic robust design, Quality Engineering, 2003-04, 16(1):67~74.
    [60] Harry, M.J., Abatement of Risk is Key to Six Sigma, Quality Process, 2000, Vol.33, No.7: 72~76
    [61] Basem Said EI-Haik, Manufacturing and Design for Six Sigma (X-FSS): [Doctor Dissertation], Michigan: University of Michigan, 2002
    [62] 刘久富,王宁生,丁宗红等,三次设计的扩展介绍与探讨,工业工程,2002, 5(1):50~54.
    [63] Kacker R. N.. Off-line quality control, parameter design and the Taguchi method (with discussion). Journal of Quality Technology, 1985, 17, 176~209.
    [64] Kacker R. N., A. C. Shoemaker. Robust design: a cost-effective method for improving manufacturing processes. AT&T Technical Journal, 1986, 65: 39~50.
    [65] Buck B. J., Wynn H. P.. Optimization strategies in robust engineering design and computer-aided design, Quality and Reliability Engineering International,1993,9:39~48.
    [66] 李昭阳,韩之俊,田口方法和双重曲面响应(DRSM)法,数理统计与管理,2000,20(5):40~44
    [67] K. M. Tay, C. Butler. Methodologies for Experimental Design: A Survey, Comparison and Future Predictions, Quality Engineering, 1999,11(3): 343~356.
    [68] T. B. Barker. Quality Engineering by Design: Taguchi’s Philosophy , Quality Progress, 1986,12,33~42.
    [69] G. G. Vining, R. H. Myers., Combining Taguchi and Response Surface Philosophies A Dual Response Approach , Journal of Quality Technology, 1990,22,38~45.
    [70] R.V. Leon, A. C. Shoemaker, R. N. Kacker., Performance Measures Independent of adjustment, Technometrics, 1987, 29, 253~265.
    [71] J. A. Nelder, Y. Lee. Generalized Linear Models for Analysis of Taguchi-Type Experiments, Communications in Statistics: Theory and Methods, 1991,20, 477~496.
    [72] M. Hamada, J. A. Nelder., Generalized linear models for quality-improvement experiments, Journal of Quality Technology, 1997,39(3), 292~304.
    [73] W. R. Myers, W. A. Brenneman, R.H. Myers., A dual-response approach to robust parameter design for a generalized linear model, Journal of Quality Technology, 2005,37(2), 130~138.
    [74] Y. Lee, J. A. Nelder. Robust design via generalized linear models, Journal of Quality Technology, 2003, 35(1):2~12.
    [75] J. Engel, A. F. Huele. A generalized linear modeling approach to robust design, Technometrics, 1996, 38(4),365~371.
    [76] R. H. Myers, D. C.Montgomery., A tutorial on generalized linear models [J]. Journal of Quality Technology, 1997, 29(3):274~291.
    [77] Box, G. E. P., Wilson, K. B., On the Experimental Attainment of Optimum Conditions, Journal of the Royal Statistical Society, 1951, Vol. 1, Series B, 13:1~45.
    [78] W.J. Hill, W.G. Hunter, A review of response surface methodology: A literature review, Technomitics, 1965, 8:571~590
    [79] G.G. Vinning, Diane Schaub, Experimental designs for estimating both mean and variance functions, Journal of Quality Technology, 1996, 28(2): 34~38
    [80] A.F.C. Karen, P. R. Nelson, Dual response optimization via direct function minimization, Journal of Quality Technology, 1996, 28(3): 26~30
    [81] Lind, E., Goldin J., Hickman J., Fitting yield and cost resonse surfaces. Chemical Engineering Progress, 1960, 56:62~68.
    [82] Guillou A. A., Floros J. D. Multiresponse optimization minimizes salt in natural cucumber fermentation and storage, Journal of Food Science, 1993, 58(6): 1381~1389.
    [83] Pignatiello J.J. Strategies for robust multiresponse quality engineering, IIE Transaction, 1993, 25(3):5~15.
    [84] Tsui K L. Robust design optimization for multiple characteristic problems, Int. J. Prod. Res.,1999,37(2):433~445.
    [85] Kuhnt S, Erdbrugge M. A strategy of robust parameter design for multiple responses, Statistical Modelling, 2004,4:249~264.
    [86] Vining G G. A compromise approach to multiresponse optimization, Journal Quality Technology, 1998, 30(4):309~313.
    [87] Young-Hyun Ko, Kwang-Jae Kim, Chi-Hyuck Jun. A new loss function-based method for multiresponse optimization, Journal of Quality Technology, 2005, 37(1):50~59
    [88] J.L. Ribeir, E.A.Elsayed. A case study on process optimization using the gradient loss function, Int. J. Prod. Res. 1995, 33(12):3233~3248.
    [89] V. Roshan. Joseph. Quality loss functions for nonnegative variables and their application, Journal of Quality Technology, 2004, 36(2):129~138
    [90] E.C. Harrington, The Desirability Function, Industrial Quality Control, 1965, 21: 494~498.
    [91] Castillo E D, Montgomery D C. Modified desirability function for multiple response optimization, Journal of Quality Technology, 1996, 28 (3):337~345.
    [92] C.K.Ch’ng, S. H. Quah, H.C.Low., A new approach for multiple-response optimization, Quality Engineering, 2005,17:621~626.
    [93] Pal-Hun Lee, Bong-Jin Yum. Multi-characteristics parameter design: a desirability function approach based on process capability indices, International Journal of Reliability, Quality and Safety Engineering, 2003,10(4):445~461.
    [94] ]Ful-Chiang Wu, Optimization of correlated multiple quality characteristics using desirability function. Quality Engineering, 2005, 17(1):119~126.
    [95] Jeong I J, Kim K J. Interactive desirability function approach to multi-response surface optimization, International Journal of Reliability, Quality and Safety Engineering, 2003, 10(2): 205~217.
    [96] Chiao C H, Hamada M. Analyzing experiments with correlated multiple response, Journal of Quality Technology, 2001, 33(4):451~465.
    [97] Quesada G M, Castillo E D, Peterson J J. A Bayesian approach for multiple response surface optimization in the presence of noise variables, Journal Applied Statistics, 2004, 31(3):251~270.
    [98] John J. Peterson. A posterior predictive approach to multiple response surface optimization, Journal of Quality Technology, 2004,36(2):139~153.
    [99] Quesada G M, Castillo E D. A dual-response approach to the multivariate robust parameter design problem, Technometrics,2004, 46(2):176~187.
    [100] Tong C T, Lee I. Multi-response robust design by principal component analysis, Total Quality Management, 1997, 8(6):409~416.
    [101] Antony J. Multi-response optimization in industrial experiments using Taguchi’s quality function and principal component analysis, Quality and reliability engineering international, 2000, 16:3~8.
    [102] 钟晓芳,韩之俊,利用主成分分析对多质量特性的优化设计,南京理工大学学报,2003, 27(3):301~304.
    [103] Auer C, Erdbrugge M, Gobel R. Comparison of multivariate method for robust parameter design in sheet metal spinning, Applied stochastic models in business and industry, 2004, 20:201~218.
    [104] C.K.Ch’ng, S. H. Quah, H.C.Low. Index C in multiple response Optimization, Quality Engineering, 2005,17:165-~171.
    [105] Del Castillo, E. Multiresponse process optimization via constrained confidence regions, Journal Quality Technology, 1996, 28(1):61~70.
    [106] Osborne, D. M., Armacost, R. L., State of the Art in Multiple Response Surface Methodology, Computational Cybernetics and Simulation 1997 IEEE International Conference on Systems, Man, and Cybernetics, 1997, Volume 4, 12-15 Oct.:3833~3838.
    [107] Xu, K., Lin, D.K.J., Tang, L.C., Xie, M., Multiresponse System Optimization Using A Goal Attainment Approach, IIE Transactions, 2004, 36:433~445.
    [108] Park, K. S., Kim, K. J., Optimizing Multi-response Surface Problems: How to Use Multi-objective Optimization Techniques, IIE Trasactions, 2005, 37, 6:523~532
    [109] Tong L I, Su C T. Optimizing multi-response problem in the Taguchi method by fuzzy multiple attribute decision making, Quality and reliability engineering international, 1997, 13:25~34.
    [110] Tong L I, Su C T. The optimization of multiresponse problems in the Taguchi method, International Journal of Quality and Reliability Management, 1997, 14(4): 367~380.
    [111] Lu D, Antony J., Optimization of multiple responses using a fuzzy-rule based inference system, Int. J. Prod. Res., 2002, 40(7):1613~1625
    [112] T. S. Arthanari., A game theory application in robust design, Quality Engineering, 2005, 17:291~300
    [113] C.K.Ch’ng, S. H. Quah, H.C.Low., Index C in multiple response Optimization, Quality Engineering,2005,17:165~171.
    [114] Shah H K., Impact of correlated responses on the desirability function, Arizona: Arizona State University, 2001.
    [115] Myers R H, Montgomery D C., Response Surface Methodology, New York: John wiley &Sons, 1995.
    [116] Wu & Hamada, Experiments: Planning, Analysis, and Parameter Design Optimization, New York: John Wiley & Sons, Inc., 2000
    [117] Kenneth Lysons, Michoel Gillingham, 采购和供应链管理(鞠磊, 莫佳忆, 胡克文译), 北京: 电子工业出版社, 2004: 164
    [118] Raymond H. Myers and Douglas C. Montgomery, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, New York: John Wiley & Sons, Inc., 1995
    [119] Lorenzen, T. J., and Villalobos, M.A.. Understanding robust design, loss function, and signal to noise ratios, General Motors Internal Research Publication, GMR-7118,1990.
    [120] Welch W.J., Yu T. K. and Kang S. M., Computer Experiments for Quality Control by Parameter Design, Journal of Quality Technology, 1990, 22 (1):15~22
    [121] Myers R. H., Khuri A. I. and Vining G., Response Surface Alternative to the Taguchi Robust Parameter Design, American Statistician, 1992, 46,(2) 131~139
    [122] Montgomery D. C., Using Fractional Factorial Designs for Robust Process Development, Quality Engineering, 1991, 3: 193~205
    [123] Borkowski J. J. and Lucas J. M., Designs of Mixed Resolution for Process Robustness Studies, Technometrics, 1997, 30: 63~70
    [124] Box G. E. P. and Jones S., Split-Plot Designs for Robust Product Experimentation, Journal of Applied Statistics, 1989, 19: 3~26
    [125] Borror C M, Montgomery D C., Evaluation of statistical design for experiments involving noise variables, Journal of Quality Technology, 2002,34(1):54~70
    [126] James M. Lucas, How to Achieve a Robust Process Using Response Surface Methodology, Journal of Quality Technology, 1994, 26(4): 248~160
    [127] Wolfinger R. D. and Tobias R. D., Joint Estimation of Location, Dispersion and Random Effects in Robust Designs, Technometrics, 1998, 40: 62~71
    [128] Chipman H., Handing Uncertainty in Analysis of Robust Design Experiments, Journal of Quality Technology, 1998,30: 11~17
    [129] Quesada G M, Castillo E D., Two approaches for improving the dual response method in robust parameter design, Journal of Quality Technology, 2004,36(2):154~168.
    [130] Saeed Maghsoodloo., The exact relation of Taguchi’s signal-to noise ratio to his quality loss function. Journal of Quality Technology, vol.22(1),1990:57~67.
    [131] Angus Jeang, Economic Tolerance Design for Quality, Quality and Reliability Engineering International, 1994, 10(1): 113~121
    [132] Raymond H. Myers, Yoon Kim and Kristil L. Griffiths, Response Surface Methods and the Use of Variables, Journal of Quality Technology, 1997, 29(4): 429~440
    [133] Deniel A. McAdams, Kristin L. Wood. Tuning parameter tolerance design: Foundations, Methods, and Measures, Research in Engineering Design, 2000, 12:152~162.
    [134] Yong Chen., Integrated design and analysis of product quality and tooling reliability, Michigan:University of Michigan,2003
    [135] Parkinson A. Robust mechanical design using engineering models. Transactions ASME Journal of Mechanical Design.1995,117:48 54.
    [136] Parkinson A, Sorensen C, Pourhassan N. A general approach for robust optimal design, Transactions ASME Journal of Mechanical Design, 1993, 115: 74~80.
    [137] 周继胜,船舶结构鲁棒设计研究,上海:上海交通大学,1999.
    [138] 曹衍龙,王移风,杨将新等.,基于可行稳健性的公差设计方法研究,浙江大学学报(工学版),2005,,39(3):364 ~367.
    [139] 曹衍龙,杨将新,吴昭同等,面向制造环境的稳健公差设计方法,中国机械工程,2003,,14(2):134 ~137.
    [140] 张志红,基于并行质量工程的 6σ 公差设计方法的研究,[博士学位论文],天津,天津大学,2006.
    [141] Fathi, Y. A nonlinear programming approach to the parameter design problem. European Journal of Operational Research, 1991,53:371-381.
    [142] Plante, R. D. Process capability: a criterion for optimizing multiple response product and process design. IIE transactions, 2001, 33(6):497-509.
    [143]Yong Jin Kim. Design optimization issues in off-line quality engineering systems,Clemson University,2000
    [144] Pinel, J. F., Roberts, K. A. Tolerance assignment in linear network using nonlinear programming, IEEE Transactions on Circuit Theory, 1972, 19: 475~479.
    [145] Chase, K. W., Greenwood, W. H., Loosli, B. G., et al. Lease cost tolerance allocation for mechanical assemblies with automated process selection. Manufacturing Review, 1990, 3: 49~59.
    [146] Hillier, M. J., A systematic approach to the cost optimization of tolerances in complex assemblies, Bulletin of Mechanical Engineering, 1966, 5:151~161.
    [147] Spotts, M.F., Allocation of tolerances to minimize cost of assembly, Journal of Engineering for Insustry, 1973, 95:162~764.
    [148] Parkinson, D. B., Assessment and optimization of dimensional tolerances. Computer-Aided Design, 1985, 17:191~199.
    [149] Bennett, G., Gupta, L. C. Least cost tilerances-1. Int. J. Prod. Res.,1970, 8: 65~74.
    [150] Sutherland, G. H., Roth, B..Mechanism design: Accounting for manufacturing tolerances and costs in function generating problems. J. Eng. Ind..1975, 98:283~286.
    [151] Lee, W. J., Woo, T.C., Optimum selection of discrete tolerances, ASME J. Methan. Transmiss. Automat. Des.. 1989,111:243~251.
    [152] Peters, J.,Tolerancing the components of an assembly for minimum cost. Journal of Engineering for Industry,1970,92:677~682.
    [153] Speckhart, F.H. Calculation of tolerance based on minimum cost approach. Journal of Engineering for Insustry, 1972, 94:447~453.
    [154] Wilde, D. Prentice, E. Minimum exponential cost allocation of sure-fit tolerance. Journal of Engineering for Industry, 1975, 97:1395~1398.
    [155] Michael, W. and Siddall, J. N. The optimization problem with optimal tolerance assignment and full acceptance. Journal of Mechanical Design, 1981,103:842~848.
    [156] Michael, W. and Siddall, J. N. The optimal tolerance assignment with less than full acceptance.. Journal of Mechanical Design, 1982,104:855~860.
    [157] Dong Z., Hu, W., Xue, D. New production cost-tolerance models for tolerance synthesis. Journal of Engineering for Industry, 1994,116: 199~206.
    [158] Dong, Z. Tolerance synthesis by manufacturing cost modeling and design optimization, Advanced Tolerance Techniques, H.C.Zhang(ed.), John Wiley & Sons, Inc., New York, NY, 1997, 233~260.
    [159] Chase, K., Parkinson, A.,A survey of research in the application of tolerance models to the design of mechanical assemblics, Research in Engineering Design. 1991,3:23~37.
    [160] Valdez-Flores,C and Feldman, R. M., A survey of preventive maintenance models for stochastically deteriorating single-unit systems, Naval Research Logistics, 1989, 36: 419~446.
    [161] Pierskalla, W. P. and Voelker, J. A., A survey of maintenance models: the control and surveillance of deteriorating systems, Naval Research Logistics Quarterly, 1976, 23: 353~388.
    [162] Elsayed, E. A., Reliability Engineering, Addison Wesler Longman, Inc. 1996.
    [163] Roy, U., Liu, C. R. and Woo, T. C., Review of dimensioning and tolerancing: representation and processing, Computer-Aided Design, 1991, 23:466~483.
    [164] Voelcker, H. B. The current state of affairs in dimensional tolerancing. Integrated Manufacturing System, 1998, 9(4):205~217.
    [165] Barlow R E,Hunter L C, Optimum preventive maintemance policies. Operations Research, 1960:90-100.
    [166] Beichelt F, Fisher K.G. Genenal failure model applied to preventice manintenance. IEEE Trans. Reliability. 1980, R-29(4):39-41
    [167] Blanchard, S. B., Verma, D., Peterson, E.L.Maintainability: a key to effective serviceability and maintenance management. John Wiley and Sons, Inc., New York. 1995.
    [168] Tao, Z., Corotis, R. B., Ellis, J.H. Reliability-based structural design with markov decision processes, Journal of Structural Engineering, 1995,121(6):971~980.
    [169] Van Houten, F.J.A.M., Tomiyama, T., Salomons, O. W. Product modeling for model-based maintenance, Annals of the CIRP, 1998,47(1):123~128.
    [170] Jin, J., Chen,Y., Quality and reliability information information integration for design evaluation of fixture system reliability, Quality and Reliability Engineering International, 2001,17:355~372.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700