用户名: 密码: 验证码:
面向质量特性的定制产品稳健设计技术及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为解决产品定制化程度与质量稳健性之间的矛盾,本文提出了面向质量特性的定制产品稳健设计技术,对产品质量模型的构建、产品质量特性的优化提取方法、产品模块的划分与重构技术、产品族的稳健规划和产品模块选配与装配线设计进行了深入研究,并结合企业具体应用将上述技术应用于实际产品开发中,取得了良好的效果。
     论文的主要内容如下:
     第一章综述了质量特性和定制产品设计的研究现状,阐述了稳健设计的内涵和研究现状,在分析了现有定制产品的稳健设计方法不足基础之上,给出了面向质量特性的定制产品稳健设计的主要思想和研究背景。
     第二章分析了产品的基本质量观,探讨了定制产品的质量概念特点,提出了定制产品质量物元概念,给出了质量物元的表达方法,并基于可拓逻辑的物元变换构建了定制产品的多维质量物元模型;在此基础上,提出了定制产品的多维质量物元可拓评价方法。数控加工中心的质量模型构建与质量评价实例,验证了方法的可行性。
     第三章提出了基于证据推理的细分需求群质量特性提取方法。研究了客户需求的物元表达、关系和筛选,给出了客户需求物元相似性度量计算方法,采用物元蚁群聚类实现了对客户需求群的聚类细分;建立了客户需求、质量特性以及质量特性自相关的群体信念度结构,通过对评价证据的融合与递归推理,得出客户需求重要度、质量特性初始重要度和质量特性自相关关系,进而构建了优化决策的整数规划模型,实现了对细分需求群的质量特性优化提取。上述方法在数控加工中心需求聚类划分和质量特性提取的具体应用,可表明方法的先进性。
     第四章提出了基于质量准则的产品模块划分与重构方法。研究以质量需求变化而引起的产品零部件之间的变动程度为模块划分准则,并由此给出质量需求与产品零部件的关联变动度计算方法,采用扩展的解析结构模型对产品综合关联关系进行描述,通过对扩展解析结构模型的演化分解,形成产品初始模块,给出了衡量模块聚合度,耦合度以及质量需求趋同度的计算方法,构建了产品模块重构的优化数学模型。最后详细分析了GMC型精密五轴加工中心的模块划分与重构的应用案例。
     第五章提出了基于多元质量特性波动的产品族稳健规划方法。针对设计参数随机变化引起的产品族质量特性的波动问题,提出了多元质量特性稳健指数概念和计算方法,构建了以多元质量特性稳健指数作为约束条件的产品族稳健优化模型;在产品族规划过程中,首先通过对设计参数的灵敏度分析选择平台参数,然后采用模糊C-均值聚类算法确定平台参数的共享策略,最后进行产品实例的稳健优化,实现设计目标与设计稳健性的综合优化。以数控加工中心的微型电机产品族设计为具体应用,证明所提方法是一种有效的产品族稳健优化设计方法。
     第六章提出了基于田口质量的定制产品选配及装配线平衡优化方法。分别给出了衡量模块实例稳健性和产品装配稳健性的计算公式,据此建立了定制产品稳健选配的数学规划模型,实现模块实例的最优选配组合;构建了以装配线闲置率、负荷均衡和装配成本为决策目标的装配线平衡多目标优化数学模型,并将蚁群优化算法与Pareto过滤技术相结合,提出了可求解装配线平衡的多目标蚁群优化算法。分别以数控加工中心的关键部件回转刀架装置和机械手装置的模块选配和装配生产实例,验证了上述模型和算法的有效性。
     第七章结合企业项目需求和本文研究成果,开发了数控机床定制化稳健设计系统(CNC-CRDS),以工程实践验证了所提理论和方法的正确性和可行性。
     第八章总结了本文的主要研究内容和成果,并展望了今后的研究工作。
To deal with the contradiction between the customilized level and quality robustness of product, a new technology of robust design for customization products oriented to quality characteristics is proposed in this dissertation, which is mainly consisted of the construction of product quality, the optimization extraction method of product quality characteristics, the partition and reconfiguration of product module, the robust programming of product family and the design of selective assembly and assembly line balancing. Furthermore, the effective applications on practical projects proved advancement and validity as well.
     The main contents of this dissertation are as follows:
     Chapter 1 gives the reviews of quality characteristics and customization product design. The connotation and current research of robust design are discussed as well. Based on the analyzing the deficiencies in existing method of robust design for customization product, the main ideas and research background of robust design for customization products oriented to quality characteristics are given.
     Chapter 2 analyzes the basic quality viewpoint about product, discusses the characteristics of quality conception for customization products, proposes the concept of quality matter-element for customization products, gives the expression method of quality matter-element, and constructs the multidimensional quality matter-element model by matter-element transformation based on extension logic. And then extension evaluating method of multidimensional quality matter-element for customization products is put forward. The instance of model construction and quality evaluating for Computerized Numerical Control (CNC) machining center is given to illustrate the feasibility of the methods.
     Chapter 3 proposes an extraction method of quality characteristics for the segmentation of customer groups based on evidence reasoning. The matter-element description, the relationship and the selection for customer requirements are researched, and the calculation method of the similarity measure for customer requirements matter-element is given, then applying matter-element ant colony clustering algorithm to segment the customer requirement groups. Moreover, the evidence model of group belief degree about customer requirement, quality characteristics and interrelation among quality characteristics is built up firstly, then the importance degree of customer requirement, the initial importance degree of quality characteristics and the interrelation among quality characteristics are deduced by evaluation evidence fusion and recursive reasoning. In addition, the decision-making optimization model based on integer programming is constructed to extract the quality characteristics for the segmentation of customer requirement groups. The abovementioned approaches are applied to the case of CNC machining center on segmenting customer requirement groups and extracting quality characteristics to demonstrate the advantage.
     Chapter 4 proposes the method of product module partition and reconfiguration based on quality criterion. The variation of components arisen by the change of quality requirement is researched as the criterion of module partition, and the calculation method of interactive variation degree about quality requirements and product components is given accordingly. Then the extended Interpretive Structure Modeling(ISM) is developed to describe the interactive relationship of product components, and the initial allocation of modules is formed by decomposing the extended ISM. Moreover, the calculation methods concerning the clustering degree, the coupling degree and the approximation degree of quality requirements are presented. The reconfiguration programming model of modules is proposed correspondingly. Finally, the module partition and reconfiguration of GMC CNC machining center is analyzed as an instance.
     Chapter 5 proposes the method of product family robust programming based on the fluctuation of multiple quality characteristics. Aiming at the fluctuation problem incurred by the stochastic change of design parameters for the quality characteristics of product family, the conception defined as multiple quality characteristics robust index and its calculation method is presented, then, taking the robust index as the constraint condition, the robust optimization model of product family design is constructed. During the programming of product family, the platform parameters are chosen through analyzing the sensitivity of the design parameters firstly. Then, the Fuzzy C-Means clustering algorithm was applied to determine the share strategy of platform parameters by clustering the performance variation. At last, the robust optimization of instance products is implemented to carry out the integration optimization of design objective and design robustness. The feasibility and effectiveness of proposed approach are demonstrated by the robust optimization design of CNC machining center's micro-motor families.
     Chapter 6 proposes a optimization method of selective assembly and assembly line balancing based on.Taguchi's quality. The. calculation formulae of instance robustness and product assembly robustness are given. Based on above foundation, the mathematical programming model of robust selective assembly for customization product is built up with the goal of optimal assembly combination of module instances. Moreover, concerning the objectives of line idle rate, workload smoothness and assembly cost, the multi-objective optimization mathematical model of assembly line balancing is formulated, and a multi-objective ant colony algorithm to solving the assembly line balancing is proposed by combining the ant colony optimization algorithm and Pareto filter technology. Finally, the case of CNC machining center's key components which is revolving tool holder and controlled robotic arm is provided to illustrate the proposed model and algorithm.
     Chapter 7 develops the CNC machine customization robust design system (CNC-CRDS) oriented quality characteristics with the project requirement and research results, which shows the validity and feasibility of the new theory and method proposed in the dissertation.
     Chapter 8 summarizes the key research contents and achievements, and givens conclusions along with recommendations for future research.
引文
[1]Davis S M. Future perfect[M]. Addison-Wesley Publishing.1987.
    [2]Swif K G, Allen A J. Product variability risks and robust design[J]. Journal of Engineering Manufacture. 1994;208(1):9-19.
    [3]Franceschini F, Rossetto S. Design for quality:selecting a product's technical features[J]. Quality Engineering.1997;9(4):681-688.
    [4]林志航.产品设计与制造质量工程[M].北京:机械工业出版社.2005.
    [5]Morup M. A new design for quality paradigm[J]. Journal of Engineering Design.1992;3(1):63-80.
    [6]Thornton A. Using key characteristics to balance cost and quality during proudct development[C]. Proceeding of Research Society, London, Sacramento.1997:14-27.
    [7]Juran J M, Godfrey A B. Quality control handbook[M]. McGraw-Hill.1999.
    [8]何益海,唐晓青.基于关键质量特性的产品保质设计[J].航空学报.2007;28(6):1468-1481.
    [9]Thornton A C. A mathematical framework for the key characteristic process[J]. Research in Engineering Design.1999; 11(3):145-157.
    [10]Wang M Q Tang X Q, Wang S C. A systematic methodology for quality control in product development process[J]. International Journal of Production Research.2007;45(7):1561-1576.
    [11]Garvin D A. What does'product quality' really mean?[J]. Sloan Management Review.1984;26(1):25-43.
    [12]戴伟,唐晓青.基于质量特性的产品质量策划模型及应用.计算机集成制造系统.2009;15(10):1938-1945.
    [13]郭惠昕,任丕顺,张国平.多质量指标的解耦与稳健设计[J].农业机械学报.2009;40(1):203-205.
    [14]Karsak E E, Sozer S, Emre A S. Product planning in quality function development using a combined analytic network process and goal programming approach[J]. Computer and Industrial Engineering. 2002;44:171-190.
    [15]Kumar P, Barua P B, Gaindhar J L. Quality optimization(multi-characteristics) througn Taguchi's technique and utility concept[J]. Quality and Reliability Engineering International.2000;16(2):475-485.
    [16]王美清,唐晓青.产品设计中的用户需求与产品质量特征映射方法研究[J].机械工程学报.2004;40(5):136-140.
    [17]李延来.基于粗糙集的产品规划质量屋构建研究[D].成都:西南交通大学.2006.
    [18]张根保,纪富义,任显林,葛红玉等.复杂机电产品关键质量特性提取模型[J].重庆大学学报.2010;33(2):8-14.
    [19]高齐圣.质量工程与控制的应用研究[D].沈阳:东北大学.1999.
    [20]乐清洪,腾霖,朱名铨,王润孝.先进制造环境下质量控制的理论与方法[J].航空精密制造技术.2004;40(2):1-5.
    [21]Ken S. Quality control in automation[M]. Kogan Page Ltd.1985.
    [22]张公绪.选控图理论与实践[M].北京:人民邮电工业出版社.1984.
    [23]苏强,陈剑.基于ISO9000与Baldrige的质量管理体系诊断与改进[J].清华大学学报.2000;40(2):122-126.
    [24]卓德保,徐济超.面向过程改进的诊断性质量评价[M].北京:机械工业出版社.2005.
    [25]徐波,于劲松,李行善.复杂系统的智能故障诊断[J].信息与控制.2004;33(1):56-60.
    [26]Hubka V. Design for quality and design methodology[J]. Journal of Engineering Design.1992;3(1):5-15.
    [27]段桂江,唐晓青.保质设计的集成化过程与方法模型研究[J].中国机械工程.2005;16(19):1743-1746.
    [28]张根保,曾海峰,王国强,张家为.复杂机电产品质量特性解耦模型[J].重庆大学学报.2010;33(5):7-15.
    [29]马彤兵,杨岚.基于质量设计的QFD与DOE集成模式研究[J].组合机床与自动化加工技术.2008;10:110-112.
    [30]何飞,黎敏,阳建宏,徐金梧.基于小波相关向量机的产品质量模型[J].北京科技大学学报.2009;31(7):934-938.
    [31]Costa A I A, Dekker M, Jongen W M F. Quality function deployment in the food industry:a review[J]. Trends in Food Science and Technology.2001; 11 (9-10):306-314.
    [32]李成,高建明,陈富民,陈琨.制造过程产品质量目标管理方法研究及系统实现[J].计算机集成制造系统.2009;15(6):1148-1154.
    [33]黄重国,刘鲁乐,袁清华,何伊林.质量功能配置在车身检具设计中的应用[J].计算机集成制造系统.2007;13(1):190-195.
    [34]周海京.故障模式及影响分析与故障树分析[M].北京:航空工业出版社.2003.
    [35]姜兴宇,王贵和,张新敏,赵颖等.面向全生命周期的产品质量综合评价方法研究[J].系统仿真学报.2008;20(20):5581-5584.
    [36]余忠华.保质设计中的质量评价研究[J].计算机集成制造系统.2001;7(6):65-68.
    [37]Goldberg Y. An expert system approach for qualityassurance auditing[J]. International Journal of Advanced Manufacturing Technology.2005;26(4):415-419.
    [38]Singh K. Mechanical design principles:applications, techniques and guidelines for manufacture[M]. Australia, Melbourne:Nantel Publications.1996.
    [39]Liu J B, Stephan B, Chang Q, Xiao G X. Cost modeling of quality loops in manufacturing systems[C]. IIE Annual Conference and Expo 2008.2008:247-252.
    [40]Huang C C, Kusiak A. Modularity in design of products and systems[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans.1998;28(1):66-77.
    [41]Gershenson J K, Prasad G J, Allamneni S. Modular product design:a life-cycle view[J]. Journal of Integrated Design and Process Science.1999;3(4):13-26.
    [42]Ulrich K, Tung K. Fundamentals of product modularity. Issues in Design/Manufacturing Conference[C]. 1991;New York:ASME, DE39:73-80.
    [43]侯亮,唐任仲,徐燕申.产品模块化设计理论、技术与应用研究进展[J].机械工程学报.2004;40(1):56-61.
    [44]Sa'ed M, Salhieha A K. Macro level product development using design for modularity[J]. Robotics and Computer Integrated Manufacturing.1999; 15:319-329.
    [45]Gupta S. Modular design:a review of research and industrial applications[C]. IIE Annual Conference and Expo 2007-Industrial Engineering's Critical Role in a Flat World-Conference Proceedings.2007:1563-1568.
    [46]Jose A. Modular and platform methods for product family design:Literature analysis. Journal of Engineering Manufacture.2005;16(3):371-390.
    [47]Suh N P. The principle of design[M]. Oxford:Oxford University Press.1990.
    [48]Pahl G, Beitz W. Engineering design-a systematic approach[M]. London:Springer-Verlag.1996.
    [49]Stone R B, Wood K L, Crawford R H. Using quantitative functional models to develop product architectures[J]. Design Studies.2000;21(3):239-260.
    [50]Mikkola J H. Product architexcture design:implications for modularization and interface management[C]. Organizing processes of Learning, Copenhagen Business School, Denmark.2000.
    [51]Stone R, Wood K, Crawford R. A heuristic method to identify modules from a functional description of a product[C]. ASME Design Engineering Technical Conferences, Atlanta,Georgia,USA,DTM-5642.1998.
    [52]Zamirowski E J, Kevin N O. Identifying product family architecture modularity using function and variety heuristics[C].11th International Conference on Design Theory and Methodology Las Vegas, USA:ASME.1999:15-26.
    [53]Daniel A M, Stone R B, Wood L K. Functional interdependence and product similarity based on customer needs[J]. Engineering Design.1999;11(1):1-19.
    [54]Kusiak A, Huang C C. Development of modular products[J]. IEEE Transactions on Component, Packaging, and Manufacturing Technology-Part A.1996;19(4):523-538.
    [55]Cetin O L, Saitou K. Decompositon-based assembly synthesis for structural modularity[J]. Journal of Mechanical Design.2004;126(2):234-243.
    [56]Stone R B. A heuristic method for identifying modules for product architectures[J]. Design Studies. 2000;21(1):5-31.
    [57]Erixon G. Modularity-the basis for product and factoryreengineering[C]. Annals of the CIRP. 1996;45(1):1-6.
    [58]王爱民,孟明辰,黄靖远.基于设计结构矩阵的模块化产品族设计方法研究[J].计算机集成制造系统.2003;9(3):130-135.
    [59]王文旦,秦现生,阎秀天,白晶.一种可视化设计结构矩阵的产品设计模块化识别方法[J].计算机集成制造系统.2007;13(12):2345-2350.
    [60]王海军,魏小鹏.面向规模化产品族的数值规划方法[J].计算机辅助设计与图形学学报.2005;17(3):473-478.
    [61]孟祥慧,蒋祖华.面向产品族设计的模块规划[J].上海交通大学学报.2006;40(11):1869-1876.
    [62]Martin M, Ishii K. Design for variety:developing standardized and modularized product platform architechtures[J]. Research in Engineering Design.2002; 13(4):213-235.
    [63]Siddique Z. Common platform development:design for variety[D]. USA:Georgia Institute of Technology. 2000.
    [64]Holltt K. Identifying common modules for collaborative R&D[C]. POM2002 Meeting on Production and Operations Management San Francisco,CA,USA.2002:1-16.
    [65]Jiang Z, Yan J. Research and development on constraint-based product family design and assembly simulation[J]. Journal of Materials Processing Technology.2003; 139(1):257-262.
    [66]Gonzalez-Zugasti J, Otto K, Baker J. A method for architecting product platforms[J]. Research in Engineering Design.2002; 12(7):61-72.
    [67]王爱民,孟明辰,黄靖远.聚类分析法在产品族设计中的应用研究[J].计算机辅助设计与图形学学报.2003;15(3):343-347.
    [68]王爱民,孟明辰,黄靖远,肖田元.多目标约束环境下的模块化产品族设计方法研究[J].机械科学与技术.2003;22(4):521-524.
    [69]王海军,王吉军,孙宝元,刘志峰,魏小鹏.基于核心平台的模块化产品族优化设计[J].计算机集成制造系统.2005;11(2):162-167.
    [70]Simpson T W, Chen W, Allen J K. Conceptual design of a family of products through the use of the robust concept exploration method[C].6th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization,Bellevue,WA.1996;9(2):1535-1545.
    [71]Simpson T W, Maier J R, Mistree F. Product platform concept exploration method for product family design[D]. ASME Design Theory and Methodology.1999;9:12-19.
    [72]Nayak R U, Chen W, Simpson T W. A variation-based method for product family design[J]. Engineering Optimization.2002;34(1):65-81.
    [73]Messac A, Martinez M P, Simpson T W. Effective product family design using physical programming[J]. Engineering Optimization.2002;34(3):245-261.
    [74]Messac A, Martinez M, Simpson T W. Introduction of a product family penalty function using physical 参考文献
    'ogramming[J].Journal of Mechanical Design.2002;124(2):164-172.
    [75]D'Souza B,Simpson T W.A genetic algorithm based method for product family design optimization[C].(?)SME Design Engineering Technical Conferences-Design Automation Conference.2002;9:1-10.
    76]Simpson T W,Brayan D.Assessing variable levels of platform commonality within a product family ising a multiobjective genetic algorithm[C].9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Dptimization Atlanta:AIAA.2002:5427.
    [77]Dai Z,Scott M.Product platform design through sensitivity ananlysis and cluster ananlysis[J].Journal of Intelligent Manufacturing.2007;18(1):97-113.
    [78]Chen C B,Wang L Y.Product platform design through clustering analysis and in approach[J].International Journal of Production Research.2008;46(15):4259-4284.
    Structural Dynamics and Materials Conference Reston,Va,USA:AIAA,.2007:2111-2124. [80]Kumar R,Allada V.Scalable platforms using ant colony optimization[J].Journal of Intellige Manufacturing.2007;18(1):127-142.
    [81]朱斌,江平宇,龙奕良.产品平台参数的回归规划方法及Web实现[J].计算机集成制造系统.(?)003;9(12):1067-1071.
    [82]镇璐,蒋祖华,孟祥慧.基于进化的产品平台参数规划方法[J].上海交通大学学报.(?)006;40(5):818-821.
    [83]孟祥慧,蒋祖华,朱训生.基于定制因子的产品族规划方法[J].上海交通大学学报.2005;39:168-172
    [87]Galan R,Racero J,Eguia I,Garcia J M.A systematic approach for product families formation in
    reconfigurable manufacturing systems[J]. Robotics and Computer Integrated Manufacturing.2007;23:489-502
    [88]David M A,Joseph B.大规模定制模式下的敏捷产品开发[M].北京:机械工业出版社.1999.
    [89]王爱民,肖田元,赵银燕,范莉娅.面向产品族模块化设计和制造的工艺聚类分析方法[J].清华大学学报.2004;44(10):1394-1406.
    [90]赵刚,江平宇.基于加权有向图的零件聚类模型研究[J].计算机集成制造系统2006:12(7):1007-1017.
    [91]胡开顺,叶邦彦,王卫平,李帅.产品族集群制造系统及关键技术研究[J].计算机集成制造系统2005:11(8):1104-1108.
    [92]Nof S Y, Wilhelm W E, Wameke H I.Industrial assembly[D].London,UK:Chapman&Hall.199
    [93]Pierre D L,Alain D,Jean-Michek Henrioud.An integrated approach for product family and assemb
    system design[J].IEEE Transactions on Robotics and Automation.2003;19(2):324-3:
    [94]黄雪梅,肖田元.智能可重构汽车变速器装配生产线制造系统研究[J].机械科学与技(?)2006;25(4):403-406.
    [95]周金应,但斌,饶凯.面向产品的混流装配线平衡研究[J].工业工程.2006;9(4):65-6
    [96]苑明海,李东波,于敏建.面向大规模定制的混流装配线平衡研究[J].计算机集成制造系 2008;14(1):79-83.
    [97]陈立周.稳健设计[M].北京:机械工业出版社.2000
    [98]Parkinson A, Sorensen C, Pourhassan N. A general approach for robust optimal design[J]. Transactions of the ASME.1993;115(1):74-80.
    [99]Taguchi G, Elsayed E A, Hsiang T C. Quality engineering in production system[M]. New York McGraw-Hill.1986.
    [100]Li M H C. Quality loss function based manufacturing process setting models for unbalanced telerance design[J]. International Journal of Advanced Manufacturing Technology.2000; 16(1):39-45.
    [101]Chen C H, Chou C Y. Determining the optimum process mean under the bivariate quality characteristics[J]. International Journal of Advanced Manufacturing Technology.2003;21:313-316.
    [102]Terrence E M. Multivariate quality control using loss scaled principal components[D]. Georgia: Industrial and Systems Engineering Georgia Institute of Technology.2004.
    [103]Chou C Y, Chang C L. Minimum-loss assembly tolerance allocation by considering product degradation and time value of money[J]. International Journal of Advanced Manufacturing Technology.2001;17:139-146.
    [104]Jeang A. Robust tolerance design by response surface methodology[J]. Advanced Manufacturing Technology.1999; 15:399-401.
    [105]曹衍龙,杨将新,吴昭同,吴立群.基于模糊质重损失的公差稳健设计方法的研究[J].浙江大学报.2004;38(1):1-4.
    [106]王伯平,张会,景大英.分段曲线质量损失模型的研究[J].农业机械学报.2007;38(2):150-152.
    [107]Leon R V, Shoemaker A C, Kacher R N. Performance measures independent of adjustment: an explanation and extension of Taguchi's signal-to-noise ratios[J]. Technometrics.1987;29(3):253-285.
    [108]Box G E P. Signal-noise ratio, performance criteria and transformation with discussion[J]. Technometrics. 1988;30:1-40.
    [109]Chen L H. Designing robust products with multiple quality characteristics[J]. Computers Operati Research.1997;24:937-944
    [110]Antony J. Simultaneous optimization of multiple quality characteristics in manufacturing process usin Taguchi's quality loss function[J]. International Journal of Advanced Manufacturing Technology 2001; 17:134-138.
    [111]Tseng H C, Yang T H. Using parameter design of Taguchi methods to determine the best settings for the control factors of a computer disk system[C]. Proceedings of Chinese Society for Quality Control, The 28th National Conference.1993:163-166.
    [112]马义中,徐济超.多指标稳健设计质量特性的度量[J].系统工程.1998;16(6):34-37.
    [113]魏世振,韩玉启,陈传明.基于信噪比的多元质量损失函数研究[J].管理工程学报.2004;2:4-6.
    [114]李泳鲜,孟庆国,姬振豫.三次设计中望目特性信噪比的讨论与改进[J].机械设计.2001;1(1):10-12.
    [115]Liu H B, Chen W, Sudjianto A. Relative entropy based method for probabilstic sensitivity analys engineering design[J]. Transactions of the ASME.2006; 128:326-336.
    [116]Kar A K. Link axiomatic design and Taguchi methods via information content in design[C]. Firs nternational Conference on Axiomatic Design,Cambridge.2000:21-23.
    117]马义中,赵逢禹.多元质量特性的稳健设计及其实现[J].系统工程与电子技术. 2005;27(9):1580-1582.
    [118]何桢,马彦辉,赵有.基于田口过程能力指数和熵权理论的多响应稳健优化设计[J].中国农机化.2008;3:33-36.
    [119]Swan K S. Exploring robust design capabilities,their role in creating global products, and their relationship to firm performance[J]. Journal of Product Innovation Management.2005;22(2):144-164.
    [120]Ku K J. Taguchi-aided search method for design optimization of engineering systems[J]. Engineering Optimization.1998;30(1):1-23.
    [121]Solanki M. Pros and cons of Taguchi's methodology[J]. Journal of the Institution of Engineers(India), Part PR:Production Engineering Division.1999;80(2):55-57.
    [122]Sarin S. Teaching Taguchi's approach to parameter design[J]. Quality Progress.1997;30(5):102-107.
    [123]Joseph V R. Taguchi's approach to robust parameter design:A new perspective[J]. HE Transactions(Institure of Industrial Engineers).2007;39(8):805-810.
    [124]Geoffery G V, Raymond H M. Combining Tauguchi and response surface philosophies:a dual response approach[J]. Journal of Quality Technology.1990;22(1):38-45.
    [125]Shaibu A B, Cho B R. Another view of dual response surface modeling and optimization in robust parameter design[J]. International Journal of Advanced Manufacturing Technology.2009;41(7-8):631-641.
    [126]Quesada G M, Del C E. A dual-response approach to the multivariate robust parameter design problem[J]. Technometrics.2004;46(2):176-187.
    [127]Pregibon D. Review of generalized linear models[J]. Ann Statist.1984; 12:1589-1596.
    [128]Nelder JA, Lee Y. Generalized linear models for the analysis of Taguchi-type experiments[J]. Applied Stochastic Models and Data Analysis.1991;7:107-120.
    [129]Parkinson A, Sorensen C, Pourhassan N. A general approach for robust optional design[J]. Journal of Mechanical Design.1993;115:74-80.
    [130]陈立周,翁海珊,任婷婷.基于随机模型的产品质量设计原理与方法[J].工程设计.1995;4:12-16.
    [131]Al-Widyan K. A model-based formulation of robust design[J]. Journal of Mechanical Design. 2005;127(3):388-396.
    [132]Belegundu A D, Zhang S H. Robustness of design through minimum sensitivity[J]. Journal of Mechanical Design.1992; 114:213-217.
    [133]Chen w, Jin R, Sudjianto A. Analytical global sensitivity analysis and uncertainty propagation for robust design[J]. Journal of Quality Technology.2006;38(4):333-348.
    [134]Lenderink E, Stehouwer P. Optimization, sensitivity anslysis, and robust design using response surface modeling[C]. Proceedings of SPIE-The International Society for Optical Engineering.2008;v 7103.
    [135]Jeang A, Leu E. Robust tolerance design by computer experiment[J]. International Journal of Production Research.1999;37(9):1949-1967.
    [136]Savage G J, Seshadri R. Minimizing cost of multiple response systems by probabilistic robust design[J]. Quality Engineering.2003;16(1):67-74.
    [137]Soderberg R. Robust design by tolerance allocation considering quality and manufacturing cost[J]. ASME, Design Engineering Division.1994;69-1:219-226.
    [138]Ku K J, Rao S S, Chen L. Taugchi-aided search method for design optimization of engineering systems[J]. Engineering Optimization.1998;30(1):1-23.
    [139]Tong L I, Wang C H, Tsai C H. Robust design for multiple dynamic quality characteristics using data envelopment analysis[J]. Quality and Reliability Engineering International.2008;24(5):557-571.
    [140]钟晓芳,韩之俊.利用主成分分析对多质量特性的优化设计[J].南京理工大学学报.2003;27(3):301-304.
    [141]Packianather M S, Drake P R, Rowlands H. Optimizing the parameters of multilayerd feedforward neural networks through Taguchi design of experiments[J]. Quality and Reliability Engineering International. 2000; 16(6):461-473.
    [142]张义民,高娓,贺向东等.基于神经网络的机械零部件可靠性稳健设计[J].应用力学学报.2009;26(1):172-175.
    [143]Lee K H, Park G J. A global robust optimization using kriging based approximateion model[J]. JSME International Journal, Series C; Mechanical Systems, Machine Elements and Manufacturing. 2007;49(3):779-788.
    [144]Krishnmurthy T. Response surface approximation with augmented and compactly supported radial basis functions[C].44th AIAA/ASME/SACE/AHS/ASC Structures, Structural Dynamics and Materials Conference,Norfolk, Virginia.2003:7-10.
    [145]Cavaliere V, Cioffi M, Formisano A, Martone R. Robust design of high field magnets through Monte Carlo analysis[J]. The International Journal for Computation and Mathematics in Electrical and Electronic Engineering.2003;22(3):589-602.
    [146]Kim N H, Wang H Y. Adaptive reduction of random variables using global sensitivity in reliability-based optimization[J]. International Journal of Reliability and Safety.2006; 1:103-118.
    [147]Chiao C H, Hamada M. Analyzing experiments with correlated multiple responses[J]. Journal of Quality Technology.2001;33:451-465.
    [148]Rai M M. Robust optimal aerodynamic design using evolutionary methods and neural networks[C]. 42nd AIAA Aerospace Sciences Meeting and Exhibit.2004:8913-8939.
    [149]Kovach J, Byunq R C. An experiment-based optimization model for constrained multiresponse robust design problems[C].IIE Annual Conference and Expo 2007-Industrial Engineering's Critical Role in a Flat World-Conference Proceedings.2007:1304-1309.
    [150]Yildiz A. A new design optimization framework based on immune algorithm and Taguchi's method[J]. Computer in Industry.2009;60(8):613-620.
    [151]Chen W, Sahai A, Messac A, Sundararaj G J. Physical programming for robust design[C]. Collection of Technical Papers-AIAA/ASME/ASCE/ASC Structures, Structural Dynamics and Materials Conference. 1999;1:17-26.
    [152]郭惠昕,肖伟跃,张龙庭.插装式溢流阀调牙弹簧的模糊稳健优化设计[J].机械科学与技术.2004;3:297-299.
    [153]Iyer H V, Krishnamurty S. A preference-based robust design metric[C]. ASME Design Technical Conference,DAC5625, Atlanta, GA.1998.
    [154]Shimoyama K, Oyama A, Fuji K. Development of multi-objective six-sigma approach for robust design optimization[J]. Journal of Aerospace Computing, Information and Communication.2008;5(8):215-233.
    [155]Koch N P, Wujek B, Golovidov O. A multi-stage parallel implementation of probalilistic design optimization and MDO frameworks[C].8th AIAA/USAF/NASA/SSMO Symposium on Multidisciplinary Analysis and Optimization Long Beach, USA.2000.
    [156]Gonzalez L F, Whitney E J, Srinivas K, Periaux J. Multidisciplinary aircraft design and optimisation using a robust evolutionary technique with variable fidelity models[C]. Collection of Technical Papers-10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference.2004;6:3610-3624.
    [157]Giassi A, Bennis F, Maisonneuve J J. Multidisciplinary design optimisation and robust design approaches applied to concurrent design[J]. Structural and Multidisciplinary Optimization. 2004;28(5):356-371.
    [158]Chen J J, Xiao R B, Zhong Y F. A response surface based hierarchical approach to multidisciplinary robust optimization design[J]. International Journal of Advanced Manufacturing Technology. 2005;26(4):301-309.
    [159]袁亚辉,黄洪钟,张小玲.一种新的多学科系统不确定性分析方法-协同不确定性分析法[J].机械工程学报.2009;45(7):174-181.
    [160]吴扬东.面向机械产品族的稳健设计技术研究及其在往复泵中的应用[D].杭州:浙江大学博士学位论文.2008.
    [161]Hernandez G, Allen J K, Simpson T W. Robust design of family for product with production modeling and revaluation[J]. ASME Journal of Mechanical Design.2001;6:183-190.
    [162]Wang K H. A systematic approach for the robust design of scalable product platforms[J]. Journal of Engineering Manufacture.2006;220(12):1983-1995.
    [163]Lan J, Venkat A. Robust modular product family design using a modified Taguchi method [J]. Journal of Engineering Design.2005;16(5):443-458.
    [164]Dai Z H, Scott M J. Product platform design with consideration of uncertainty[C]. Society of Automotive Engineers World Congress, Detroit, Michigan, USA:SAE.2005:225-235.
    [165]罗振壁.现代制造系统[M].北京:机械工业出版社.2004.
    [166]谭建荣,张树有,纪杨建,冯毅雄.集成环境下大批量定制的产品配置设计技术及其应用[J].中国机械工程.2004;15(19):1706-1708.
    [167]谭建荣,李涛,戴若夷.支持大批量定制的产品配置设计系统的研究[J].计算机辅助设计与图形学学报.2003;5(8):931-937.
    [168]谭建荣,邢建国.面向定制生产的CAPP系统的研究[J].中国机械工程.2002;13(12):1055-1059.
    [169]王新.定制产品建模关键技术研究及其在电除尘器开发中的应用[D].杭州:浙江大学博士学位论文.2006.
    [170]李中凯.产品族可重构设计理论与方法及其在大型空分设备中应用研究[D].杭州:浙江大学博士学位论文.2009.
    [171]魏喆,冯毅雄,谭建荣,李中凯.基于几何同伦分析的复杂机械产品多参数关联性能方案反演技术[J].机械工程学报.2010;46(3):109-117.
    [172]冯毅雄,谭建荣,伊国栋,刘振宇.基于符号的装配建模方法研究[J].计算机辅助设计与图形学学报.2003;15(6):673-679.
    [173]谭建荣,吴培宁,张树有.压铸件铸造缺陷的计算机模拟与预测研究[J].中国机械工程.2003;14(8):701-706.
    [174]孙毅,谭建荣,张树有,单继宏.基于质量控制技术的产品成本-利润优化模型[J].中国机械工程.2006;17(13):1329-1334.
    [175]孙毅.基于数据挖掘与知识重用的质量过程控制关键技术研究[D].杭州:浙江大学博士学位论文.2007.
    [176]魏喆.性能驱动的复杂机电产品设计理论和方法及其在大型注塑装备中的应用[D].杭州:浙江大学博士学位论文.2009.
    [177]谭建荣,冯毅雄.设计知识建模、演化与应用[M].北京:国防工业出版社.2007.
    [178]李中凯,谭建荣,冯毅雄,方辉.基于拥挤距离排序的多目标粒子群优化算法及其应用[J].计算机集成制造系统.2008;14(7):1329-1336.
    [179]冯毅雄,谭建荣,李中凯,魏喆.基于多目标遗传优化的注射成型机性能设计[J].计算机集成制造系统.2008;14(6):1056-1062.
    [180]克劳斯比.质量无泪[M].北京:中国财政经济出版社.2002.
    [181]朱兰.质量管理[M].北京:企业管理出版社.1986.
    [182]Kelvin J Lancaster. A new approach to consumer theory. Journal of Political Eco.1966;4.
    [183]Pighini U. Engineering design:core of total quality. Proceedings of ICED91,Zurich.1991:457-460.
    [184]费根堡姆兰.全面质量管理[M].北京:中国发展出版社.1981.
    [185]于献忠.提高质量的基础在企业[J].轻工标准与质量.2001;1:11.
    [186]蔡文.物元模型及其应用[M].北京:科学技术文献出版社.1994.
    [187]大卫 安德森,约瑟夫 派恩二世,冯涓.21世纪企业竞争前沿:大规模定制模式下的敏捷产品开发[M].北京:机械工业出版社.1999.
    [188]王红军,陈庆新,陈新,郑德涛.基于效用分析的客户聚类方法研究[J].计算机集成制造系统.2003;9(3):237-241.
    [189]苏艳,吕北生,廖文和,郭宇.基于功能蚁树的定制客户动态聚类[J].机械科学与技术.2008;27(5):607-613.
    [190]杨明顺,林志航.QFD中顾客需求重要度确定的一种方法[J].管理科学报.2003;6(5):65-71.
    [191]李延来,唐加福,姚建明.基于粗糙集理论的质量屋中工程特性确定方法[J].计算机集成制造系统.2008;14(2):386-392.
    [192]ERTAY T, KAHRAMAN C, RUAN D. Quality function deployment implementation based on analytic network process with linguistic data:an application in automotive industry[J]. Journal of Intelligent & Fuzzy Systems.2005;16(1):221-232.
    [193]CHEN L H, WENG M C. An evaluation approach to engineering design in QFD processes using fuzzy goal programming models [J]. European Journal of Operational Research.2006;172(1):230-248.
    [194]Ceilia T, John Y, Tiao W A. House of quality:A fuzzy logic-based requirements analysis[J]. European Journal of Operational Research.1999; 117:340-354.
    [195]Liem T, Lucien D. Comparison of fuzzy numbers using a fuzzy distance measure[J]. Fuzzy Sets and Systems.2002; 130(3):331-341.
    [196]Deneubourg J L, Goss S, Franks N. The dynamics of collctive sorting robot-like ants and antlike robots[J]. Proceedings of the 1st International Conference on Sumulation of Adaptive Behavior:From Animas to Animals.1991:356-363.
    [197]Dempster A P. Upper and lower probabilities induced by a multivalued mapping[J]. Annals of Mathematical Statistics.1967;38(2):325-339. [198]Shafer G. A mathematical theory of evidence[M]. Princeton University Press, Princeton, New Jersey. 1976.
    [199]Yang J B, Sen P. An evidential reasoning approach for multiple attribute decision-making with uncertainty[J]. IEEE Transactions on Systems, Man, and Cybernetics.1994;24(1):1-18.
    [200]Yang J B, Xu D L. On the evidential reasoning algorithm for multiple attribute decision analysis under uncertainty[J]. IEEE Transactions on Systems, Man, and Cybernetics.2002;32(3):289-304.
    [201]Yung K L, Ko S M, Kwan F Y. Application of function deployment model in decision making for new product developmet[J]. Concurrent Engineering:Research and Application.2006; 14(3):257-267.
    [202]杨明顺,李言,林志航,李鹏阳,袁启龙.质量屋中顾客需求向技术特征映射的一种方法[J].工程图学学报.2006;2:39-42.
    [203]李延来,唐加福,姚建明,蒲云.质量功能配置中质量特性最终重要度的确定方法[J].机械工程学报.2007;43(4):178-186.[204]Stone R B. A heuristic method for identifying modules for product architectures[J]. Design Studies. 2000;21(1):5-31.
    [205]Erixon G. Modular function deployment-a method for product modularization[D]. Stockholm Royal Institute of Technology(KTH).1998.
    [206]Tseng M, Jiao J. A module identification approach to the electrical design of electronic products by clustering analysis of the design matrix[J]. Computer and Industrial Engineering.1997;33(1-2):229-233.
    [207]Thomas M C, Joy A T. Elements of information theory[M]. Chichester John Wiley & Sons.2003.
    [208]Falkenauer E. Genetic algorithms and grouping problems[M]. Chichester John Wiley & Sons.1998.
    [209]Hsiao S W, Liu E. A structural component-based approach for designing product family[J]. Computers in Industry.2005;56(1):13-28.
    [210]Simpson T W. A concept exploration method for product family design[D]. Georgia Institute of Technology.1998.
    [211]Abido M A. Multiobjective evolutionary algorithms for electric power dispatch problem[J]. IEEE Transactions on Evolutionary Computation.2006;10(3):315-329.
    [212]陈永亮,褚巍丽,徐燕申.面向可适应性的参数化产品平台设计[J].计算机集成制造系统.2007;13(5):877-884.
    [213]Xie X L, Beni G A. Validity measure for fuzzy clustering[J]. EEE Transactions on Pattern Analysis and Machine Intelligence.1991; 13(8):841-847.
    [214]Bezdek J C. Cluster validity with fuzzy sets[J]. Journal of Cybermetics.1974;3(3):58-73.
    [215]Deb K, Pratap A, Agarwal S. A fast and elitist multi-objective genetic algorithm:NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation.2002;6(2):182-197.
    [216]Blum C, Bautista J, Pereira J. Beam-ACO applied to assembly line balancing[C]. Proceedings of the 5th International Workshop,ANTS2006.2006:96-107.
    [217]Kowalczuk Z, Bialaszewski T. Niching mechanisms in evolutionary computations[J]. International Journal of Applied Mathematics and Computer Science.2006; 16(1):59-84.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700