用户名: 密码: 验证码:
海南岛热带天然针叶林—阔叶林交错区的群落特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然针叶林主要分布在温带和寒温带地区,但是在热带地区仍然有一定面积的分布。热带天然针叶林对维持热带地区生态系统的多样性和生境异质性具有特殊意义。海南省霸王岭林区是我国热带天然针叶林集中分布面积最大的区域,以南亚松(Pinus latteri)为绝对优势种但混生一定数量阔叶物种,分布在与热带低地雨林和热带季雨林相同的低海拔范围内。当这三种低海拔的热带林受到干扰破坏后,常常会形成针叶林与阔叶林的群落交错区。群落交错区指两种群落类型的过渡区间,其环境因子和群落结构与相邻的两种群落往往也有一定差异。尽管以往对热带阔叶林已开展了大量的生态学研究,但针对热带针叶林的研究还很少,而有关热带针叶林-阔叶林交错区的群落学研究还没有开展过。本文以海南岛霸王岭林区典型的热带天然针叶林及其与热带低地雨林或热带季雨林形成的热带针叶林-阔叶林交错区为对象,通过横穿针叶林区、交错区和阔叶林区三个林分区域的19条典型样带,进行了群落学调查以及主要植物功能性状和环境因子的测定,研究了环境因子、群落结构、植物功能性状和生物多样性(物种及功能多样性)特征随林分区域的变化规律,探讨了热带针叶林-阔叶林交错区的群落组配机制。主要研究结果如下:
     1.通过对3个不同林分区域11个环境因子的对比分析表明:(1)针叶林区林冠开阔度、凋落物厚度和土壤全钾含量显著高于阔叶林区和交错区,但阔叶林区中的pH值、土壤有机质、土壤全氮、有效氮、有效磷和有效钾显著高于针叶林区和交错区;而土壤含水量和土壤全磷在三个区域无显著差异。(2)环境因子的主成分分析结果表明,土壤pH值、土壤有机质、凋落物厚度和林冠开阔度对第一轴的贡献性最大,而全氮和有效磷对第二轴的贡献性最大。(3)影响不同林分区域物种分布的主要环境因子是林冠开阔度、凋落物厚度、土壤pH值、土壤有机质和土壤全钾。
     2.三个林分区域的种、属和科-多度曲线及不同的生活型和高度级物种丰富度均表现为阔叶林区>交错区>针叶林区;而平均树高、最大树高、平均胸径、最大胸径、胸高断面积都表现为针叶林区>交错区>阔叶林区。海南岛热带林区的针叶林-阔叶林交错区可能是由阔叶林中阔叶树种逐渐向针叶林中侵入而形成。
     3.通过对三个林分区域比叶面积(SLA)、叶片干物质含量(LDMC)、木材密度(WD)、叶绿素含量(CC)、叶氮含量(LNC)、叶磷含量(LPC)、叶钾含量(LKC)、潜在最大高度(Hmax)等8个功能性状的分析表明:(1)针叶林区植物Hmax、LDMC和LPC显著高于阔叶林区和交错区,但阔叶林区植物SLA、CC、LNC和LKC显著高于针叶林区和交错区,而交错区的植物功能性状居于中间位置。(2)针叶林区较低的土壤含水量和土壤养分含量是限制资源获取性状特征(如高SLA、高叶片养分含量)的主要因子,而在阔叶林区高的土壤养分特征和适宜的光照条件则不利于具有保守性性状(如高LDMC、高WD)特征的植物生存。
     4.通过分析热带针叶林-阔叶林交错区的香浓指数、丰富度指数、均匀度指数、Simpson指数、功能丰富度、功能均匀度、功能分散度和功能离散度等8个多样性指标的变化特征,对结果表明,(1)除Simpson指数外,其他7个多样性指标均表现为阔叶林区>交错区>针叶林区。(2)物种多样性和功能多样性与环境因子的多元逐步回归分析表明,在针叶林区中土壤pH值和土壤有效钾对物种和功能多样性影响显著,在交错区中土壤全氮、林冠开阔度和凋落物厚度对物种和功能多样性影响显著,而在阔叶林区土壤有机质、土壤有效氮和土壤有效钾对物种和功能多样性影响显著。
     5.应用零模型建立随机群落的方法,从植物功能性状分布范围和物种亲缘关系探讨了热带针叶林-阔叶林交错区植物群落的组配机制。结果表明:针叶林区和交错区受环境筛作用明显,表明环境筛多发生在环境条件较差的地段,而在阔叶林区环境筛作用作用较小,而生物竞争作用较大,物种功能性状和亲源关系呈发散分布。环境筛和生物竞争在不同林分区域群落组配中的相对作用不同。
Although natural coniferous forests are mainly distibuted in the temperate and cold tremperateregions on earth,they occupy a proportion of specific areas in the tropics.Natural tropicalconiferous forests play a unique role in maintaining the biodiversity and heterogeneity oftropical forest ecosystems. In the tropical regions of southern China, most of the land isdominated by broadleaved trees and shrubs. However, in some specific places and habitatswhere environmental conditions are stressful for broadleaved trees, a few species of conifersare dominant. Due to their unusual environmental and floristic conditions, tropical coniferousforests often have a distinct community structure and contain flora and fauna that are differentfrom those of adjacent tropical rainforests. The widest distribution of natural tropicalconiferous forest is found on Hainan Island in China, and most of this type of forest is in theBawangling forest region (BFR). Most of the tropical coniferous forest on Hainan Island isdominated by the conifer Pinus latteri. A transition zone exists between conifers andbroadleaved trees of tropical lowland rain forest and tropical monsoon forest species, due toextensive shifting cultivation and logging of the coniferous forest and then invasion bybroadleaved trees into disturbed regions.No studies have explored the communitycharacteristics of the ecotone representing the transition between coniferous forest andbroadleaved forest. In this study, we conducted the field vegetation investigation and measuredthe plant fuctional traits and some environmental factors in19transects, spanning three standzones: the coniferous forest zone (CZ), the ecotone zone (EZ), and the broadleaved forest zone(BZ). We compared the varaitions in environmental condition, speices composition,community structure, community-wide plant fuctional traits, biodiversity (including speciesdiversity and functional diversity) and relationships between environmental factors and thecommunity features across the ecotones. The main results are as follows:
     1. As the stand changed from coniferous forest zone to broadleaved forest zone acrossecotone,11environmental factors showed that,(1) soil pH value,soil organic matter content,total N, available N, available P and available K had a trend of increasing; total K, litter depthand canopy openness had a trend of decreasing; Soil water content and soil total P had nosignificant differences among the three stand zones.(2) Principal component analysis for themeasured environmental factors in the three stand zones showed that soil pH value,soil organicmatter content, litter depth, available P, total N and canopy openness were the maindeterminants for the distribution range of the three different stand zones.
     2. The compositional and structural features of the three stand zones were compared interms of stand factors, size class distribution, growth-form, and species, genus andfamilyrank-abundance distributions. Stem abundance and species richness increased as thevegetation zones changed from CZ through EZ to BZ. In each stand zone, stem abundance andspecies richness declined as the size class increased. The coniferous-broadleaved forest ecotonerevealed compositional and structural features between its adjacent forest stands.
     3. With the variation of vegetation from CZ through EZ to BZ,community plant functionaltraits of SLA, LDMC, WD, CC, LNC, LPC, LKC and Hmaxchanged in accordance with thechanges in soil and light regimes.(1) CZ had the highest values of Hmax, LDMC and LPC; BZhad the highes values of SLA, CC, LNC and LKC.(2) the low soil nutrients and high light inCZ were the major constraints for most lowland rain forest species with acquisitive traits tosurvive and grow, while high soil nutrients and low light in BZ were the major environmentalfilters for the conifer and tropical monsoon rain forest species with conservative traits. The EZcould afford environmental conditions for species of both strategies. The soil and lightconditions were the major determinants for the functional community structure of thevegetation types across the tropical coniferous-broadleaved forest ecotones.
     4. From CZ through the EZ to BZ, the eight diveristy indices including biodiveristyindicesand functional diversity indices changes.(1) there was significant difference in sevendiversity indices across three stand zones and showed gradually increasing trend except for Simpson's diversity index.(2) multiple stepwise regression results showed that species andfunctional diveristy of CZ was strongly influenced by soil pH and available potassium, EZaffected largely by total nitrogen, canopy openness and litter thickness. Soil organic matter,available nitrogen and available potassiumwere the main factors significantly affecting speciesand functional diveristy in BZ.
     5.Assembly rulesof plant communities across the natural tropical coniferous-broadleavedforest ecotones were explored by using the null model approach.We tested the differencesbetween calculated and null simulated patterns of the distribution in plant functional traits andphylogenetic structure across the ecotones. The results showed that environment filtering wasthe dominant assembly rule in CZ and EZ,whilebiotic competition was the dominant assemblyrule in BZ. As the stand zones changed from CZ through EZ to BZ,community wide plantfunctional traits and phylogenetic structure transferred from cluster to overdispersion.Therelative effects of environmental filtering vs. biotic competition changed in accordance withthe variation of vegetations and their abiotic and biotic conditions across the ecotones.
引文
Ackerly D, Knight C, Weiss S, et al. Leaf size, specific leaf area and microhabitat distribution of chaparralwoody plants: contrasting patterns in species level and community level analyses. Oecologia,2002,130:449-457.
    Ackerly DD. Community assembly, niche conservatism, and adaptive evolution in changing environments.international Journal of Plant Sciences,2003,164: S165-S184.
    Adams HD,Kolb TE. Drought responses of conifers in ecotone forests of northern Arizona: tree ring growthand leaf delta13C. Oecologia,2004,140:217-25.
    Aerts R,Chapin III F. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns.Advances in Ecological Research,1999,30:1-67.
    Ameztegui A,Coll L. Tree dynamics and co-existence in the montane–sub-alpine ecotone: the role ofdifferent light-induced strategies. Journal of Vegetation Science,2011,22:1049-1061.
    Andersson F2005. Coniferous forests. Elsevier.
    Baraloto C, Timothy Paine C, Poorter L, et al. Decoupled leaf and stem economics in rain forest trees.Ecology Letters,2010,13:1338-1347.
    Batllori E, Blanco-Moreno JM, Ninot JM, et al. Vegetation patterns at the alpine treeline ecotone: theinfluence of tree cover on abrupt change in species composition of alpine communities. Journal ofVegetation Science,2009a,20:814-825.
    Batllori E, Camarero JJ, Ninot JM, et al. Seedling recruitment, survival and facilitation in alpine Pinusuncinata tree line ecotones. Implications and potential responses to climate warming. GlobalEcology and Biogeography,2009b,18:460-472.
    Batllori E,Gutiérrez E. Regional tree line dynamics in response to global change in the Pyrenees. Journal ofEcology,2008,96:1275-1288.
    Bedford BL, Walbridge MR,Aldous A. Patterns in nutrient availability and plant diversity of temperate NorthAmerican wetlands. Ecology,1999,80:2151-2169.
    Bergeron Y, Gauthier S, Flannigan M, et al. Fire regimes at the transition between mixedwood andconiferous boreal forest in northwestern Quebec. Ecology,2004,85:1916-1932.
    Berner LT, Beck PS, Bunn AG, et al. Plant response to climate change along the forest‐tundra ecotone innortheastern Siberia. Global Change Biology,2013.
    Bremner J, Rogers S,Frid C. Assessing functional diversity in marine benthic ecosystems: a comparison ofapproaches. Marine Ecology Progress Series,2003,254:11-25.
    Breymeyer AI, Hall D, Melillo J, et al.1996. Global change: effects on coniferous forests and grasslands.John Wiley&Sons Ltd.
    Brooker R, Kikvidze Z, Pugnaire FI, et al. The importance of importance. Oikos,2005,109:63-70.
    Brussaard L, Caron P, Campbell B, et al. Reconciling biodiversity conservation and food security: scientificchallenges for a new agriculture. Current Opinion in Environmental Sustainability,2010,2:34-42.
    Bucyanayandi JD, Bergeron JM,Menard H. Preference of meadow voles (Microtus pennsylvanicus) forconifer seedlings: chemical components and nutritional quality of bark of damaged and undamagedtrees. Journal of Chemical Ecology,1990,16:2569-2579.
    Cadotte MW, Carscadden K,Mirotchnick N. Beyond species: functional diversity and the maintenance ofecological processes and services. Journal of Applied Ecology,2011,48:1079-1087.
    Cadotte MW, Cavender-Bares J, Tilman D, et al. Using phylogenetic, functional and trait diversity tounderstand patterns of plant community productivity. PLoS One,2009,4: e5695.
    Cadotte MW, Jonathan Davies T, Regetz J, et al. Phylogenetic diversity metrics for ecological communities:integrating species richness, abundance and evolutionary history. Ecology Letters,2010,13:96-105.
    Camill P, Umbanhowar CE, Teed R, et al. Late-glacial and Holocene climatic effects on fire and vegetationdynamics at the prairie–forest ecotone in south-central Minnesota. Journal of Ecology,2003,91:822-836.
    Capers RS, Chazdon RL, Brenes AR, et al. Successional dynamics of woody seedling communities in wettropical secondary forests. Journal of Ecology,2005,93:1071-1084.
    Cardinale BJ, Duffy JE, Gonzalez A, et al. Biodiversity loss and its impact on humanity. Nature,2012,486:59-67.
    Carter V, Gammon PT,Garrett MK. Ecotone dynamics and boundary determination in the Great DismalSwamp. Ecological Applications,1994,4:189-203.
    Castro-Díez P, Puyravaud J,Cornelissen J. Leaf structure and anatomy as related to leaf mass per areavariation in seedlings of a wide range of woody plant species and types. Oecologia,2000,124:476-486.
    Cavender-Bares J,Pahlich A. Molecular, morphological, and ecological niche differentiation of sympatricsister oak species, Quercus virginiana and Q. geminata (Fagaceae). American Journal ofBotany,2009,96:1690-1702.
    Chao A, Chazdon RL, Colwell RK, et al. A new statistical approach for assessing similarity of speciescomposition with incidence and abundance data. Ecology Letters,2005,8:148-159.
    Chapin FS I, Matson PA,Vitousek PM2011. Principles of terrestrial ecosystem ecology. Springer.
    Chazdon RL. Tropical forest recovery: legacies of human impact and natural disturbances. Perspectives inPlant Ecology, Evolution and Systematics,2003,6:51-71.
    Chazdon RL. Chance and determinism in tropical forest succession. Tropical forest community ecology.Wiley-Blackwell, Chichester, UK,2008:384-408.
    Chesson P. General theory of competitive coexistence in spatially-varying environments. TheoreticalPopulation Biology,2000,58:211-237.
    Chytry M, Danihelka J, Kube ová S, et al. Diversity of forest vegetation across a strong gradient of climaticcontinentality: Western Sayan Mountains, southern Siberia. Plant Ecology,2008,196:61-83.
    Clements FE1905. Research methods in ecology. University Publishing Company, Lincoln, Nebraska, USA.
    Cleveland CC, Townsend AR, Taylor P, et al. Relationships among net primary productivity, nutrients andclimate in tropical rain forest: a pan-tropical analysis. Ecology Letters,2011,14:939-947.
    Condit R, Ashton P, Bunyavejchewin S, et al. The importance of demographic niches to tree diversity.Science,2006,313:98-101.
    Condit R, Ashton PS, Baker P, et al. Spatial patterns in the distribution of tropical tree species. Science,2000,288:1414-1418.
    Coomes DA, Kunstler G, Canham CD, et al. A greater range of shade‐tolerance niches in nutrient‐richforests: an explanation for positive richness–productivity relationships? Journal of Ecology,2009,97:705-717.
    Cornelissen., S. L,E. G. A handbook of protocols for standardised and easy measurement of plant functionaltraits worldwide. Australian Journal of Botany,2003,51:335-380.
    Cornwell WK,Ackerly DD. Community assembly and shifts in plant trait distributions across anenvironmental gradient in coastal California. Ecological Monographs,2009,79:109-126.
    Cornwell WK, Schwilk DW,Ackerly DD. A trait-based test for habitat filtering: convex hull volume.Ecology,2006,87:1465-1471.
    D'Odorico P, He Y, Collins S, et al. Vegetation–microclimate feedbacks in woodland–grassland ecotones.Global Ecology and Biogeography,2012,22:364-379.
    Díaz S, Lavorel S, de Bello F, et al. Incorporating plant functional diversity effects in ecosystem serviceassessments. Proceedings of the National Academy of Sciences,2007,104:20684-20689.
    Delagrange S, Messier C, Lechowicz MJ, et al. Physiological, morphological and allocational plasticity inunderstory deciduous trees: importance of plant size and light availability. Tree Physiology,2004,24:775-784.
    Devictor V, Mouillot D, Meynard C, et al. Spatial mismatch and congruence between taxonomic,phylogenetic and functional diversity: the need for integrative conservation strategies in a changingworld. Ecology Letters,2010,13:1030-1040.
    D az S,Cabido M. Vive la difference: plant functional diversity matters to ecosystem processes. Trends EcolEvol,2001,16:646-655.
    Ding Y, Zang R, Liu S, et al. Recovery of woody plant diversity in tropical rain forests in southern Chinaafter logging and shifting cultivation. Biological Conservation,2012,145:225-233.
    Dormann C,Woodin S. Climate change in the Arctic: using plant functional types in a meta‐analysis offield experiments. Functional Ecology,2002,16:4-17.
    Douma JC, de Haan MW, Aerts R, et al. Succession‐induced trait shifts across a wide range of NWEuropean ecosystems are driven by light and modulated by initial abiotic conditions. Journal ofEcology,2012,100:366-380.
    Dulamsuren C,Hauck M. Spatial and seasonal variation of climate on steppe slopes of the northernMongolian mountain taiga. Grassland science,2008,54:217-230.
    stralian monsoon tropical tree species. Journal of Biogeography,2012,40:559-569.
    Elgersma AM,Dhillion SS. Geographical variability of relationships between forest communities and soilnutrients along a temperature-fertility gradient in Norway. Forest Ecology and Management,2002,158:155-168.
    Emerson BC,Gillespie RG. Phylogenetic analysis of community assembly and structure over space and time.Trends in Ecology&Evolution,2008,23:619-630.
    Fajardo A, Piper FI, Pfund L, et al. Variation of mobile carbon reserves in trees at the alpine treeline ecotoneis under environmental control. New Phytologist,2012,195:794-802.
    Fangliang H, Legendre P,LaFrankie JV. Distribution patterns of tree species in a Malaysian tropical rainforest. Journal of Vegetation Science,1997,8:105-114.
    Fields DD. Spatial pattern of trees and shrubs within the Canadian Forest-tundra ecotone. degree of masterof environmental studies,2009.
    Finzi AC, Van Breemen N,Canham CD. Canopy tree-soil interactions within temperate forests: specieseffects on soil carbon and nitrogen. Ecological Applications,1998,8:440-446.
    Fonseca CR, Overton JM, Collins B, et al. Shifts in trait‐combinations along rainfall and phosphorusgradients. Journal of Ecology,2000,88:964-977.
    Fraver S,Palik BJ. stand and cohort structures of old-growth pinus resinosa-dominated forests of northernminnesota. vegetation science,2011.
    Galindo‐González J, Guevara S,Sosa VJ. Bat‐and Bird‐Generated Seed Rains at Isolated Trees inPastures in a Tropical Rainforest. Conservation Biology,2000,14:1693-1703.
    Garnier E, Cortez J, Billès G, et al. Plant functional markers capture ecosystem properties during secondarysuccession. Ecology,2004,85:2630-2637.
    Gasque M. Interaction between Stipa tenacissima and Pinus halepensis:consequences for reforestation andthe dynamics of grass steppes in semi-arid Mediterranean areas. Forest Ecology andManagement,2003.
    Gentry AH, Churchill S, Balslev H, et al. Patterns of diversity and floristic composition in neotropicalmontane forests. Biodiversity and conservation of Neotropical montane forests,1995:103-126.
    Getzin S, Dean C, He F, et al. Spatial patterns and competition of tree species in a Douglas‐firchronosequence on Vancouver Island. Ecography,2006,29:671-682.
    Getzin S, Wiegand T, Wiegand K, et al. Heterogeneity influences spatial patterns and demographics in foreststands. Journal of Ecology,2008,96:807-820.
    Ghazoul J,Sheil D2010. Tropical rain forest ecology, diversity, and conservation. Oxford University Press.
    Goldblum D,Rigg LS. The Deciduous Forest–Boreal Forest Ecotone. Geography Compass,2010,4:701-717.
    Gomez-Pompa A, Vazquez-Yanes C,Guevara S. The tropical rainforest: a non-renewable resource.Science,1972,177:762-765.
    Gosz JR. Ecotone hierarchies. Ecological Applications,1993,3:370-376.
    Gower ST, Kucharik CJ,Norman JM. Direct and Indirect Estimation of Leaf Area Index, fAPAR, and NetPrimary Production of Terrestrial Ecosystems. Remote Sensing of Environment,1999,70:29-51.
    Grau O, Ninot JM, Blanco-Moreno JM, et al. Shrub-tree interactions and environmental changes drivetreeline dynamics in the Subarctic. Oikos,2012,121:001-011.
    Gravel D, Canham CD, Beaudet M, et al. Shade tolerance, canopy gaps and mechanisms of coexistence offorest trees. Oikos,2010,119:475-484.
    Grime J, Thompson K, Hunt R, et al. Integrated screening validates primary axes of specialisation in plants.Oikos,1997,79:259-281.
    Hansen AJ,Castri F1992. Landscape boundaries: consequences for biotic diversity and ecological flows.Springer-Verlag.
    Hansen AJ, Risser PG,Castri F. Epilogue: biodiversity and ecological flows across ecotones. Ecologicalstudies: analysis and synthesis,1992,92.
    Hardy OJ, Couteron P, Munoz F, et al. Phylogenetic turnover in tropical tree communities: impact ofenvironmental filtering, biogeography and mesoclimatic niche conservatism. Global Ecology andBiogeography,2012,21:1007-1016.
    Hardy OJ,Sonké B. Spatial pattern analysis of tree species distribution in a tropical rain forest of Cameroon:assessing the role of limited dispersal and niche differentiation. Forest Ecology andManagement,2004,197:191-202.
    Harper K,Macdonald S. Structure and composition of riparian boreal forest: new methods for analyzing edgeinfluence. Ecology,2001,82:649-659.
    Harper KA. Effect of expanding clones of Gaylussacia baccata (black huckleberry) on species compositionin sandplain grassland on Nantucket Island, Massachusetts. Bulletin of the Torrey BotanicalClub,1995:124-133.
    Harper KA, Danby RK, De Fields DL, et al. Tree spatial pattern within the forest–tundra ecotone: acomparison of sites across Canada. Canadian Journal of Forest Research,2011,41:479-489.
    Harte J. The value of null theories in ecology. Ecology,2004,85:1792-1794.
    Hauck M. Site factors controlling epiphytic lichen abundance in northern coniferous forests. Flora-Morphology, Distribution, Functional Ecology of Plants,2011,206:81-90.
    He F,Duncan RP. Density‐dependent effects on tree survival in an old‐growth Douglas fir forest. Journalof Ecology,2000,88:676-688.
    Helmus MR, Keller WB, Paterson MJ, et al. Communities contain closely related species during ecosystemdisturbance. Ecology Letters,2010,13:162-174.
    Hennenberg KJ, Goetze D, Kouamé L, et al. Border and ecotone detection by vegetation composition alongforest-savanna transects in Ivory Coast. Journal of Vegetation Science,2005,16:301-310.
    Hicks DJ,Mauchamp A. Population Structure and Growth Patterns of Opuntia echios var. gigantea along anElevational Gradient in the Galípagos Islands1. Biotropica,2000,32:235-243.
    Hirota M, Holmgren M, Van Nes EH, et al. Global Resilience of Tropical Forest and Savanna to CriticalTransitions. Science,2011,334:232-235.
    Hobbs E. Characterizing the boundary between California annual grassland and coastal sage scrub withdifferential profiles. Plant Ecology,1986,65:115-126.
    Hochkirch A, Gartner AC,Brandt T. Effects of forest-dune ecotone management on the endangered heathgrasshopper, Chorthippus vagans (Orthoptera: Acrididae). Bull Entomol Res,2008,98:449-56.
    Hoffmann W, Franco A, Moreira M, et al. Specific leaf area explains differences in leaf traits betweencongeneric savanna and forest trees. Functional Ecology,2005,19:932-940.
    Hofgaard A,Harper KA. Tree recruitment, growth, and distribution at the circumpolar forest–tundratransition: introduction. Canadian Journal of Forest Research,2011,41:435-436.
    Holdaway RJ,Sparrow AD. Assembly rules operating along a primary riverbed–grassland successionalsequence. Journal of Ecology,2006,94:1092-1102.
    Holmes KL, Goebel PC,Morris AEL. Characteristics of downed wood across headwater riparian ecotones:integrating the stream with the riparian area. Canadian Journal of Forest Research,2010,40:1604-1614.
    Holtmeier F-K,Broll G. Sensitivity and response of northern hemisphere altitudinal and polar treelines toenvironmental change at landscape and local scales. Global Ecology and Biogeography,2005,14:395-410.
    Huth A,Ditzer T. Long-term impacts of logging in a tropical rain forest—a simulation study. Forest Ecologyand Management,2001,142:33-51.
    Jensen C,Vorren K-D. Holocene vegetation and climate dynamics of the boreal alpine ecotone ofnorthwestern Fennoscandia. Journal of Quaternary Science,2008,23:719-743.
    Kammer A, Hagedorn F, Shevchenko I, et al. Treeline shifts in the Ural mountains affect soil organic matterdynamics. Global Change Biology,2009,15:1570-1583.
    Kembel SW,Dale MRT. Within-stand spatial structure and relation of boreal canopy and understoreyvegetation. Journal of Vegetation Science,2006,17:783-790.
    Kernaghan G,Harper KA. Community structure of ectomycorrhizal fungi across an alpine/subalpine ecotone.Ecography,2001,24:181-188.
    Kirkman LK, Drew MB, West L, et al. Ecotone characterization between upland longleaf pine/wiregrassstands and seasonally-ponded isolated wetlands. Wetlands,1998,18:346-364.
    Koptsik S, Koptsik G, Livantsova SY, et al. Analysis of the relationship between soil and vegetation inforest biogeocenoses by the principal component method. Russian Journal of Ecology,2003,34:34-42.
    Kraft NJ,Ackerly DD. Functional trait and phylogenetic tests of community assembly across spatial scales inan Amazonian forest. Ecological Monographs,2010,80:401-422.
    Kraft NJ, Valencia R,Ackerly DD. Functional traits and niche-based tree community assembly in anAmazonian forest. Science,2008,322:580-582.
    Kullman L, berg L. Post-Little Ice Age tree line rise and climate warming in the Swedish Scandes: alandscape ecological perspective. Journal of Ecology,2009,97:415-429.
    Lamb EG,Mallik AU. Plant species traits across a riparian-zone/forest ecotone. Journal of VegetationScience,2003,14:853-858.
    Lan G, Getzin S, Wiegand T, et al. Spatial distribution and interspecific associations of tree species in aTropical Seasonal Rain Forest of China. PloS one,2012,7: e46074.
    Lavorel S,Garnier E. Predicting changes in community composition and ecosystem functioning from planttraits: revisiting the Holy Grail. Functional Ecology,2002,16:545-556.
    Lebrija-Trejos E, Pérez-García EA, Meave JA, et al. Functional traits and environmental filtering drivecommunity assembly in a species-rich tropical system. Ecology,2010,91:386-398.
    Leopold A1933. Game management. Chales Scribner's Sons. New York, USA.
    Leopold A1987. Game management. Univ of Wisconsin Press.
    Lin Y-C, Chang L-W, Yang K-C, et al. Point patterns of tree distribution determined by habitat heterogeneityand dispersal limitation. Oecologia,2011,165:175-184.
    Lloyd KM, McQueen AAM, Lee BJ, et al. Evidence on ecotone concepts from switch, environmental andanthropogenic ecotones. Journal of Vegetation Science,2000,11:903-910.
    Loehle C. Forest ecotone response to climate change: sensitivity to temperature response functional forms.Canadian Journal of Forest Research,2000,30:1632-1645.
    Lohbeck M, Poorter L, Lebrija-Trejos E, et al. Successional changes in functional composition contrast fordry and wet tropical forest. Ecology,2013.
    Lohbeck M, Poorter L, Paz H, et al. Functional diversity changes during tropical forest succession.Perspectives in Plant Ecology, Evolution and Systematics,2012,14:89-96.
    Losos JB. Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogeneticrelatedness and ecological similarity among species. Ecology Letters,2008,11:995-1003.
    Lu X-H, Ding Y, Zang R-G, et al. Analysis of functional traits of woody plant seedlings in an old-growthtropical lowland rain forest on Hainan Island, China. Chinese Journal of Plant Ecology,2011,35:1300-1309.
    Müller SC, Overbeck GE, Pfadenhauer J, et al. Woody species patterns at forest-grassland boundaries insouthern Brazil. Flora,2012,207:586-598.
    Méndez‐Alonzo R, López‐Portillo J,Rivera‐Monroy VH. Latitudinal variation in leaf and tree traits ofthe mangrove Avicennia germinans (Avicenniaceae) in the central region of the Gulf of Mexico.Biotropica,2008,40:449-456.
    MacDonald GM, Velichko AA, Kremenetski CV, et al. Holocene treeline history and climate change acrossnorthern Eurasia. Quaternary Research,2000,53:302-311.
    Maher EL, Germino MJ,Hasselquist NJ. Interactive effects of tree and herb cover on survivorship,physiology, and microclimate of conifer seedlings at the alpine tree-line ecotone. Canadian Journalof Forest Research,2005,35:567-574.
    Mallik AU, Lamb EG,Rasid H. Vegetation zonation among the microhabitats in a lacustrine environment:analysis and application of belowground species trait patterns. Ecological Engineering,2001,18:135-146.
    Markesteijn L, Poorter L, Paz H, et al. Ecological differentiation in xylem cavitation resistance is associatedwith stem and leaf structural traits. Plant, Cell&Environment,2011,34:137-148.
    Martin PH, Fahey TJ,Sherman RE. Vegetation zonation in a neotropical montane forest: environment,disturbance and ecotones. Biotropica,2011,43:533-543.
    Martin PH, Sherman RE,Fahey TJ. Forty Years of Tropical Forest Recovery from Agriculture: Structure andFloristics of Secondary and Old‐growth Riparian Forests in the Dominican Republic.Biotropica,2004,36:297-317.
    Martin PH, Sherman RE,Fahey TJ. Tropical montane forest ecotones: climate gradients, natural disturbance,and vegetation zonation in the Cordillera Central, Dominican Republic. Journal ofBiogeography,2007,34:1792-1806.
    Mason NW, de Bello F, Dole al J, et al. Niche overlap reveals the effects of competition, disturbance andcontrasting assembly processes in experimental grassland communities. Journal of Ecology,2011,99:788-796.
    Mason NW, Mouillot D, Lee WG, et al. Functional richness, functional evenness and functional divergence:the primary components of functional diversity. Oikos,2005,111:112-118.
    Mason NWH, de Bello F, Mouillot D, et al. A guide for using functional diversity indices to reveal changesin assembly processes along ecological gradients. Journal of Vegetation Science,2012a: n/a-n/a.
    Mason NWH, Richardson SJ, Peltzer DA, et al. Changes in coexistence mechanisms along a long-term soilchronosequence revealed by functional trait diversity. Journal of Ecology,2012b,100:678-689.
    Mayle FE,Power MJ. Impact of a drier Early–Mid-Holocene climate upon Amazonian forests. PhilosophicalTransactions of the Royal Society B: Biological Sciences,2008,363:1829-1838.
    McClaran MP,McPherson GR. Can soil organic carbon isotopes be used to describe grass-tree dynamics at asavanna-grassland ecotone and within the savanna? Journal of Vegetation Science,1995,6:857-862.
    McGill BJ, Enquist BJ, Weiher E, et al. Rebuilding community ecology from functional traits. Trends EcolEvol,2006a,21:178-185.
    McGill BJ, Enquist BJ, Weiher E, et al. Rebuilding community ecology from functional traits. Trends inEcology and Evolution,2006b,21:178-85.
    Menezes S, Baird DJ,AMVM S. Beyond taxonomy: a review of macroinvertebrate trait-based communitydescriptors as tools for freshwater biomonitoring. J Appl Ecol,2010,47:711-719.
    Messaoud Y, Bergeron Y,Leduc A. Ecological factors explaining the location of the boundary between themixedwood and coniferous bioclimatic zones in the boreal biome of eastern North America. GlobalEcology and Biogeography,2006,16:90-102.
    Messier J, McGill BJ,Lechowicz MJ. How do traits vary across ecological scales? A case for trait‐basedecology. Ecology Letters,2010,13:838-848.
    Moles AT, Warton DI, Warman L, et al. Global patterns in plant height. Journal of Ecology,2009,97:923-932.
    Moles AT,Westoby M. Seedling survival and seed size: a synthesis of the literature. Journal of Ecology,2004,92:372-383.
    Morley RJ2000. Origin and evolution of tropical rain forests. John Wiley&Sons.
    Mouchet MA, Villeger S, Mason NW, et al. Functional diversity measures: an overview of their redundancyand their ability to discriminate community assembly rules. Functional Ecology,2010,24:867-876.
    Mouillot D, Mason NW,Wilson JB. Is the abundance of species determined by their functional traits? A newmethod with a test using plant communities. Oecologia,2007,152:729-737.
    Neilson RP. Transient ecotone response to climatic change: some conceptual and modelling approaches.Ecological Applications,1993:385-395.
    Neilson RP, King GA, DeVelice RL, et al. Regional and local vegetation patterns: The responses ofvegetation diversity to subcontinental air masses: Biodiversity and ecotones. EcologicalStudies,1992,92:129-149.
    Norden N, Chazdon RL, Chao A, et al. Resilience of tropical rain forests: tree community reassembly insecondary forests. Ecology Letters,2009,12:385-394.
    Norden N, Letcher SG, Boukili V, et al. Demographic drivers of successional changes in phylogeneticstructure across life-history stages in plant communities. Ecology,2012,93: S70-S82.
    O'Donnell AG, Seasman M, Macrae A, et al. Plants and fertilisers as drivers of change in microbialcommunity structure and function in soils. Plant and Soil,2001,232:135-145.
    Odum EP1983. Basic ecology. Saunders College Publishing, Philadelphia,US.
    Ordo ez JC, Van Bodegom PM, Witte JPM, et al. A global study of relationships between leaf traits, climateand soil measures of nutrient fertility. Global Ecology and Biogeography,2009,18:137-149.
    Orians GH, Dirzo R,Cushman JH1996. Biodiversity and ecosystem processes in tropical forests.Springer-Verlag.
    Orwin KH, Buckland SM, Johnson D, et al. Linkages of plant traits to soil properties and the functioning oftemperate grassland. Journal of Ecology,2010,98:1074-1083.
    Pérez FL. The influence of organic matter addition by caulescent Andean rosettes on surficial soil properties.Geoderma,1992,54:151-171.
    Paine CET, Norden N, Chave J, et al. Phylogenetic density dependence and environmental filtering predictseedling mortality in a tropical forest. Ecology Letters,2011: no-no.
    Paquette A,Messier C. The effect of biodiversity on tree productivity: from temperate to boreal forests.Global Ecology and Biogeography,2011,20:170-180.
    Petchey OL,Gaston KJ. Functional diversity (FD), species richness and community composition. EcologyLetters,2002,5:402-411.
    Petchey OL,Gaston KJ. Functional diversity: back to basics and looking forward. Ecology Letters,2006,9:741-758.
    Petchey OL, Hector A,Gaston KJ. How do different measures of functional diversity perform? Ecology,2004,85:847-857.
    Petts GE. The role of ecotones in aquatic landscape management. IN: The Ecology and Management ofAquatic-Terrestrial Ecotones. The Parthenon Publishing Group, Carnforth, England.1990. p227-261.,1990.
    Poorter H, Niinemets ü, Poorter L, et al. Causes and consequences of variation in leaf mass per area (LMA):a meta‐analysis. New Phytologist,2009,182:565-588.
    Poorter L,Arets EJ. Light environment and tree strategies in a Bolivian tropical moist forest: an evaluation ofthe light partitioning hypothesis. Plant Ecology,2003,166:295-306.
    Poorter L, McDonald I, Alarcón A, et al. The importance of wood traits and hydraulic conductance for theperformance and life history strategies of42rainforest tree species. New Phytologist,2010,185:481-492.
    Possley J, Maschinski J, Rodriguez C, et al. Alternatives for Reintroducing a Rare Ecotone Species:Manually Thinned Forest Edge versus Restored Habitat Remnant. Restoration Ecology,2009,17:668-677.
    Purves DW, Pacala SW, Burslem D, et al. Ecological drift in niche-structured communities: neutral patterndoes not imply neutral process. Biotic interactions in the tropics: their role in the maintenance ofspecies diversity,2005:107-138.
    Reich PB, Ellsworth DS, Walters MB, et al. Generality of leaf trait relationships: a test across six biomes.Ecology,1999,80:1955-1969.
    Reich PB,Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude.Proceedings of the National Academy of Sciences of the United States of America,2004,101:11001-11006.
    Reich PB, Walters MB,Ellsworth DS. From tropics to tundra: global convergence in plant functioning.Proceedings of the National Academy of Sciences,1997,94:13730-13734.
    Risser PG. The Status of the Science Examining Ecotones. Bioscience,1995,45:318-325.
    Sanderson R, Rushton S, Cherrill A, et al. Soil, vegetation and space: an analysis of their effects on theinvertebrate communities of a moorland in north-east England. Journal of Applied Ecology,1995,32:506-518.
    Schamp BS,Aarssen LW. The assembly of forest communities according to maximum species height alongresource and disturbance gradients. Oikos,2009,118:564-572.
    Schleuter D, Daufresne M, Massol F, et al. A user's guide to functional diversity indices. EcologicalMonographs,2010,80:469-484.
    Scriber JM. Impacts of climate warming on hybrid zone movement: Geographically diffuse and biologicallyporous “species borders”. Insect Science,2011,18:121-159.
    Sj gersten S,Wookey PA. Spatio-temporal variability and environmental controls of methane fluxes at theforest–tundra ecotone in the Fennoscandian mountains. Global Change Biology,2002,8:885-894.
    Smith TB. A Role for Ecotones in Generating Rainforest Biodiversity. Science,1997,276:1855-1857.
    Srivastava DS, Cadotte MW, MacDonald AAM, et al. Phylogenetic diversity and the functioning ofecosystems. Ecology Letters,2012,15:637-648.
    Staddon WJ, Trevors JT,Duchesne LC. Soil microbial diversity and community structure across a climaticgradient in western Canada. Biodiversity&Conservation,1998,7:1081-1092.
    Stohlgren TJ,Bachand RR. Lodgepole pine (Pinus contorta) ecotones in Rocky Mountain National Park,Colorado, USA. Ecology,1997,78:632-641.
    Stott P, Mast JN, Veblen TT, et al. Disturbance and climatic influences on age structure of ponderosa pine atthe pine/grassland ecotone, Colorado Front Range. Journal of Biogeography,2003,25:743-755.
    Strand EK, Robinson AP,Bunting SC. Spatial patterns on the sagebrush steppe/Western juniper ecotone.Plant Ecology,2006,190:159-173.
    Suding KN, Lavorel S, Chapin FS, et al. Scaling environmental change through the community‐level: atrait‐based response‐and‐effect framework for plants. Global Change Biology,2008,14:1125-1140.
    Sussman RW,Rakotozafy A. Plant diversity and structural analysis of a tropical dry forest in southwesternMadagascar. Biotropica,1994:241-254.
    Swenson NG, Enquist BJ, Thompson J, et al. The influence of spatial and size scale on phylogeneticrelatedness in tropical forest communities. Ecology,2007,88:1770-1780.
    Swenson NG,Weiser MD. Plant geography upon the basis of functional traits: an example from easternNorth American trees. Ecology,2010,91:2234-2241.
    Tansley AG,Chipp TF1926. Aims and methods in the study of vegetation. British Empire vegetationcommittee.
    Teketay D. Seed and regeneration ecology in dry Afromontane forests of Ethiopia: I. Seedproduction-population structures. Tropical Ecology,2005,46:29-44.
    Terborgh J1992. Diversity and the tropical rain forest. Scientific American Library.
    Tilman D. Competition and biodiversity in spatially structured habitats. Ecology,1994,75:2-16.
    Tilman D, Knops J, Wedin D, et al. The influence of functional diversity and composition on ecosystemprocesses. Science,1997,277:1300-1302.
    Tolman DA. Characterization of the ecotone between Jeffrey pine savannas and Darlingtonia fens insouthwestern oregon. MADRONO,2006,53:199-210.
    Traut BH. The role of coastal ecotones: a case study of the salt marsh/upland transition zone in California.Journal of Ecology,2005,93:279-290.
    Tripathi SK, Kushwaha CP,Singh KP. Tropical forest and savanna ecosystems show differential impact of Nand P additions on soil organic matter and aggregate structure. Global Change Biology,2008,14:2572-2581.
    Turner I. Sclerophylly: primarily protective? Functional Ecology,1994,8:669-675.
    Turton S,Duff G. Light environments and floristic composition across an open forest-rainforest boundary innortheastern Queensland. Australian Journal of Ecology,2006,17:415-423.
    Vallée S,Payette S. Contrasted growth of black spruce (Picea mariana) forest trees at treeline associated withclimate change over the last400years. Arctic, Antarctic, and Alpine Research,2004,36:400-406.
    Valladares F,Niinemets ü. Shade tolerance, a key plant feature of complex nature and consequences. AnnualReview of Ecology, Evolution, and Systematics,2008,39:237-257.
    van der Maarel E. Ecotones and ecoclines are different. Journal of Vegetation Science,1990,1:135-138.
    Veblen TT, Kitzberger T,Lara A. Disturbance and forest dynamics along a transect from Andean rain forest toPatagonian shrubland. Journal of Vegetation Science,1992,3:507-520.
    Vendramini F, Díaz S, Gurvich DE, et al. Leaf traits as indicators of resource‐use strategy in floras withsucculent species. New Phytologist,2002,154:147-157.
    Violle C, Navas ML, Vile D, et al. Let the concept of trait be functional! Oikos,2007,116:882-892.
    Virtanen R, Luoto M, R m T, et al. Recent vegetation changes at the high-latitude tree line ecotone arecontrolled by geomorphological disturbance, productivity and diversity. Global Ecology andBiogeography,2010,19:810-821.
    Vitousek PM,Matson PA. Disturbance, nitrogen availability, and nitrogen losses in an intensively managedloblolly pine plantation. Ecology,1985,66:1360-1376.
    Vitousek PM, Porder S, Houlton BZ, et al. Terrestrial phosphorus limitation: mechanisms, implications, andnitrogen-phosphorus interactions. Ecological Applications,2010,20:5-15.
    Wakeling JL, Cramer MD,Bond WJ. The savanna-grassland ‘treeline’: why don’t savanna trees occur inupland grasslands? Journal of Ecology,2011: no-no.
    Walker S, Wilson JB, Steel JB, et al. Properties of ecotones: Evidence from five ecotones objectivelydetermined from a coastal vegetation gradient. Journal of Vegetation Science,2003,14:579-590.
    Walther GR, Post E, Convey P, et al. Ecological responses to recent climate change. Nature,2002,416:389-395.
    Webb CO. Exploring the phylogenetic structure of ecological communities: an example for rain forest trees.The American Naturalist,2000,156:145-155.
    Webb CO, Ackerly DD, McPeek MA, et al. Phylogenies and community ecology. Annual Review ofEcology and Systematics,2002:475-505.
    Webb CO,Donoghue MJ. Phylomatic: tree assembly for applied phylogenetics. Molecular EcologyNotes,2005,5:181-183.
    Weiher E, Clarke GP,Keddy PA. Community assembly rules, morphological dispersion, and the coexistenceof plant species. Oikos,1998:309-322.
    Westoby M, Falster DS, Moles AT, et al. Plant ecological strategies: some leading dimensions of variationbetween species. Annual Review of Ecology and Systematics,2002:125-159.
    Westoby M,Wright IJ. Land-plant ecology on the basis of functional traits. Trends in Ecology&Evolution,2006,21:261-268.
    Whitmore TC1990. An introduction to tropical rain forests. Clarendon Press.
    Whitmore TC. Tropical rain forest dynamics and its implications for management. Rain forest regenerationand management,1991:67-89.
    Wiegand T,A Moloney K. Rings, circles, and null-models for point pattern analysis in ecology. Oikos,2004,104:209-229.
    Wiegand T, Camarero JJ, RüGer N, et al. Abrupt population changes in treeline ecotones along smoothgradients. Journal of Ecology,2006,94:880-892.
    Wiegand T, Gunatilleke S, Gunatilleke N, et al. Analyzing the spatial structure of a Sri Lankan tree specieswith multiple scales of clustering. Ecology,2007,88:3088-3102.
    Wiegand T, Huth A, Getzin S, et al. Testing the independent species’ arrangement assertion made by theoriesof stochastic geometry of biodiversity. Proceedings of The Royal Society B: BiologicalSciences,2012,279:3312-3320.
    Wiens JA. What is landscape ecology, really? Landscape Ecology,1992,7:149-150.
    Willis CG, Ruhfel B, Primack RB, et al. Phylogenetic patterns of species loss in Thoreau's woods are drivenby climate change. Proceedings of the National Academy of Sciences,2008,105:17029-17033.
    Wilson JB,Chiarucci A. Do plant communities exist? Evidence from scaling-up local species-area relationsto the regional level. Journal of Vegetation Science,2000,11:773-775.
    Woodward F,Williams B. Climate and plant distribution at global and local scales. Plant Ecology,1987,69:189-197.
    Wright IJ, Reich P,Westoby M. Strategy shifts in leaf physiology, structure and nutrient content betweenspecies of high‐and low‐rainfall and high‐and low‐nutrient habitats. Functional Ecology,2001,15:423-434.
    Wright IJ, Reich PB, Westoby M, et al. The worldwide leaf economics spectrum. Nature,2004,428:821-827.
    Wright JS. Plant diversity in tropical forests: a review of mechanisms of species coexistence.Oecologia,2002,130:1-14.
    Wright ME,Ranker TA. Dispersal and habitat fidelity of bog and forest growth forms of HawaiianMetrosideros (Myrtaceae). Botanical Journal of The Linnean Society,2010,162:558-571.
    Wyckoff PH,Bowers R. Response of the prairie–forest border to climate change: impacts of increasingdrought may be mitigated by increasing CO2. Journal of Ecology,2010,98:197-208.
    Xu Z-F, Hu T-X, Wang K-Y, et al. Short-term responses of phenology, shoot growth and leaf traits of fouralpine shrubs in a timberline ecotone to simulated global warming, Eastern Tibetan Plateau, China.Plant Species Biology,2009,24:27-34.
    Yan B, Zhang J, Liu Y, et al. Trait assembly of woody plants in communities across sub-alpine gradients:Identifying the role of limiting similarity. Journal of Vegetation Science,2012,23:698-708.
    Zalatnai M,K rm czi L. Fine-scale pattern of the boundary zones in alkaline grassland communities.Community Ecology,2004,5:235-246.
    Zang RG, Ding Y, Zhang ZD, et al. Ecological foundation of conservation and restoration for the majorfunctional groups in tropical natural forests on Hainan Island. In. Science Press, Beijing,2010.
    常禹,布仁仓,胡远满等.长白山北坡苔原-岳桦景观边界的定量检测.地理科学,2003,23:477-483.
    陈立新.人工林土壤质量演变与调控.科学出版社.2004.
    陈尚.生态交错带理论及其在海洋生态学中的应用.地球科学进展,1998,13:431-437.
    陈旭东,赵雨兴.鄂尔多斯高原生态过渡带的判定及生物群区特征.植物生态学报,1998,22:312-318.
    丁易,臧润国.海南岛霸王岭热带低地雨林植被恢复动态.植物生态学报,2011,35:577-586.
    董莉莉,刘世荣,史作民等.中国南北样带上栲属树种叶功能性状与环境因子的关系.林业科学研究,2009,22:463-469.
    高洪文.生态交错带理论研究进展.生态学杂志,1994,13:32-38.
    高俊峰,张芸香.官邸山次生林区典型森林交错带物种多样性研究.西北植物学报,2005,25:2017-2023.
    高贤明,马克平,陈灵芝.暖温带若干落叶阔叶林群落物种多样性及其与群落动态的关系.植物生态学报,2001,25:283-290.
    葛全胜,张丕远.中国环境脆弱带特征研究.地理新论,1990,5:17-27.
    侯元兆.中国热带森林环境资源.中国科学技术出版社,2002.
    洪菊生,侯元兆.分类经营是热带林业可持续发展的重要途径.林业科学,1999,35:104-110.
    胡聃,王如松.城乡交错带的生态控制论分析-天津实例研究.生态学报,1996,16:50-57.
    胡玉佳,丁小球.海南岛坝王岭热带天然林植物物种多样性研究.生物多样性,2000,8:370-377.
    胡玉佳,李玉杏.海南热带雨林.广州:广东高教出版社,1992,26:182-186.
    黄金城.中国海南岛热带森林可持续经营研究.中国林业科学研究院博士论文,2006.
    黄清麟,陈永富,杨秀森.海南霸王岭林区南亚松天然林乔木层结构特征研究.林业科学研究,2002,15:741-745.
    黄旭,张健,杨万勤等.川西亚高山林牧交错区土壤动物多样性.生态学报,2010,30:5161-5173.
    黄运峰,丁易,臧润国等.海南岛霸王岭热带低地雨林树木的空间格局.植物生态学报,2013,36:269-280.
    黄运峰,杨小波,党金玲等.海南霸王岭南亚松种群结构与分布格局.福建林业科技,2009,36:1-4,22.
    贾宝全,慈龙骏,蔡体久等.绿洲-荒漠交错带土壤水分变化特征初步研究.植物生态学报,2002,26:203-208.
    姜笑梅,张立非.非洲热带木材.北京:中国林业出版社,1996.
    蒋有绪.国际森林可持续经营问题的进展.资源科学,2000,22:77-82.
    蒋有绪,卢俊培.中国海南岛尖峰岭热带林生态系统.北京:科学出版社.1991.
    蒋有绪,王伯荪,臧润国等.海南岛热带林生物多样性及其形成机制.北京:科学出版社.2002.
    李瑞,张克斌,王百田等.湿地-干草原生态系统植物物种多样性研究-以宁夏盐池为例.北京林业大学学报,2006,28:12-17.
    李轩然,刘琪璟,蔡哲等.千烟洲针叶林的比叶面积及叶面积指数.植物生态学报,2007,31:93-101.
    刘广福,丁易,臧润国等.海南岛热带天然针叶林附生维管植物多样性和分布.植物生态学报,2010,34:1283–1293.
    刘万德,臧润国,丁易.海南岛霸王岭两种典型热带季雨林群落特征.生态学报,2009,29.
    卢俊培,刘其汉.海南岛尖峰岭热带林凋落物研究初报.植物生态学与地植物学学报,1988,12:104-112.
    马克平.试论生物多样性的概念.生物多样性,1993,01:20-22.
    马克平,刘玉明.生物群落多样性的测度方法.生物多样性,1994,2:231-239.
    马克平,叶万辉,于顺利等.北京东灵山地区植物群落多样性研究Ⅷ.群落组成随海拔梯度的变化.生态学报,1997,17:593-600.
    马世骏.边际效应与边际生态学.现代生态学透视.北京:科学出版社,1990,45.
    牟长城,韩士杰,罗菊春等.长白山森林/沼泽生态交错带群落和环境梯度分析.应用生态学报,2001,12:1-7.
    牟长城,倪志英,李东等.长白山溪流河岸带森林木本植物多样性沿海拔梯度分布规律.应用生态学报,2007,18:943-950.
    牟长城,宋洪文,苏平等.长白山毛赤杨和白桦/沼泽交错带植物多样性分布格局.自然资源学报,2005,20:258-265.
    牛克昌,刘怿宁,沈泽昊等.群落构建的中性理论和生态位理论.生物多样性,2009,17:579-593.
    牛文元.生态环境脆弱带ECOTONE的基础判定.生态学报,1990,9:97-105.
    彭少麟.南亚热带森林群落动态学.科学出版社.1996.
    任国玉.全新世东北平原森林-草原生态过渡带的迁移.生态学报,1998,18:33-37.
    茹文明,张金屯,张峰等.历山森林群落物种多样性与群落结构研究.应用生态学报,2006,17:561-566.
    沈泽昊,胡会峰,周宇等.神农架南坡植物群落多样性的海拔梯度格局.生物多样性,2004,12:99-107.
    沈泽昊,张新时,金义兴.三峡大老岭森林物种多样性的空间格局分析及其地形解释.植物学报,2000,42:620-627.
    石培礼.亚高山林线生态交错带的植被生态学研究.中国科学院(自然资源综合考察委员会)生态学博士论文,1999.
    石培礼,李文华,王金锡等.四川卧龙亚高山林线生态交错带群落的种多度关系.生态学报,2000,20:384-389.
    孙鸿烈.中国资源科学百科全书.中国大百科全书出版社.2000
    王庆锁,冯宗炜,罗菊春.河北北部、内蒙古东部森林-草原交错带生物多样性研究.植物生态学报,2000,24:141-146.
    王庆锁,王襄平,罗菊春等.生态交错带与生物多样性.生物多样性,1997,5:126-131.
    王庆锁,张玉发,罗菊春等.人为干扰对浑善达克沙地东部森林-草原交错带的影响及其恢复治理的生态对策.自然资源学报,1999,14:28-34.
    吴中伦.中国森林(第2卷).北京:中国林业出版社,1996.
    夏汉平,余清发,张德强.鼎湖山3种不同林型下的土壤酸度和养分含量差异及其季节动态变化特性.生态学报,1997,17:645-653.
    闫帮国.川西高山林草过渡带植物群落组合机理研究.四川农业大学,2010.
    于晓东,罗天宏,周红章等.边缘效应对卧龙自然保护区森林-草地群落交错带地表甲虫多样性的影响.昆虫学报,2006,49:277-286.
    臧润国,丁易,张志东等.海南岛热带天然林主要功能群保护与恢复的生态学基础.北京:科学出版社.2010.
    张克斌.半干旱区湿地-干草原群落交错带边缘效应研究.西北植物学报,2007,27:0859-0863.
    张瑞,刘芳,郝玉光等.乌兰布和东北部荒漠-绿洲生态交错带植被特征及其群落多样性研究.干旱区资源与环境,2011,25.
    赵振勇,王让会,尹传华等.天山南麓山前平原植物群落物种多样性及空间分异研究.西北植物学报,2007,27:784-790.
    中国植被编辑委员会.中国植被.北京:科学出版社,1983:157-249.
    朱志淞.海南主要经济树木.北京:农业出版社,1964:46-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700