用户名: 密码: 验证码:
CoNiAlMe磁控形状记忆合金的组织结构及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用快速凝固技术(铜模真空吸铸法)制得Co_(38)Ni_(34)Al_(28-x)Si_x和Co_(38)Ni_(34)Al_(28-x)Sn_x系列合金,利用差示扫描量热法(DSC)、振动样品磁强计(VSM)、X射线衍射(XRD)和光学显微分析技术(OM)等现代检测手段,研究了合金成分和热处理工艺对Co_(38)Ni_(34)Al_(28-x)Si_x系列合金和Co_(38)Ni_(34)Al_(28-x)Sn_x系列合金的相变、结构、组织和磁性能的影响,分析讨论了其影响机理。本文的研究结果表明:
     1.Co_(38)Ni_(34)Al_(28-x)Si_x磁控形状记忆合金的组织结构、逆马氏体相变点与成分和热处理工艺有关。当Ni含量为33%时,在室温下为B2相结构;当Ni含量为34%时,可获得M相结构合金;Co_(38)Ni_(34)Al_(25)Si_3合金经过1573K时效2h冰水淬试样能获得择优取向的马氏体。添加3%Si有利于提高合金的逆马氏体相变热焓值;相对于铸态试样而言,Co_(38)Ni_(34)Al_(25)Si_3合金热处理温度在1373K时使相变点提高,热效应大。Co_(38)Ni_(34)Al_(25)Si_3和Co_(38)Ni_(34)Al_(23)Si_5通过快速凝固技术吸铸所得铸样即为马氏体组织,Co_(38)Ni_(34)Al_(25)Si_3吸铸样及1573K热处理试样具有最理想的显微组织。
     2.Co_(38)Ni_(34)Al_(28-x)Si_x磁控形状记忆合金的饱和磁化强度和显微硬度与组织结构有关。当合金试样具有均匀的单相组织时,其饱和磁化强度Ms较高;经热处理后晶界析出物较多的试样饱和磁化强度Ms较低,Hc较高。奥氏体组织的显微硬度高于马氏体组织的显微硬度;随着热处理温度增加,显微硬度提高;成份相同时,晶界析出相γ相的增加使合金的显微硬度提高。
     3.Co_(38)Ni_(34)Al_(28-x)Sn_x合金的组织结构与合金成份和热处理工艺有关,经快速凝固技术吸铸试样组织均匀;随着Sn含量增加,晶粒变大;随着Sn含量的增加,合金铸样结构的变化趋势为由B2+M双相结构→B2+M+γ三相组织;少量的Sn有助于提高逆马氏体转变点,但Sn含量继续增加,使逆马氏体转变点降低。同一成份合金随着热处理温度的增加,晶粒增大,晶界析出物逐渐减少;当热处理温度1573K时,采用冰水冷却方式可得到马氏体组织。随着热处理温度提高,合金结构逐渐向马氏体相结构变化。
     4.Co_(38)Ni_(34)Al_(28-x)Sn_x合金的显微硬度与合金的成分和组织结构有关,随着Sn含量的增加,合金显微硬度提高;成份相同时,晶界析出相γ相的增加使合金的显微硬度提高。
Co_(38)Ni_(34)Al_(28-x)Si_x and Co_(38)Ni_(34)Al_(28-x)Sn_x magnetic shape memory alloys(MSMA) were prepared by means of Rapid Solidification Technology (copper-mold vacuum suction casting). The effect of alloy composition and heat treatment process on Martensitic transformation, microstructure and magnetic properties of Co_(38)Ni_(34)Al_(28-x)Si_x and Co_(38)Ni_(34)Al_(28-x)Sn_x alloys were investigated by differential scanning calorimeter(DSC), Vibrating Sample Magnetometer(VSM), X-ray diffraction(XRD), optical microscopy(OM), etc. The results are as follows.
     1. The microstructure and reverse martensite transformation temperature of Co_(38)Ni_(34)Al_(28-x)Si_x alloys is related to composition and heat treatment process. The alloys with 33 at.% Ni is characteristic of B2 structure at ambient temperature. When Ni content is increased to 34at.%, the alloy as cast is characteristic of M structure. Co_(38)Ni_(34)Al_(25)Si_3 alloy treated by 1573K aging for 2h and quenching in ice-water is characteristic of obvious preferred orientation. Si of 3 at% content is beneficial to increase of the reverse martensitic transformation enthalpy. Comparing with the cast, martensite transformation temperature of Co_(38)Ni_(34)Al_(25)Si_3 Alloys increases after heat treatment of 1373K with the largest enthalpy. By the means of Rapid Solidification Technology, martensite is obtained in the Co_(38)Ni_(34)Al_(25)Si_3 and Co_(38)Ni_(34)Al_(25)Si_5 alloys as cast. The samples as cast and heat treated by 1573K aging 2h and quenching in ice-water are in the best microstructure.
     2. The saturation magnetization (M_s) and microhardness of Co_(38)Ni_(34)Al_(28-x)Si_x alloys is influenced by microstructure. Co_(38)Ni_(34)Al_(28-x)Si_x alloys with the homogeneous single-phase contributed to the higher M_s. The more boundary precipitates occur after heat treatment will reduce the Hc and increase the M_s. The microhardness of austenite is higher than martensite.The increases heat treatment temperature will improve the microhardness of alloys. The boundary precipitates (γphase) contributed to increase the microhardness of alloys.
     3. The microstructure of Co_(38)Ni_(34)Al_(28-x)Sn_x alloys is related to composition and heat treatment process. The grain grows with the increase of Sn content. The homogeneous microstructure is abtained by the means of Rapid Solidification Technology. With the Sn content increasing, the structure of the as-cast changes from two-phase (M+B2) structure to B2+M+γthree-phase structure. A few Sn contributed to increase the reverse martensite transformation temperature. The reverse martensite transformation temperature decreases with the content of Sn continue to increase. The grain grows and grain boundary precipitates gradually reduced with the increases of heat treatment temperature. Martensite is obtained by the means of 1573K heat treatment temperature and quenching to ice-water. With the increasing of heat treatment temperature, the structure of alloys changes to M phase.
     4. The microhardness of the Co_(38)Ni_(34)Al_(28-x)Sn_x alloys is influenced by structure. The increases content of Sn will improve the microhardness of alloys.The boundary precipitates (γphase) contributed to increase the microhardness of alloys
引文
[1]胡美贤.FeNiCoTi、NiMnGa磁控形状记忆合金的组织结构及磁性能研究[D]. 广东工业大学.20060701.1-69.
    
    [2]Mei W, Okane T, Umeda T,et,al.Phase diagram and inhomogeneity of (TbDy)-Fe(T) (T = Mn, Co, Al, Ti )systems[J] Journal of Alloys and Compounds, 1997, 248:132-138.
    
    [3]Quandt E, Seemann K,et,al.Fabrication and simulation of magnetostrictive thin-film actuators[J]. Sensors and Actuators A:Physical, 1995, 50:105-109.
    
    [4]Mencik J, Quandt E, Munz D.Elastic modulus of TbDyFe films-a comparison of nanoindentation and bending measurements[J].Thin Solid Films, 1996, 287:208-213.
    
    [5]Fischer S F, Kelsch M, Kronmuller H.Optimization of magnetostriction, coercive field and magnetic transition temperature in nanocrystalline TbDyFe+Zr/Nb multilayers[J].Journal of Magnetism and Magnetic Materials,1999,195:545-554.
    
    [6]叶超群,徐政,严彪.电子陶瓷材料介电功能应用研究现状与前瞻[J].江苏陶 瓷.37(2).2004:15-20.
    
    [7]Toshiyuki Takagi, Kiyoshi Yamauchi. NiMnGa alloy and shape memory[P]. Smart Materials Bulletin, US6478821,2002, Iss:12, December: 14.
    
    [8]郭世海,张羊换,王新林.磁性形状记忆合金的研究现状及发展[J].稀有金 属,2005,29(3):339.
    
    [9]李健靓,张羊换,郭世海等.磁性形状记忆合金Ni_2MnGa的研究现状及发展 [J].金属功能材料.2003.10(5):25.
    
    [10]彭志明,金学军,徐祖耀.Ni_2MnGa合金结构及磁控形状记忆机制的研究进展 [J].功能材料.35(2).2004:136.
    
    [11]Oikawa K,WulfL, Iima T,et al.Promising ferromagnetic Ni-Co-Al shape memory alloy system[J].Appl Phys Left, 2001;79:3290.
    
    [12]Morito H, Fujita A, Fukamichi K,et al.Magnetocrystalline anisotropy in single-crystal Co-Ni-Al ferromagnetic[J].Applied physics letters. 81(9).2002: 1657-1659.
    
    [13]闫丽琴.铁磁形状记忆合金CoNiGa的制备与性能研究[D].河北工业大 学,2004:1-49.
    
    [14]Ullakko K, Huang J K, Kantner C, et al.Large Magnetic-field-induced strains in Ni_2MnGa single crystals[J]. Appl Phys Left.69(13).1996.
    
    [15]王文洪-NiMnGa合金的结构、磁性和单晶应用功能的研究[D].中国科学院 物理研究所,2002:3-9.
    
    [16]Chumlyakov,Yu I,Kireeva I V,I.Karaman,et,al.Orientational dependence of shape memory effects and superelasticity in CoNiGa, NiMnGa, CoNiAl, FeNiCoTi, and TiNi single crystals[J].Russian Physics Journal. 47(9). 2004: 893-911.
    
    [17]刘岩.CoNi磁控形状记忆效应初探[D].上海交通大学.19991201.1-75.
    
    [18]Chatterjee S, Thakur M, Giri S,et,al.Transport,magnetic and structural investigation of Co-Ni-Al shape memory alloy[J].Journal of Alloys and Compounds. 456(2008):96-100.
    
    [19]Sutou Y, Kainuma R, Ishida K,et al.Martensitic transformation behavior under magnetic field in Co-Ni-Al ferromagnetic shape memory alloys[J].Smart Structures and Materials.5053.2003:159-168.
    
    [20]Brown P J, Ishida K, Kainuma R,et al.Crystal structures and phase transitions in ferromagnetic shape memory alloys based on Co-Ni-Al and Co-Ni-Ga[J]. Institute of physics publishing.l7(2005)1301-1310.
    
    [21]Karaca H E,Ibrahim Karaman, Lagoudas D C,et,al.Recoverable stress-induced??martensitic transformation in a ferromagnetic CoNiAl alloy[J]. Scripta Materialia.49(2003):831-836.
    
    [22]Wang H Y, Liu Z H, Wang Y G.,et,al. Microstructure of martensitic phase in the Co_(39)Ni_(33)Al_(28) shape memory alloys revealed by transmission electron microscopy [J]. Journal of Alloys and Compounds.400(2005)145-149.
    
    [23]Tanaka Y, Oikawa K, Suto Y,et al.Martensitic transition and superelasticity of Co-Ni-Al ferromagnetic shape memory alloys with β+γ two-phase structure[J]. Materials Science and Engineering. A 438-440.(2006)1054-1060.
    
    [24]罗丰华,陈嘉砚,刘浪飞.Sb添加对(β+γ)双相Co-Ni-Al形状记忆合金马氏体 相变和磁性的影响[J].金属学报.2006,42(8):785-791.
    
    [25]罗丰华,及川胜成,石田清仁.金属学报[J].Co_(41)Ni_(32)Al_(27-x)Si_x合金的马氏体相 变和磁性转变.2005.压器7(41):680-684.
    
    [26]Zhou Weimin, Liu Yan, Jiang Bohong,et,al.Effect of adding Si on shape memory effect in Co-Ni alloy system[J].Materials Science and Engineering (A).2006,468-471.
    
    [27]罗丰华,陈嘉砚,刘浪飞等.Co_(41)Ni_(33-x)Al_(26)Cu_x的马氏体相变和磁性转变[J].中 国材料科技与设备.2007:103-106.
    
    [28]罗丰华,陈嘉砚,陈康华等.Fe对β基Co-Ni-Al合金马氏体相变和磁性转变 的影响[J].功能材料.2005.36(12):1862-1865.
    
    [29]徐国富,尹志民,罗丰华等.Ga对β基Co-Ni-Al铁磁形状记忆合金马氏体和 磁性转变的影响[J].中南大学学报.2006.37(4):635-640.
    
    [30]Ullakko K,et al. Magnetic control of shape memory effect[A]. International Conference On Martensitic Transformations ICOMAT-95[C], 1995, 20.
    
    [31]O'handley R C. Model for strain and magnetization in magnetic shape-memory alloys[J], Journal of Applied Physics, 1998,83(6):3263-3270.
    
    [32]Ullakko K.Magnetic ally controlled shape memory alloys: a new class of??actuator materials[J]. J. Materials Engineering and Performance, 1996,5(3):405.
    
    [33]Meyer D, Maier H J, dadda J,et,al.Thermally and stress-induced martensitic transformation in Co-Ni-Al ferromagnetic shape memory alloy single crystals[J].Materials Science and Engineering A 438-440(2006)875-878.
    
    [34]徐祖耀.马氏体相变与马氏体[M].北京:中国科学技术出版社,1984,7-59.
    
    [35]Sadovsky V D, Rodigin N M, Smirnov L V, Filonchik G M and I. Fakidov G: Fiz. metal. metalloved.,12 (1961), 302.
    
    [36]刘岩.Ni-Mn-Ga,Co-Ni合金的马氏体相变与磁(温)控形状记忆效应[D].中 国科学院上海硅酸盐研究所,2004:23.
    
    [37]Richard M L, Feuchtwanger J, Allen S M,et,al.Martensite Transformation in Ni-Mn-Ga Ferromagnetic Shape-memory Alloys[J].Metallurgical and materials transactions A. 3 8.2007:777-780.
    
    [38]孙光飞,强文江.磁功能材料[M].化学工业出版社.2007:173-204
    
    [39]Olson G.B., Cohen M..Themoelastic behavior in martensitic transformations[J]. Scripta Metall. 1975,9:1247.
    
    [40]程天一,章守华.快速凝固技术和新型合金[M].宇航出版社.1990.
    
    [41]李月珠.快速凝固技术和材料[M].国防工业出版社.1991.
    
    [42]Dormer P, Eucken S. The shape memory effect in meltspun ribbons[A]. International Conference On Martensitic Transformations ICOMAT-89[C], Sydhey, 1989, 723-728.
    
    [43]金嘉陵.快速凝固形状记忆合金[M].上海钢研.1994.
    
    [44]Eucken S, Dormer P, Hornbogen E. On improvement in the mechanical properties of rapidly solidified shape memory alloys[J]. Materials Science and Engineering, 98.1988:469-474.
    
    [45]陆昌伟.热分析质谱法[M].上海:上海科学技术文献出版社.2002.
    
    [46]钟文定.铁磁学[M].科学出版社.1992.
    
    [47]Sutou Y, Kainuma R, Ishida K M.Taya.Martensitic transformation behavior under magnetic field in Co-Ni-Al ferromagnetic shape memory alloys[J].Smart Structures and Materials.5053(2003):159-168.
    
    [48]Kainuma R,Ise M, Jia C C,et,al.Phase equilibria and microstructrual control in Ni-Co-Al system[J].Intermetallice.4(1996): 151-158.
    
    [49]刘国栋,王新强,代学芳等.Si掺杂的铁磁形状记忆合金Co_(50)Ni_(21)Ga_(29)Si_x的物 性研究[J].物理学报.56(3).2007:1686-1690.
    
    [50]Valiullin A I, Kositsin S V, Kositsina I I,et,al.Study of ferromagnetic Co- Ni-Al alloys with thermoelastic L10 martensite[J].Materials Science and Engineering. A.438-440(2006)1041-1044.
    
    [51]庄应烘,徐艳,邓健秋.锡替代钴对DyCo_2合金结构和磁热效应的影响[J].广 西大学学报.31(4).2006,12:271-274.
    
    [52]赵书文,韩晓艳,赵勇等.Sn作为添加剂的低温瞬时液相烧结Terfenol-D工艺 的研究[J].稀有金属材料与工程.36(4).2007:750-752.
    
    [53]李锋,赵韦人,孙长军.Ni_(52)Mn_(23+x)Sn_(25-x)(x=0,1,2)合金的磁性[J].金属功能材 料.14(5).2007:1-3.
    
    [54]Kanomata T, Kikuchi M, Yamauchi H.Magnetic properties of Heusler alloys Ru_2MnZ(Z = Si, Ge, Sn and Sb)[J].Journal of Alloys and Compounds. 414 (2006)1-7.
    
    [55]侯雪玲,孔俊峰,李士涛等.添加元素Sn对Gd_5Si_2Ge_2合金磁热效应的影响[J]. 稀有金属材料与工程.36(9).2007:1605-1607.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700