用户名: 密码: 验证码:
异质结型复合光催化剂的制备及模拟太阳光催化制氢和光催化剂修饰贮氢合金研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文首先制备了掺杂型锆酸盐和钛酸盐异质结复合光催化剂,并以贵金属及金属氧化物对其进行了修饰。采用XRD、SEM、IR、TG-DTA、UV-Vis、FS等技术对其进行了表征。以草酸为电子给体,光催化分解水产氢评价了催化剂的活性。研究了光催化剂活性的影响因素及连续使用效果,并探讨了异质结光催化剂的活性机理及光生载流子分离机理,为丰富钙钛矿异质结型复合氧化物的研究提供一些实验数据和理论参考。其次,将光催化剂与贮氢合金复合制成可光充电的光催化贮氢合金电极(记作PHSA),以电化学充放电性能作为评价手段,考察了光催化剂修饰和光照处理对贮氢合金电化学性能影响方面做了一些初步的研究。
     (1)溶胶包覆法制备的异质结SrZr_(0.95)Y_(0.05)O_3-TiO_(2-x)N_x复合光催化剂在模拟太阳光条件下有较好的光催化产氢活性,其催化活性明显高于纯的SrZr_(0.95)Y_(0.05)O_3和TiO_2。详细研究了不同条件下制备的复合催化剂,得出了最佳的工艺条件:给电子体浓度为30~70mmol/L,溶液pH值为2~4,氮源剂为三乙胺,N/Ti摩尔比为8:100,TiO_2复合含量为70wt%,焙烧温度为400℃,焙烧气氛为空气气氛。不同方法进一步负载铂后,其产氢量均得到提高,其中以光还原法的负载效果最佳,在最佳负载量1wt%下,平均产氢速率达到2.1mmol·g·cat~(-1)h~(-1)。同时还探讨了Pt载异质结复合光催化剂的稳定性和可能的光催化机理。
     (2)采用固相烧结法在不同条件下制备了氮掺杂改性SrTiO_3,并考察了模拟太阳光下的产氢活性。得到了固相法制备的最佳实验条件:氮源剂为六次亚甲基四胺(HMT),SrTiO_3与HMT质量比为1:3,焙烧温度为450℃。在此条件下,采用氢还原和光还原法负载铂使光催化产氢活性得到较大的提高,其中氢还原法比光还原法负载铂效果更好,两者最佳负载量均为2wt%,平均产氢速率分别为1.15和0.38 mmol·g·cat~(-1)h~(-1)。此外,采用氢还原法负载NiO、CoO和ZnO也取得了较为理想的产氢效果,探讨了负载物的不同处理方法对光催化剂产氢活性的影响,发现氧化物的负载先氢还原后氧化处理较直接氧化处理有更高的光催化活性;同时还研究了三种负载物的最佳负载量、产氢活性变化规律及其异质结作用机理。
     (3)对(2)中所制各的最佳条件的氮掺杂SrTiO_3以溶胶包覆法使其与TiO_2进行复合,并采用氢还原法于复合催化剂表面进一步沉积Pt和Pd。从TiO_2复合含量、焙烧温度、负载量方面考察了异质结复合催化剂模拟太阳光下的光催化产氢活性。结果表明,当复合催化剂中TiO_2的质量百分含量为70%,焙烧温度为400℃,Pt和Pd负载量均为2wt%时,平均产氢速率分别达到5.1和5.4mmol·g·cat~(-1)h~(-1)。
     (4)将(3)中所制备的Pt载复合光催化剂修饰贮氢合金制备成可光充电的PHSA,电化学充放电测试表明,光催化剂对贮氢合金的修饰,其充放电性能并没有得到改善。将PHSA紫外光处理后其活化性能、最大放电容量、高倍率放电性能以及循环性能均明显优于无光照的处理,而纯贮氢合金经光照处理其充放电性能基本上没有变化。光照处理PHSA与纯贮氢合金相比,光催化剂添加量为5%时其首次活化的容量明显要高,活化达到的最大容量也略高,但循环性能有所降低。
Doping zirconate and titanate heterojunction composite photocatalysts were prepared firstly and noble metal or metal oxide was further modified. These photocatalysts were characterized by X-ray diffraction, scanning electron microscope, fourier transform infrared, thermogravimetry and differential thermal analysis, ultraviolet visible diffuse reflectance absorption spectra, fluorescence spectra. The photocatalytic generation of hydrogen in oxalic acid solution was used as the probe reaction to evaluate the photocatalytic activity of the photocatalyst. The influencing factors of photocatalytic activity and continuous usage property of photocatalysts were investigated. We also studied the mechanism of photocatalytic activity and photo-generated carrier separation of photocatalyst. These can afford some experimental data and theoretical references for enriching the research on perovskite heterojunction composite oxides. Secondly, the photocatalytic hydrogen storage alloy (PHSA) was made by the combination of photocatalyst with hydrogen storage alloy. The electrochemical test was used as a means to evaluate their charge-discharge properties. The effect of photocatalyst modification and UV light treatment on the electrochemical property of hydrogen storage alloy was discussed.
     SrZr_(0.95)Y_(0.05)O_3-TiO_(2-x)N_x heterojunction composite photocatalyst prepared by sol coating method had high activity under simulated sunlight irradiation. The photocatalytic activity of composite particles was higher than that of pure TiO_2 and pure SrZr_(0.95)Y_(0.05)O_3. The composite catalysts prepared under different conditions were systematically investigated and the optimum conditions were obtained as follows: the concentration of electron donor was 30-70mmol/L, the pH value was 2-4, the nitrogen source regent was triethylamine, the molar ratio of N/Ti was 8:100, the content of TiO_2 in composite catalyst was 70mass%, the calcination temperature was 400℃and the calcination atmosphere was air. After further loading Pt by different methods, the photocatalytic activity of hydrogen generation was all greatly improved, and the in situ photoreduction method showed the optimized activity of hydrogen generation. The average rate of hydrogen generation was up to 2.1 mmol·g·cat~(-1)h~(-1)when the optimum loaded content was 1 mass %. Meanwhile, we also discussed the stability of Pt loaded heterojunction composite photocatalyst and possible photocatalytic mechanism.
     Nitrogen doped SrTiO_3 were prepared by solid sintering method under different conditions. The photocatalytic hydrogen generation activity of catalysts was discussed. The optimal preparation condition was obtained by experiments: the nitrogen source was HMT, the mass proportion of SrTiO_3 and HMT was 1:3, and the calcination temperature was 450℃. Under this condition, the photocatalytic activity of hydrogen generation was both greatly improved after losding Pt on nitrogen doped SrTiO_3 by hydrogen reduction method and photoreduction method respectively, and the photocatalytic activity of photocatalysts prepared by hydrogen reduction method was better than that prepared by photoreduction method. The average rates of hydrogen generation were respectively up to 1.15 and 0.38 mmol-g-caf'h"1 when the optimal loaded content were both 2mass%. Moreover, the good result of hydrogen generation was achieved by loading NiO, CoO and ZnO with hydrogen reduction method. The effect of different treatment methods of loading NiO on hydrogen generation activity of nitrogen doped SrTiO3 was also studied. The result demonstrated that the NiO loaded composite catalyst showed higher photocatalytic activity when NiO was loaded by hydrogen reduction treatment firstly and then oxidation treatment than NiO was loaded by direct oxidation treatment. The optimal loaded contents, the law of hydrogen generation and heterojunction mechanism of three loadings were also discussed.
     The nitrogen doped SrTiO_3 obtained from above further combined with TiO_2 by sol coating method to form heterojunction composite catalyst, and noble metal Pt and Pd particles were further modified by hydrogen reduction method. Photocatalytic hydrogen generation was used as the probe reaction to evaluate the photocatalytic activity of photocatalysts under simulated sunlight irradiation in detail from the aspects of different contents of TiO_2 in the composite particles, different calcination temperatures, and different contents of Pt and Pd. The result demonstrated that the average rates of hydrogen generation were respectively up to 5.1 and 5.4mmol·g·cat~(-1)h~(-1) when the optimal loaded contents of Pt and Pd were both 2mass%.
     The photo-charge PHSA was made·by the modification of Pt loaded composite catalyst on hydrogen storage alloy. The electrochemical charge-discharge test demonstrated that the charge-discharge property didn't improve when the photocatalyst was modified on hydrogen storage alloy. The activation property, biggest discharge capacity, high-rate discharge property and cycle property of the PHSA with light treatment was superior to that of the PHSA without light treatment, and whereas the charge-discharge property of pure hydrogen storage alloy with light treatment was almost the same as that without light treatment. The capacity of first activation and the biggest activation capacity of PHSA with light treatment were slightly higher and the cycle property decreased when compared to pure hydrogen storage alloy.
引文
[1] Evangelos Tzimas, Stathis D Peteves. The impact of carbon sequestration on theproduction cost of electricity and hydrogen from coal and natural-gas technologies inEurope in the medium term. Energy, 2005,30 (14): 2672-2689
    
    [2] Momirlan M, Veziroglu T. Recent directions of world hydrogen production.Renewable and Sustainable Energy Reviews, 1999, 3 (2-3): 219-231
    
    [3] Brenda Johnston, Michael C Mayo, Anshuman Khare. Hydrogen: the energysource for the 21st century. Technovation, 2005,25 (6):569-585
    
    [4] Meng Ni, Michael K H Leung, Dennis Y C Leung, et al. A review and recentdevelopments in photocatalytic water-splitting using TiO_2 for hydrogen production.Renewable and Sustainable Energy Reviews, 2007,11 (3): 401-425
    
    [5] Fujishima A, Rao T N, Tryk D A. Titanium dioxide photocatalysis. J PhotochemPhotobioloty C: Photochem Rev, 2000,1 (1): 1-2
    
    [6]王传义,刘春艳,沈涛.半导体光催化剂的表面修饰.高等学校化学学报,1998,19(12):2013-2019
    
    [7]于华,李新军,郑少健,等.Ni控制掺杂TiO_2薄膜的光电化学及光催化活性.无机化学学报,2006,22(6):978-982
    
    [8]魏子栋,殷菲,谭君,等.TiO_2光催化氧化研究进展.化学通报,2001,64(2):76-80
    
    [9] Sakthivel S, Geeissen S U, Bahnemann D W. Enhancement of photocatalyticactivity by semiconductor heterojunctions: α-Fe_2O_3, WO_3 and CdS deposited on ZnO.J Photochem Photobio A: Chem, 2002,148: 283-293
    
    [10] Bessekhouad Y, Robert D, Weber J V. Bi_2S_3/TiO_2 and CdS/TiO_2 heterojunctionsas an available configuration for photocatalytic degradation of organic pollutant. JPhotochem Photobio A: Chem, 2004,163 (3): 569-580
    
    [11] Kanai N, Nuida T, Ueta K, et al. Photocatalytic efficiency of TiO_2/SnO_2 thin filmstacks prepared by DC magnetron sputtering. Vacuum, 2004,74 (3-4): 723-727
    
    [12] Omata T, Otsuka-Yao-Matsuo S. Photocatalytic behavior of titaniumoxide-perovskite type Sr(Zr_(1-x)Y_x)O_(3-σ) composite particles. J Photochem Photobio A:Chem, 2003,156 (1-3): 243-248
    
    [13]林熙,李旦振,吴清萍,等.异质结型光催化膜的活性及其机理研究.高等学校化学学报,2005,26(4):727-730
    
    [14] Kawai T, Sakata T. Photocatalytic hydrogen production from liquid methanoland water. J Chem Soc Chem Commun, 1980,24 (15): 694-695
    
    [15] Kawai T, Sakata T. Conversion of carbohydrate into hydrogen fuel by aphotocatalytic process. Nature, 1980,286:474-476
    
    [16] Hashimoto K, Sakata T, et al. Photocatalytic reactions of hydrocarbons and fossilfuels with water-hydrogen production and oxidation. J Phys Chem, 1984, 88 (10):4083-4088
    
    [17] Sakata T, Kawai T. Photocatalytic hydrogen production from water by thedecomposition of Poly-vinylchloride, Protein, Algae, Dead Insects, and ExcrementChem Lett, 1981,10 (1): 81-84
    
    [18]靳治良,吕功煊.光催化分解水制氢研究进展.分子催化,2004,18(4):310-320
    
    [19] Li Y, Lu G, Li S. Applied Catalysis A: General, 2001,214 (2): 179-185
    
    [20] Domen K, Naito S, Onishi T, et al. Study of the photocatalytic decomposition of water vapor over a NiO-SrTiO_3 catalyst. J Phys Chem, 1982,86 (18): 3657-3661
    
    [21] Domen K, Kudo A, Onishi T. Mechanism of photocatalytic decomposition of water into H_2 an O_2 over NiO-SrTiO_3. Journal of Catalysis, 1986,102 (1): 92-98
    
    [22]王桂赟,王延吉,宋宝俊,等.Co-SrTiO_3上光催化分解水制氢的性能研究.无机化学学报,2003,19(9):988-991
    
    [23] Ishii T, Kato H, Kudo A. H_2 evolution from an aqueous methanol solution on SrTiO_3 photocatalysts codoped with chromium and tantalum ions under visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 163(1-2):181-186
    
    [24] Wang J, Yin S, Komatsu M, et al. Preparation and characterization of nitrogendoped SrTiO_3 photocatalyst. Journal of Photochemistry and Photobiology A:Chemistry, 2004,165 (13):149-156-
    
    [25] Miyauchi M, Takashio M, Tobimatsu H. Photocatalytic activity of SrTiO_3codoped with nitrogen and lanthanum under visible light illumination. Langmuir,2004,20 (1):232-236
    
    [26] Ohno T, Tsubota T, Nakamura Y, et al. Preparation of S, C cation-codopedSrTiO_3 and its photocatalytic activity under visible light. Applied catalysis A: general,2005,288 (1-2):74-79
    
    [27] Hideki K, Akikiko K. Photocatalytic water splitting into H_2 and O_2 over varioustantalate photocatalysts. Catalysis Today, 2003, (78):561-569
    
    [28] Yin J, Zou Z, Ye J. Photophysical and photocatalytic properties of MIn_(0.5)Nb_(0.5)O_3(M=Ca, Sr and Ba). J Phys Chem B, 2003,107 (1): 61-65
    
    [29] Yin J, Zou Z, Ye J. A novel series of the new visible-light-driven photocatalystsMCo_(1/3)Nb_(2/3)O_3 (M=Ca, Sr and Ba) with special electronic structures. J Phys Chem B,2003,107 (21): 4936-4941
    
    [30] Yin J, Zou Z, Ye J. Photophysical and photocatalytic activities of a novelphotocatalyst BaZn_(1/3)Nb_(2/3)O_3. J Phys Chem B, 2004,108 (34): 12790-12794
    
    [31] Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis innitrogen-doped titanium oxides. Science, 2001,293 (5528): 269-271
    
    [32] Wang J S, Yin S, Komatsu M, et al. Photo-oxidation properties of nitrogen dopedSrTiO_3 made by mechanical activation. Applied Catalysis B: Environmental, 2004,52(1):11-21
    
    [33] Yin S, Yamaki H, Zhang Q W, et al. Mechanochemical synthesis ofnitrogen-doped titania and its visible light induced NO_x destruction ability. Solid StateIonics, 2004,172 (1-4): 205-209
    
    [34] Yin S, Yamaki H, Komatsu M, et al. Preparation of nitrogen-doped titania withhigh visible light induced photocatalytic activity by mechanochemical reaction oftitania and hexamethylenetetramine. Materials Chemistry, 2003,13 (12): 2996-3001
    
    [35] Ohno T, Mitsui T, Matsumura M. Photocatalytic activity of S-doped TiO_2photocatalyst visible light. Chem Lett, 2003,32 (4): 364-365
    
    [36] Umebayashi T, Yamaki T, Itoh H. Band gap narrowing of titanium dioxide bysulfur doping. Appl Phys Lett, 2002,81 (3): 454-456
    
    [37] Khan S U M, Al-shahry M, Ingler Jr W B. Efficient Photochemical watersplitting by a chemically modified n-TiO_2. Science, 2002,297:2243-2245
    
    [38] Wang J S, Yin S, Zhang Q W, et al. Mechanochemical synthesis of SrTi_(3-x)F_x withhigh visible light photocatalytic activities for nitrogen monoxide destruction. MaterChem, 2003,13 (9): 2348-2352
    
    [39] Hattori A, Hieoki T. High photocatalytic activity of F-doped TiO_2 film on glass.J Sol-Gel Sci Technol, 2001,22:47-52
    
    [40] Yu J C, Yu J G, Ho W K, et al. Effects of F-doping on the photocatalytic activityand microstructures of nanocrystalline TiO_2 powders. Chem Mater, 2002, 14 (9):3808-3816
    
    [41]陈恒,龙明策,徐俊,等.可见光响应的氯掺杂TiO_2的制备、表征及其光催化活性.催化学报,2006,27(10):890-894
    
    [42] Luo H, Takata T, Lee Y, et al. Photocatalytic activity enhancing for by co-doping with bromine and chlorine. Chem Mater, 2004,16 (5): 846-849
    
    [43]文晨,孙柳,张纪梅,等.碘掺杂对纳米TiO_2催化剂光催化活性的影响.高等学校化学学报,2006,27(12):2408-2410
    
    [44]赵秀峰,张志红,孟宪锋,等.B掺杂TiO/AC光催化剂的制备及活性.分子催化,2003,17(4):292-296
    
    [45] Moon S-C, Mametsuka H, Tabata S, et al. Photocatalytic production of hydrogen from water using TiO_2 and B/TiO_2 Catal Today, 2000,58 (2-3): 125-132
    
    [46]阎建辉,刘强,朱政兵,等.掺硼纳米TiO_2的制备及其光催化降解二甲酚橙的性能.湖南理工学院学报(自然科学版),2006,19(4):51-57
    
    [47]吴树新,马智,秦永宁,等.掺杂纳米TiO_2光催化性能的研究.物理化学学报,2004,20(2):138-143
    
    [48]高远,徐安武,祝静艳,等.RE/TiO_2用于NO_2~-光催化氧化的研究.催化学报,2001,22(1):53-56
    
    [49] Zhang J Z. Interfacial charge carrier dynamics of colloidal semiconductornanoparticles. J Phys Chem B, 2000,104 (31): 7239-7253
    
    [50] Kang M G, Han H E, Kim K J. Enhanced photodecomposition of 4-chlorophenolin aqueous solution by deposition of CdS on TiO_2- J Photochem Photobiol A: Chem,1999,125 (1-3): 119-125
    
    [51] Serpone N, Texier I, Emeline A V, et al. Post-irradiation effect and reductivedechlorination of chlorophenols at oxygen-free TiO_2/water interfaces in the presenceof prominent hole scavengers. J Photochem Photobiol A, 2000,136 (3): 145-152
    
    [52] Rhoderick E H, Williams R H. Metal-Semiconductor Contacts, OxfordUniversity Press, New York, 1988
    
    [53]潘飞,张玉梅,庄毅,等.原位掺杂Al/Si纳米TiO_2粉体的制备及其光催化性能.纳米技术与精密工程,2005,3(3):173-176
    
    [54]郭新斌,乔庆东.太阳能光解水制氢催化剂研究进展.化工进展,2006,25(7):729-732
    
    [55]周雪锋,刘畅,何明,等.改性TiO_2可见光催化分解水制氢研究进展.石油化工,2004,33(12):1191-1197
    
    [56]李平,王新林,赵韦人,等.低钴无钴贮氢合金研究的进展.电池,2002,32(4):239-240
    
    [57]郭炳煜,李新海,杨松青,等.化学电源-电池原理及制造技术.中南工业大学出版社,2000.263-266
    
    [58] Willems, J G, Bunshow K H. From permanent magnets to rechargeable hydride electrodes. J Less-comman Met, 1987,129 (1-2): 13-30
    
    [59]陈朝晖,吕曼祺,王玉兰.镍金属氢化物电池负极用储氢合金.CN,1113963A,1995-12-27
    
    [60]高恩庆,周正宇.镧镍铜钴储氢合金的制备与性质.应用化学,1997,14(1):89-91
    
    [61] Chuan-Jian Li, Xin-Lin Wang. Investigations on the cycle stability and the structure of the MmNi_(3.6)Co_(0.75)Mn_(0.55)Al_(0.1) hydrogen storage alloy. J Alloys Comp, 1997, 284 (1-2): 270-273
    
    [62]鲁辉,高学平,宋德瑛.非化学计量比贮氢材料的研究现状.稀土,1995,16:28-35
    
    [63] Ewe H H. Electrochemical accumulation and oxidation of hydrogen using the intermetallic compound Lanthanum-nickel (LaNi_5). Energy converse, 1973,13(7):109-118
    
    [64] Akuto K, Sakurai Y A. A photorechargeable metal hydride/air battery. J Electrochem Soc, 2001,148 (2): A121-A125
    
    [65]张文魁,甘勇平,黄辉,等.表面修饰纳米TiO_2的贮氢合金电极的光充电行为.化学物理学报,2005,1 8(5):832-836
    
    [66] Wang S F, Tu J P, Wang X L, et al. Photo-assisted chargeability of hydrogenstorage alloy /(In_(0.9)Cr_(0.1))NbO_4: NiO electrode in KOH solution. Physica Scripta, 2007,(accepted)
    
    [67] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductorelectode. Nature, 1972,238 (5358):37-38
    
    [68] Potdar H S, Deshpande S B, Patil A J, et al. Preparation and characterization ofstrontium zirconate (SrZrO_3) fine powders. Mater Chem Phys, 2000,65:178-185
    
    [69] Abe R, Sayama K, Arakawa H. Efficient hydrogen evolution from aqueousmixture of (?) and acetonitrile using a merocyanine dye-sensitized Pt/TiO_2photocatalyst under visible light irradiation. Chem Phys Lett, 2002, 362 (5-6):441-444
    
    [70] Justicia I, Ordejon P, Canto G, et al. Designed selfdoped titanium oxide thin filmsfor efficient visible-light photocatalysis. Adv Mater, 2002,14(19): 1399-1402
    
    [71]梅长松,钟顺和.Cu/WO_3-TiO_2光催化剂上丙烯和二氧化碳合成MAA反应性能.高等学校化学学报,2005,26(6):1093-1097
    
    [72] Henglein A. Physicochemical properties of small metal particles in solution: "microelectrode" reactions, chemisorption, composite metal Particles, and the??atom-to-metal Transition. J Phys Chem, 1993,97 (21): 5457-5471
    
    [73] Li F B, Li X Z. Photocatalytic properties of gold/gold ion-modified titaniumdioxide for wastewater treatment Applied Catalysis A: General, 2002, 228 (1~2):15-27
    
    [74] Jing L Q, Sun X J, Cai W M, et al. The preparation and characterization ofnanoparticle TiO_2 /Ti films and their photocatalytic activity. J Phys Chem Solid, 2003,64: 615-623
    
    [75]刘丽,江昕,梁家和,等.多方法制备纳米ZrO_2及其光谱特性研究.光谱学与光谱分析,2005,25(7):1026-1029
    
    [76] Zhang L D, Mo C M. Luminescence in nanostructured materials. NanostructuredMater, 1995,6 (5-8): 831-834
    
    [77]Irie H, Watanabe Y, Hashimoto K. Nitrogen-concentration dependence onphotocatalytic activity of TiO_(2-x)N_x powders. J Phys Chem B, 2003, 107 (23):5483-5486
    
    [78] Linsebigler A L, Lu G Q, Yates J T. Photocatalysis on TiO_2 surfaces: principles,mechanisms, and selected results. Chem Rev, 1995,95 (3): 735-758
    
    [79] Mills A, Le Hunte S. An overview of semiconductor photocatalysis. J PhotochemPhotobiol A: Chem, 1997,108 (1): 1-35
    
    [80] Draganic Z D, Kosanic M M, Nenadovic M T. Competition studies of thehydroxyl radical reactions in some (?)-ray irradiated aqueous solutions at different pHvalues. J Phys Chem, 1967, 71 (8): 2390-2395
    
    [81] Pichat P. Surface Properties, Activity and Selectivity of Bifunctional PowderPhotocatalysts. New J Chem, 1987,11 (2): 135-139
    
    [82] Diara T, Miyoshi M, Iriyama Y, et al. Visible-light-active titanium oxidephotocatalyst realized by an oxygen-deficient structure and by nitrogen doping. ApplCatal B: Environ, 2003,42 (4): 403-409
    
    [83] Heller A. Suppression and enhancement of the photoactivity of titanium dioxide(rutile) pigment. Journal of Physical Chemistry, 1987,91 (23): 5987-5991
    
    [84]崔文权,刘利,冯良荣,等.Pt/K_2La_2Ti_3O_(10)催化剂的合成及其光催化分解甲醇水溶液制氢.中国科学B辑,2006,36(2):139-144
    
    [85]张青红,高濂.高度分散的Pt/TiO_2的制备及光催化活性.化学学报,2005,63(1):65-70
    
    [86] Kurokawa H, Yang L M, Jacobson C P, et al. Y-doped SrTiO_3 based sulfur tolerant anode for solid oxide fuel cells. J Power Sources, 2007,164 (2): 510-518
    
    [87] Kuwata N, Sata N, Saito S, et al. Structural and electrical properties ofSrZr_(0.95)Y_(0.05)O_3/SrTiO_3 superlattices. Solid State Ionics, 2006, 177 (26-32):2347-2351
    
    [88] Ahuja S, Kutty T R N. Nanoparticles of SrTiO_3 prepared by gel to crystalliteconversion and their photocatalytic activity in the mineralization of phenol. JPhotochem Photobiol A: Chem, 1996,97 (1-2): 99-107
    
    [89] Mizoguchi H, Ueda K, Orita M, et al. Decomposition of water by a CaTiO_3photocatalyst under UV light irradiation. Mater Res Bull, 2002,37 (15): 2401-2406
    
    [90] Kudo A. Development of photocatalyst materials for water splitting. Int JHydrogen Energy, 2006,31 (2): 197-202
    
    [91] Heondo J, Taehwan K, Dongsik K, et al. Hydrogen production by thephotocatalytic overall water splitting on NiO/Sr_3Ti_2O_7: Effect of preparation method.International Journal of Hydrogen Energy, 2006, 31 (9): 1142-1146
    
    [92] Kuto A, Tanaka A, Domen K, et al. Photocatalytic decomposition of water overNiO/K_4Nb_6O_(17) catalyst. J Catal, 1988,111 (1): 67-76
    
    [93] Ikeda S, Hara M, Kondo J N, et al. Preparation of a high active photocatalystK_2La_2Ti_3O_(10) by polymerized complex method and its photocatalytic activity. MaterRes, 1998,13 (4): 852-855
    
    [94] Wang X W, Zhang Z Y, Zhou S X. Preparation of nano-crystalline SrTiO_3powder in sol-gel process. Mater Sci Engineering B, 2001, 86 (1): 29-33
    
    [95] Jaffrezic-Renault N, Pichat P, Foissy A, et al.Effect of deposited Pt paticles onthe surface charge of TiO_2 aqueous suspensions by potentionetry, electrophoresis, andlabeled ion adsorption. J Phys Chem B, 1986, 90 (12): 2733-2738
    
    [96] Fujihara K, Izumi S, Ohoo T. Time-resolved photoluminescence of particulateTiO_2 photocatalysts suspended in aqueous solutions. J Photochem Photobiol A: Chem,2000,132 (1-2): 99-104
    
    [97]辛柏福,井立强,付宏刚等.掺杂Cu的TiO_2纳米粒子的制备、表征及其光催化活性.高等学校化学学报,2004,25(6):1076-1080
    
    [98]孙奉玉,吴鸣,李文钊,等.二氧化钛表面光学特性与催化活性的关系.催化学报,1998,19(2):121-124
    
    [99] Jaffrezic-Renault N, Pichat P, Foissy A, et al. Effect of deposited Pt paticles on the surface charge of TiO_2 aqueous suspensions by potentionetry, electrophoresis, and labeled ion adsorption. J Phys Chem B, 1986,90 (12): 2733-2738
    
    [100]虞丽生.半导体异质结物理.北京:科学出版社,2006.
    
    [101] Szotek Z, Temmerman W M, Winter H. Application of the self-interaction correction to transition-metal oxides. Phys Rev B, 1993,47 (7): 4029-4032
    
    [102]钟顺和,王杰慧,康庆华,等.TiO_2-SiO_2表面复合物的制备与表征.石油化工,1993,22(5):307-312
    
    [103]余家国,赵修建.多孔TiO_2光催化纳米薄膜的制备和微观结构研究.无机材料学报,2000,15(2):347-355
    
    [104]高伟,吴凤清,罗臻,等.TiO_2的晶型与光催化活性关系的研究.高等学校化学学报,2001,22(4):660-662
    
    [105] Fox M A, Draper R B, Dulay M, et al. Control of photocatalytic oxidative selectivity on irradiated TiO_2 powders. A diffuse reflectance kinetic study, Proceedings of the International Conference on Photochemical Conversion and Storage of Solar Energy, 1991. 323

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700