用户名: 密码: 验证码:
中央集排气送式精量排种器设计与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着种子质量和裁培技术的提升,我国当前农业生产对精量播种产生了迫切的需求。气力式排种器由于种子适应性好、适应高速作业等优势,已成为精量排种器的发展方向。目前气力式排种器以单行排种为主,排种器无法与仿形机构分离,具有振动大、布局困难、调整繁琐等问题;气力式排种器充种性能受种群移动阻力影响较大,对于玉米等流动性差的种子充种效果不佳。针对这些问题,本文分析了充种区种群合理空间状态,提出了扰种式气流结构,结合集中排种与气送投种的特点,研制了一种中央集排气送式精量排种器。
     该排种器改变了气流进入种群的方向,利用气流扰动种群,气流由充种区下方进入,使充种区处于膨松状态,种子流动性好,充种性能可靠;利用正压滚筒充种,可实现一器多行作业,简化了播种机整体结构;利用气流输送远距离投种,实现了排种器与仿形机构的分离,振动干扰小,高速作业时优势尤为明显。
     论文建立了传统气流结构与扰种式气流结构的力学模型,研究了种群状态对充种性能的影响机理。基于流体力学绕流阻力原理,建立了正压径向充种过程的力学模型,得出了影响压附性能的主要因素及影响规律。提出占据面积比例并对清种过程进行分析,确定了影响清种的各项参数及相互关系。在理论分析基础上,对排种器关键部件进行结构设计,确定了主要结构参数。
     基于计算流体力学软件Fluent对排种器内部流场特性进行了数值模拟,考察了中央集排气送式排种器结构对内部流场分布的影响。分析了不同型孔数目、型孔直径下的充种区流场特性,结合理论分析,确定了合理的型孔数目。对排种器整体流场分布规律进行了仿真分析,计算结果显示不同排种行间的流场分布规律差异不大,充种区具有较高的压力及气流速度,符合设计要求。
     对试制的中央集排气送式精量排种器进行了台架试验。对4~5.5mm范围内的4种不同孔径进行了压力、转速试验,试验表明,低速作业时4.5mm孔径排种效果最好,所需压力略高,但高速作业漏播严重;5.5mm孔径充种性能及高速作业适应性最好,所需压力最低,但低速作业重播较多。考虑玉米播种对漏播容忍度低,确定孔径为5.5mm。为解决5.5mm孔径低速作业的重播问题,对清种装置进行了优化试验,确定了合理的清种距离为0.25mm。对优化后的排种器进行转速试验,优化后与优化前相比合格指数在低速段有大幅提高,高速作业时变化不大。与勺轮式、气吹式、气吸式排种器进行了排种性能对比,在4~12km/h的作业速度内中央集排气送式排种器平均合格指数最高,充种性能优越,能够较好的适应高速作业。
With the fast development of seed quality and cultivation techniques, precision planting becomes a problem urgently to be solved in China. Pneumatic precision metering device, which is flexible to seed shape and adapts to high-speed operation, has been the development trend. As affording only one row's sowing and cannot being separated from feeler mechanism, conventional pneumatic precision metering device has many shortcomings such as excessive vibration, layout difficulty and tedious manual adjustment. Besides, pneumatic metering device has poor performance when planting corn seeds which have hard fluidity. To solve these problems, the reasonable state of corn seeds were analyzed, a new airflow structure which could effectively reduce the moving resistances was presented. Based on the airflow structure, a centralized pneumatic metering device (CP) was designed.
     By the airflow structure of CP, the direction of the airflow is changed to blow the seeds in "boiling" movement which can reduce the seed-filling resistances, getting good seed-filling performance. CP makes a seeder more concise in structure as it distributes seeds to several sowing rows through a centre drum and a positive pressure system. A pneumatic conveying system is applied to throwing seeds, which enables the separation of the metering device from the placement system and reduces the vibration of the metering device obviously.
     In this paper, mechanical model of the new air flow structure was built to analyze the influence mechanism of seeds state to seed-filling. Main influence factors and their influence rules were acquired through the analysis of filling process in radial direction of the drum under positive pressure. Occupied area coefficient was presented, the process of seed-cleaning was analyzed to detect the affecting factors and the relation between them. Based on the theoretical analysis, the key structural parameters were confirmed.
     Numerical simulation of the fluid field characteristic of CP was carried out in Fluent to investigate the affect of the structure of CP. The number of holes was confirmed by the simulation of fluid model under different hole diameters and numbers. The whole flow field simulation showed that there is no apparent difference between different sowing rows and filling area has higher pressure, and pressure and velocity were high in filling area. The structure conforms to design requirements.
     The performance of CP was investigated under laboratory. The experiments of pressure and rotation speed under4kinds of hole diameters during4to5.5mm showed that:hole diameter of4.5mm had the best performance under low operating speed, and required slightly higher pressure, and miss rate was very high under high operating speed. Hole diameter of5.5mm was the best at seed-filling and flexibility of high-speed operation. Its required pressure was the lowest. But it had higher multiple rate under low operating speed. As precision planting of corn has a low tolerance for miss-seeding, hole diameter of5.5mm was selected. The experiments for the optimization of seed-cleaning device were conducted to solve the problem of multiple-seeding of the hole diameter of5.5mm, and the cleaning-distance was confirmed as0.25mm. The experiments of the optimized structure showed that:after the optimization, the single rate increased obviously under low operating speed and had no big change under high operating speed. The comparison with other3metering devices showed that CP had the highest single rate. CP has good seed-filling performance and adapts to the high-speed operation..
引文
[1]宗锦耀.增强紧迫感抓住着力点加快推进玉米生产机械化—宗锦耀司长在2008年全国玉米生产机械化工作会议上的讲话[J].农机科技推广,2008(4):4-7
    [2]张世煌.我国玉米产业发展的技术需求[J].玉米科学,2008,16(3):130-133.
    [3]杨红旗,路凤银,郝仰坤,等.中国玉米产业现状与发展问题探讨[J].中国农学通报,2011,27(6):368-373
    [4]农业部.玉米优势区域布局规划(2008-2015年)[J].农业工程技术:农产品加工业,2010,5:11-13.
    [5]董树亭,张吉旺.建立玉米现代产业技术体系,加快玉米生产发展[J].玉米科学,2008,16(4):18-20,25
    [6]廖庆喜,舒彩霞.我国玉米精密排种器的现状和发展趋势[J].农业机械,2003,8:25-27
    [7]杨丽,史嵩,崔涛等.气吸与机械辅助附种结合式玉米精量排种器[J].农业机械学报,2012,43:48-53
    [8]张东兴.农机农艺技术融合推动我国玉米机械化生产的发展[J].农业技术与装备,2011(9):
    [9]耿端阳.新编农业机械学[M].国防工业出版社,2011:127-128
    [10]温莉萍.精量播种机械化技术现状及其发展[J].农村牧区机械化,2007(4):36-37
    [11]廖庆喜,黄海东,吴福通.我国玉米精密播种机械化的现状与发展趋势[J].农业装备技术,2006(2),32,1:4-7
    [12]赵月霞.机械式精密排种器关键技术研究[D].南京:南京农业大学,2003
    [13]胡建平,李宣秋,左志宇.磁吸滚筒式精密排种器试验及参数优化[J].农业工程学报,2007,23(9):115-117
    [14]胡建平,郑赛男,刘文东.磁吸滚筒式精密排种器设计与试验[J].农业机械学报,2009,40(3):60-63
    [15]李宣秋,胡建平.精密播种技术及磁吸滚筒式穴盘排种器的研究[J].农业装备技术,2007,33(1):17-19
    [16]马连元,王廷双,刘俊峰等.试论排种器分类族谱[J].河北农业大学学报,1997,20(4):107-111
    [17]张德文,李林,王惠民.精密播种机械[M].北京:农业出版社,1982,第一版
    [18]杨立东,刘德伟,王东林等.精密播种机的类型与分析[J].农机市场,2005,2:22-23
    [19]崔清亮,秦刚,王明富.几种典型精密排种器的对比分析[J].山西农业大学学报,2003,23(1):69-71
    [20]胡建平,毛罕平.精密播种技术的研究与创新[J].农机化研究,2003(4):52-53
    [21]冯晓静,杨欣,桑永英,等.玉米精密播种机械发展现状[J].江苏农业科学,2010(4):422-424
    [22]霍文国,肖继军,吕钊钦.浅析气力式精密播种机的发展及研究现状[J].山东农机,2003(3):11-12
    [23]蔡仲江.国外几种精密排种器[J].新疆农业科学,1983,01:25-28
    [24]刘佳,崔涛等.气吹式精密排种器工作压力试验研究.农业工程学报,2011,27(12):18-22
    [25]许剑平,谢宇峰,陈宝昌.国外气力式精密播种机技术现状及发展趋势[J].农机化研究,2008,12(12):203-206
    [26]赵大为,孟媛.机械化精量播种技术发展研究[J].农业科技与装备,2010(6):58-60
    [27]Giannini G R:Chancellor W J:Garrett R E (1967). Precision planter using vacuum for seed pickup. Transactions of the ASAE,10(2),607-610,614
    [28]林静,宫元娟,李国臣.浅谈精密播种机的发展优势与前景[J].农业机械,2004(4):43-44
    [29]王希强.气吸滚筒式精密排种器的机构优化及试验研究[D].江苏:江苏大学,2007
    [30]王庆和.国内气力式精密播种机的研制简况[J].农牧与食品机械,1991(1):9-12
    [31]张波屏编译.《农具和拖拉机》1971.3.21
    [32]张波屏编译.播种机械设计原理[M].北京:机械工业出版社,1982,第一版
    [33]张庆峰.玉米精量排种器结构设计与试验研究[D].山东:山东理工大学,2011
    [34]王永晨,李琴兰,马连元等.内侧囊种垂直圆盘式排种器[J].农业机械学报,1991,3:96-109.
    [35]刘桂兰.我国气力式播种机的发展[J].农村牧区机械化,1996(4):17
    [36]张泽平,马成林,左春怪.精播排种器及排种理论研究进展[J].吉林工业大学学报,1995,4:112-117
    [37]刘佳,崔涛,张东兴等.玉米种子分级处理对气力式精量排种器播种效果的影响[J].农业工程学报,2010,26(9):109-113
    [38]秦军伟.气流一阶集排式排种系统的研究[D].山东:山东农业大学,2005
    [39]常金丽,张晓辉.2BQ-10型气流一阶集排式排种系统设计与试验[J].农业工程学报,2011,27(1):136-141
    [40]Yang S, Liao Y, Liao Q. Experimental study on pneumatic seed-metering system of 2BFQ-6 precision planter for rapeseed[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012,28(17):57-62
    [41]杨慧,刘立晶,周军平,等.气流输送式条播机现状及我国应用情况分析[J].农机化研究,2013,35(12):216-220
    [42]张波屏.现代种植机械工程[M].北京:机械工业出版社,1997
    [43]秦军伟,张晓辉,姜忠爱.探讨集中式排种器的排种机理及其发展[J].农业装备技术,2004,30(4):22-23
    [44]李中华,王德成,刘贵林,等.气流分配式排种器CFD模拟与改进[J].农业机械学报,2009(3):64-68
    [45]李中华,王德成,刘贵林,等.正压式气流排种器排种效果试验[J].农业工程学报,2009,25(1):89-93
    [46]庞昌乐,苏聪英.气吸式双层滚筒水稻播种器设计与试验研究[J].农业工程学报,2000,16(5):52-55
    [47]廖庆喜,张猛,余佳佳等.气力集排式油菜精量排种器[J].农业机械学报,2011,42(8):30-34
    [48]李明,刘晓辉,廖宜涛,等.气力滚筒式油菜精量集排器[J].农业机械学报,2013,44(012): 68-73
    [49]丛锦玲,余佳佳,曹秀英,等.油菜小麦兼用型气力式精量排种器'[J].农业机械学报,2014,45(1)
    [50]李耀明,邱白晶.气吸振动式水稻播种试验台的振动分析[J].农业机械学报,1998,29(3):43-47
    [51]夏红梅,李志伟,牛菊菊,等.气力滚筒式蔬菜穴盘播种机吸排种动力学模型的研究[J].农业工程学报,2008,24(1):141-146
    [52]Karayel D, Barut Z B, Ozmerzi A. Mathematical modeling of vacuum pressure on a precision seeder[J]. Biosystems Engineering,2004,87(4):437-444
    [53]Karayel D. Performance of a modified precision vacuum seeder for no-till sowing of maize and soybean[J]. Soil and Tillage Research,2009,104(1):121-125
    [54]Yazgi A, Degirmencioglu A. Optimisation of the seed spacing uniformity performance of a vacuum-type precision seeder using response surface methodology[J]. Biosystems engineering, 2007,97(3):347-356
    [55]Wanjura D F, Hudspeth E B. Performance of vacuum wheels metering individual cottonseed[J]. Amer Soc Agr Eng Trans Asae,1969
    [56]Kachman S D, Smith J A. Alternative measures of accuracy in plant spacing for planters using single seed metering[J]. Transactions of the ASAE,1995,38(2):379-387
    [57]Lan Y, Kocher M F, Smith J A. Opto-electronic sensor system for laboratory measurement of planter seed spacing with small seeds[J]. Journal of agricultural engineering research,1999,72(2): 119-127
    [58]Nave W R, Paulsen M R. Soybean seed quality as affected by planter meters[J]. Transactions of the ASAE,1979
    [59]Parish R L, Bracy R P. Metering nonuniform vegetable seed[J]. HortScience,1998,33(4): 598-598
    [60]Parish R L. Development of a narrow-row, vertical-plate planter[J]. Amer Soc Agr Eng Trans ASAE,1972
    [61]Singh R.C, Singh G, Saraswat D C. Optimisation of design and operational parameters of a pneumatic seed metering device for planting cottonseeds[J]. Biosystems engineering,2005,92(4): 429-438
    [62]Kocher M F, Coleman J M, Smith J A, et al. Corn Seed Spacing Uniformity as Affected by Seed Tube Condition[J].2011
    [63]Karayel D, Ozmerzi A. Effect of forward speed and seed spacing on seeding uniformity of a precision vaccum metering unit for melon and cucumber seeds[J]. J of the Fac of Ag,2001,14(2): 63-67
    [64]Ozmerzi A, Karayel D, Topakci M. PM—Power Machinery:Effect of Sowing Depth on Precision Seeder Uniformity [J]. Biosystems engineering,2002,82(2):227-230
    [65]Karayel D, Wiesehoff M, Ozmerzi A, et al. Laboratory measurement of seed drill seed spacing and velocity of fall of seeds using high-speed camera system[J]. Computers and electronics in agriculture,2006,50(2):89-96
    [66]Onal I, DEGIRMENCIOGLU A, Yazgi A. An evaluation of seed spacing accuracy of a vacuum type precision metering unit based on theoretical considerations and experiments[J]. Turkish Journal of Agriculture and Forestry,2012,36(2):133-144
    [67]Prasanna Kumar G V, Srivastava B, Nagesh D S. Modeling and optimization of parameters of flow rate of paddy rice grains through the horizontal rotating cylindrical drum of drum seeder[J]. Computers and electronics in agriculture,2009,65(1):26-35
    [68]Guarella P, Pellerano A, Pascuzzi S. Experimental and theoretical performance of a vacuum seeder nozzle for vegetable seeds[J]. Journal of Agricultural Engineering Research,1996,64(1):29-36
    [69]Sial F S, Persson S P E. Vacuum nozzle design for seed metering[J]. Transactions of the ASAE, 1984,27(3):688-696
    [70]McCarthy M J, Molloy N A. Review of stability of liquid jets and the influence of nozzle design[J]. The Chemical Engineering Journal,1974,7(1):1-20
    [71]李林.气吸式排种器理论及试验的初步研究[J].农业机械学报,1979,10(3):56-63
    [72]赵湛.气吸振动式精密排种器理论及试验研究[D].江苏:江苏大学,2009
    [73]陈进,李耀明.气吸振动式播种试验台内种子运动规律的研究[J].农业机械学报,2002,33(1):47—50
    [74]李耀明,赵湛,陈进,等.气吸振动式排种器种盘内种群运动的离散元分析[J].农业机械学报,2009,3:56-59
    [75]张石平,陈进,李耀明.振动气吸式穴盘精量播种装置种子群“沸腾”运动分析[J].农业工程学报,2008,24(7):20-24
    [76]张石平,陈进,李耀明.振动气吸式穴盘精播装置振动条件理论分析与试验[J].农业机械学报,2008,39(7):56-59
    [77]廖庆喜,李继波,覃国良.气力式油菜精量排种器气流场仿真分析[J].农业机械学报,2009,40(7):78-82
    [78]刘彩玲,宋建农,王继承,等.水平吸盘式水稻育秧精密播种装置吸种真空度的研究[J].中国农业大学学报,2009(5):121-125
    [79]杨明金,邱兵,杨玲,等.振动气吸式精密穴播机的排种性能[J].农业工程学报,2010(9):139-143
    [80]左春柽,马成林.新型气力精密排种器的空气动力学原理[J].农业工程学报,1997,13(3):110-114
    [81]马成林.气吹排种器充填原理的研究[J].农业机械学报,1981,12(4):1-13
    [82]左春柽,马成林,张守勤.气力轮式排种器动压充种机理及试验研究[J].农业机械学报,1998,29(8):51-54
    [83]王朝辉,袁月明,董润坚,等.超级稻育秧精密播种器内部流场的数值模拟[J].吉林农业大学学报,2009(6):781-784
    [84]左彦军,马旭,玉大略,等.水稻芽种窝眼窄缝式气吸滚筒排种器流场模拟与试验[J].农业机械学报,2011,42(2):58-62
    [85]刘晓辉.小粒径作物气力滚筒式精量集排器设计与试验研究[D].华中农业大学,2013
    [86]张猛.气力集排式油菜精量排种器的设计及试验研究[D].华中农业大学,2011
    [87]张波屏.美国国际收获机公司400CYCLO气送式播种机简介[J].粮油加工与食品机械,1974,1:004
    [88]郝金栋.气压式单粒播种机集中排种部件种子压附性能的研究[J][.粮油加工与食品机械,1980,11:002
    [89]郝剑英,刘国平,徐剑平等.气力式集中排种器.中国专利,102356715,2012-02-22
    [90]Gierz L, Keska W, Gierz S. Metoda precyzyjnego pomiaru czasu transportu ziarna w przewodach pneumatycznych[J]. Journal of Research and Applications in Agricultural Engineering,2012,57(2): 79-82
    [91]蓝薇.玉米种子气流远程输送投种试验与参数优化[D].中国农业大学,2013
    [92]史嵩,张东兴,杨丽,等.气压组合孔式玉米精量排种器设计与试验[J].农业工程学报,2014,30(5):10-18
    [93]刘佳,崔涛,张东兴等.机械气力组合式玉米精密排种器[J].农业机械学报,2012,43(2):43-47
    [94]蔡增基,龙天渝.流体力学泵与风机[M].5版.北京:中国建筑工业出版社,2009:247-250
    [95]流体力学与流体机械:流体力学.上册[M].中国矿业大学出版社,1993
    [96]郭烈锦.两相与多相流动力学[M].西安交通大学出版社,2002,340-354
    [97]颗粒流体复杂系统的多尺度模拟[M].科学出版社,2005,78-81
    [98]刘佳.机械气力组合式精密排种器设计研究:[D].北京:中国农业大学,2013
    [99]应用流体力学[M].浙江大学出版社,1991
    [100]Li Y, Zhang J, Fan LS. Numerical simulation of gas-liquid-solid fluidization systems using a combined CFD-VOF-DPM method:bubble wake behavior[J]. Chemical Engineering Science, 1999,54(21):5101-5107
    [101]中国农业机械化科学研究院.农业机械设计手册:上册[M].中国农业科学技术出版社,2007:357-358
    [102]陈立东.气吸式排种器性能参数设计及其对排种质量影响的试验研究[D].大庆:黑龙江八一农垦大学,2006
    [103]蒋中亚,王桂芹.郑单958玉米种植密度与适宜收获期试验初报[J].现代农业科技,2007(17):141-141
    [104]王万钧,胡中.农业机械设计手册[J].上册,1988.
    [105]张民,姚珺,李明.种子休止角与静滑动摩擦系数测量仪[J].农业装备与车辆工程,2012,50(11):42-45
    [106]Murray J D. On the mathematics of fluidization Part 2. Steady motion of fully developed bubbles [J]. Journal of fluid Mechanics,1965,22:57-80
    [107]Jackson R. The mechanics of fluidized beds [J]. Trans. Inst. Chem. Eng.,1963,41:13-28
    [108]吴爱祥,业志,力学,等.散体动力学理论及其应用[M].冶金工业出版社,2002
    [109]于勇,张俊明,姜连田FLUENT入门与进阶教程[M].北京理工大学出版社,2008
    [110]朱红钧,林元华,谢龙汉.Fluent 12流体分析及工程仿真[M].清华大学出版社,2011
    [111]Fleissner F, Gaugele T, Eberhard P. Applications of the discrete element method in mechanical engineering[J]. Multibody Syst. Dyn,2007,18:81-89
    [112]Bahadori F, Rahimi R. Simulations of gas distributors in the design of shallow bubble column reactors[J]. Chemical engineering & technology,2007,30(4):443-447
    [113]王瑞金,张凯,王刚.Fluent技术基础与应用实例.北京:清华大学出版社,2007
    [114]周俊杰,徐国权,张华俊.FLUENT工程技术与实例分析[M].北京:中国水利水电出版社,2010
    [115]张敏,陈进ANSYS在气吸滚筒式精量排种器流场中的应用[J].农机化研究,2006(5):177-178
    [116]董润坚.水稻芽种排种器充种和投种过程的计算机仿真分析[D].吉林农业大学,2005
    [117]袁月明,马旭,金汉学等.气吸式水稻芽种排种器气室流场研究[J].农业机械学报,2005,36(6):42-45
    [118]Williams J R, Rege N. The development of circulation cell structures in granular materials undergoing compression [J]. Powder Technology,1997,90:187-194
    [119]Zhou L, Wang Z. Numerical Simulation of Cavitation Around a Hydrofoil and Evaluation of a RNG κ-ε Model[J]. Journal of Fluids Engineering,2008,130(1):011302
    [120]Senter J, Solliec C. Flow field analysis of a turbulent slot air jet impinging on a moving flat surface[J]. International journal of heat and fluid flow,2007,28(4):708-719
    [121]傅德薰,马延文.计算流体力学[M].高等教育出版社,2002
    [122]GB/T 6973-2005单粒(精密)播种机试验方法[S].中华人民共和国国家标准
    [123]10293-2001单粒(精密)播种机技术条件[s].中华人民共和国机械行业标准

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700