用户名: 密码: 验证码:
改善P2P流媒体系统服务能力的架构和机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现如今,视频直播系统、点播系统等已经成为当今互联网中最为重要的“杀手级”应用。而伴随着网络用户规模的增加导致视频服务器的带宽消耗也在激增,基于客户机/服务器(C/S)模式的流媒体系统虽然易于集中化管理但流媒体服务器的带宽消耗巨大,导致系统扩展性较差。近年来,基于Peer-to-Peer(P2P)技术的流媒体分发系统大量涌现出来,这类系统在应用层把用户节点组织成一个独立于底层物理网络结构的重叠网络(Overlay Network),视频流数据的分发则依照该重叠网构成的拓扑实现。P2P流媒体系统以其具有良好的可扩展性、较高的带宽利用率、较低的服务器带宽开销等优势,已被大量互联网流媒体服务提供商广泛采用。但不可否认的是目前的P2P流媒体解决方案距离理想的系统仍有一定距离。由于系统中的节点存在较强的异构性和动态性特征,使得节点所能够提供的服务能力存在较大的不确定性。特别是从2010年以来,移动互联网技术的发展使得节点异构性和多样性更为突出。但视频流媒体应用对网络的带宽、获取数据的延迟等有严格的要求,因此采用P2P技术的视频流媒体分发面临很多挑战,包括系统中节点的负载均衡问题、视频内容的高效查找定位问题、如何改善用户播放质量的问题以及在满足用户需求前提下进一步降低视频服务器带宽开销等问题。针对这些与P2P流媒体系统服务能力相关的关键问题,本文重点在如下四个方面展开了系统研究:
     1. P2P流媒体系统中面向负载均衡的带宽请求分配策略研究。由于节点在缓存视频数据的多寡及视频播放位置存在着较大的差异,容易使得节点带宽资源负载的不均衡。该情况在重叠网络中多处出现则会导致大量视频流的正常分发受到限制,进而直接影响到用户的服务质量(Quality of Service, QoS)。本文通过建立非协作博弈模型,对多个节点向邻居节点请求视频流的行为进行分析。本文通过寻求该博弈模型的Nash均衡解的方法得到节点优化的带宽请求分配策略。另外,基于该均衡解提出了一种易部署的分布式带宽请求分配策略。通过实验表明该策略能有效避免P2P流媒体网络中过载节点的形成并降低节点获取所需视频数据的延迟,达到改善P2P流媒体服务能力的目的。
     2. P2P直播系统中视频数据资源的高效查找策略研究。视频流应用属于一种对延迟敏感的网络应用,因此保证P2P流媒体系统的服务能力需要有效的提高用户查找和定位视频数据资源的能力。本文提出了一种基于单跳的分布式哈希表(Distribtued Hash Table,DHT)的视频数据查找策略-StreamDHT。为保证节点进入/退出的事件消息能正确高效地通告给StreamDHT结构中的各个节点,StreamDHT采用了一种改进的事件分发机制EDRA+。更重要的,为了保证视频数据的查找定位成功率,同时有效控制StreamDHT结构维护视频数据对应的索引产生的流量开销。本文提出了一种新的分布式索引映射管理机制。通过理论分析和系统实验表明StreamDHT结构能够有效提高视频数据的查找定位效率,并具有较低的维护开销。
     3. P2P直播系统中改善用户视频播放质量的研究。在节点带宽资源异构性和动态性都较突出的P2P系统中实现高质量的流畅的视频分发存在诸多挑战。本文在“网状”结构与DHT混合的重叠网络之上提出了一种新的P2P直播系统架构。根据当前系统中节点对视频重定位的需求以及节点的在线时间优选出部分能提供稳定视频服务的超级节点(Super Peer)构成单跳StreamDHT结构,其余节点通过自组织的方式同时构成一个“网状”重叠网。基于这种混合重叠网络结构,本文继续提出了一种基于视频数据调度和DHT重定位相结合的数据获取策略,该策略能够使节点根据视频帧数据的紧迫性和解码重要性选择不同的策略进行获取。其目的是在节点播放位置到达之前尽可能避免由于视频帧数据无法获取导致的播放质量受损。通过理论分析和大量实验表明本文提出的视频流媒体分发架构能够在不显著提高系统额外开销的基础上有效的提升节点的视频播放质量。
     4. P2P分层视频点播系统中优化的邻居选择及带宽资源分配策略研究。结合了分层视频编解码技术与P2P技术的分层P2P点播系统能适应不同带宽资源的用户对不同的视频质量的差异化点播需求。但P2P点播系统中节点进入系统的时间点以及观看视频的位置都存在较大的差异,若邻居关系建立及节点间带宽资源分配的不合理很容易导致视频服务器带宽开销严重。本文建立了一个优化的视频服务器的带宽资源开销模型,通过求解该优化模型能够得到服务器开销的理论最优值。另外,本文提出了一种基于在线时间相似性的邻居优选策略以及同视频层/跨视频层的带宽资源分配策略,该策略易于在实际系统中部署。通过仿真实验表明,相比于已有研究工作本文将所提出的邻居选择及带宽分配策略能在满足用户视频点播需求的基础上实现更低的服务器带宽开销,降低视频内容服务提供商的运营成本。
At present, live streaming and video-on-demand applications are becoming one ofthe “killer” Internet applications. In streaming systems, the bandwidth consumption atstreaming server increases with the number of customers. Although it is easy to fufillcentralized management in Client/Server (C/S) based streaming systems, the largevolume of bandwidth consumption at streaming server makes this kind of systemsunscalable. In recent years, Peer-to-Peer (P2P) technique based streaming systemshave been proposed and deployed. Peers (customers) self-organized to an overlaynetwork which is independent with the physical network topology, and then thestreaming data is distributed based on the overlay structure. Owing to the highscalability, high efficiency of bandwidth utilization and lower bandwidth consumptionat streaming server, P2P streaming systems have been widely adopted and deployed bymajority of streaming service providers. However, it is hard to claim that the currentP2P streaming schemes are perfect. The characteractics of bandwidth heterogeneousand dynamics of peers make the uncertainity of service ability provided by peers.Especially with the development of mobile Internet techniques since2010, theheterogeneity and diversity of users are becoming increasingly prominent. On the otherhand, the streaming applications pose some strict requirements on network bandwidth,latency of streaming data retrieval, etc. Therefore, P2P based streaming distributiontechniques and systems face a number of challenges, such as load balance, data searchand location efficiency, improvement of playback quality at peers and bandwidthconsumption minimization with satisfying peers’ requirement. This dissertation isdevoted to address these technical challenges which are relevant to the servicecapability of P2P streaming systems by conducting the following research projects.
     1. Load Balancing based Bandwidth Request Allocation. The heterogeneity ofbuffered streaming data and playback position at peers may easily lead to loadunbalancing problem. If this problem occurs frequently in the overlay network, largevolumn of streaming data distribution could be restricted, and thus the Quality ofService (QoS) at peers is deteriorated. This dissertation analyzes multiple peers request streaming data from their neighboring peers based on game theory. The optimalbandwidth request allocation policy is obtained through searching the NashEquilibrium of the game. In addition, a deployable bandwidth request allocation isproposed based on this equilibrium solution. Experimental results show that theproposed bandwidth request allocation policy can efficiently avoid the occurance ofoverloaded peers in overlay networks and decrease the latency of streaming dataretrieval at peers. The service ability of P2P streaming system can be effectivelyimpoved.
     2. Efficient Streaming Data Location for P2P Live Streaming System. Since thestreaming applications are latency sensitivity, it is important to improve the streamingdata search and location effeciency at peers. This dissertation proposes a one-hopbased Distribtued Hash Table (DHT) structure, called StreamDHT. In order toguarantee that all peers in StreamDHT structure can be accurately and efficientlyinformed of joining/leaving event messages, StreamDHT adoptes an enhanced eventdistribution scheme-EDRA+. Moreover, in order to guarantee the success ratio ofstreaming data location and control the traffic consumption on Indexes maintenance,this dissertation proposes a new distributed Index mapping and managementmechanism. Theoretical analysis and simulation validation show that StreamDHTstructure can significantly improve the streaming data location with lower maintenancetraffic overhead.
     3. Improving Playback Quality in P2P Live Streaming System. Due to thebandwidth resource heterogeneity and dynamic characteristics at peers, it ischallenging to provide satisfactory playback quality to large number of peers. Thisdissertation proposes a new P2P live streaming architecture based on mesh and DHThybrid overlay network. According to the current data re-location requirement andpeers’ online duration, a portion of peers which can provide stable streaming serviceare selected to form the StreamDHT structure. The rest of peers self-organize to form amesh based overlay network. Based on this kind of hybrid overlay network, thisdissertation proposes a joint data scheduling and DHT data re-location policy. In orderto avoid playback quality deterioration which is caused by that the needed framescould not be obtained before the playback deadline, peers can request the neededstreaming data through using different data retrieval methods based on the emergency and decoding importance of frames. Theoretical analysis and experimental resultsshow that the proposed live streaming distribution architecture can effectively improvethe playback quality at peers with trival extra overhead.
     4. Optimal Neighboring Peer Selection and Bandwidth Allocation in Layered P2PVideo-on-Demand (VoD) Systems. Through combining layered video coding with P2Ptechniques, Layered P2P VoD systems can provide differentiated video quality to peerswith heterogeneous bandwidth resources. However, the time of entering the system andcurrent playback position are heterogeneous at different peers. Thus unreasonableneighboring peer selection and bandwidth allocation between peers can easily lead tosevere bandwidth consumption at streaming server. This dissertation formulates anoptimization model of bandwidth consumption on streaming server. The theoreticalminimal bandwidth consumption can be obtained by finding the optimal results of thismodel. In addition, online duration similarity based neighboring selection and thesingle/cross video layer banwidth allocation polices are proposed. These proposedpolices are easy to be deployed in a practical systems. Experimental results show thatthe proposed polices can efficiently decrease the bandwidth consumption, and theoperation cost at streaming service provider could be decreased.
引文
[1]2010年中国互联网络发展状况统计报告[EB/OL] http://www.iresearch.com.cn/Report/1426.html,2010.12
    [2] Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update,2010-2015.[EB/OL]http://newsroom.cisco.com/ekits/Cisco_VNI_Global_Mobile_Data_Traffic_Forecast_2010_2015.pdf, September1,2011
    [3] S. S. Xie, B. Li, G. Y. Keung, et al. Coolstreaming: Design, Theory and Practice [J]. IEEETransactions on Multimedia, Special Issue on Content Storage and Delivery in Peer-to-PeerNetwork,2007,9(8):1661-1671
    [4] Z. Liu, Y. Shen, K. W. Ross, et al. Substream Trading: Towards an open P2P live streamingsystem [C]. IEEE International Conference on Network Protocols (ICNP), Orlando,2008,94-103
    [5] Z. Liu, C. Wu, B. Li, et al. UUSee: Large-Scale Operational On-Demand Streaming withRandom Network Coding [C].IEEE International Conference on Computer Communications(Infocom), San Diego,2010,15-19
    [6] L. J. Yu, L. X. Gao, J. Zhao, et al. SonicVoD: A VCR-supported P2P-VoD system withnetwork coding [J]. IEEE Transactions on Consumer Electronics,2009,55(2):576-582
    [7] X. Cheng, J. C. Liu. Exploring Interest Correlation for Peer-to-Peer Socialized Video Sharing[J]. ACM Transactions on Multimedia Computing, Communications and Applications,2012,8(1):112-126
    [8] P. Gill, M. Arlitt, Z. P. Li, et al. YouTube Traffic Characterization: A View From the Edge [C].ACM Internet Measurement Conference (IMC), New York,2007,15-28
    [9] Y. Huang, T. Z. J. Fu, D. M. Chiu, et al. Challenges, design and analysis of a large-scalep2p-vod system [C]. ACM SIGCOMM,New York,2008,375-388
    [10] M. Nafaa, N. Agoulmine. Analyzing Joost peer to peer IPTV protocol [C]. IFIP/IEEEInternational Symposium on Integrated Network Management, Long Island,2009,291-294
    [11] L. Guo, S. Chen, Z. Xiao, et al. A performance study of BitTorrent-like peer-to-peer systems[J]. IEEE Journal on Selected Areas in Communications,2007,25(1):155-169
    [12] Y. W. Zhu, Y. M. Hu. Enhancing Search Performance on Gnutella-Like P2P Systems [J].IEEE Transactions on Parallel and Distributed Systems,2006,17(12),1482-1495
    [13] Y. Zhao, Z. B. Zhang, Y. P. Wang, et al. Performance evaluation of Xunlei peer-to-peernetwork: A measurement study [C]. IEEE Consumer Communications and NetworkingConference (CCNC), Las Vegas,2011,257-261
    [14] M. Zhang, L. Zhao, Y. Tang, et al. Large-Scale Live Media Streaming over Peer-to-PeerNetworks through Global Internet [C]. ACM International Workshop on Advances inPeer-to-Peer Multimedia Streaming, Houston,2005,21-28
    [15] C. Huang, J. Li, K. W. Ross. Can internet video-on-demand be profitable?[C]. ACMSIGCOMM, Kyoto,2007,133-144
    [16] Y. H. Chu, S. Rao, H. Zhang. A Case For End System Multicast [C]. ACM Sigmetrics, SantaClara,2000,1-12
    [17] D. E. Pendarakis, S. Shi, D. C. Verma, et al. ALMI: An Application Level MulticastInfrastructure [C]. USENIX Symposium on Internet Technologies and Systems (USITS), SanFrancisco,2001,49-60
    [18] S. Banerjee, B. Bhattacharjee, C. Kommareddy. Scalable application layer multicast [C].ACM SIGCOMM, Pittsburgh,2002,205-217
    [19] V. N. Padmanabhan, H. J. Wang, P. A. Chou, et al. Distributing streaming media contentusing cooperative networking [C]. International Workshop on Network and Operating SystemsSupport for Digital Audio and Video (NOSSDAV), Miami Beach,2002,177-186
    [20] M. Castro, P. Druschel, A. M. Kermarrec, et al. SplitStream: high-bandwidth multicast incooperative environments [C]. ACM Symposium on Operating Systems Principles, Boston,2003,298-313
    [21] W. P. Yiu, X. Jin, S. H. Chan. VMesh: Distributed Segment Storage for Peer-to-PeerInteractive Video Streaming [J]. IEEE Journal on Selected Areas in Communications, SpecialIssue on Advances in Peer-to-Peer Streaming Systems,2007,25(9):1717-1731
    [22] L. H. Ying, A. Basu. pcVoD:Internet peer-to-peer video-on-demand with storage caching onpeers [C]. The11th International Conference on Distributed Multimedia Systems(DMS),Banff,2005,218-223
    [23] K. Wang, C. Lin. Insight into the P2P-VoD System: Performance Modeling and Analysis [C].International Conference on Computer Communications and Networks(ICCCN), SanFrancisco,2009,1-6
    [24] B. Tan, L. Massoulie. Brief announcement: adaptive content placement for peer-to-peervideo-on-demand systems [C]. ACM SIGACT-SIGOPS symposium on Principles ofdistributed computing (PODC), Zurich,2010,293-294
    [25] J. Wu, B. C. Li. Keep cache replacement simple in peer-assisted vod systems[C]. IEEEInternational Conference on Computer Communications (Infocom), Rio de Janeiro,2009,2591-2595
    [26] B. Cheng, H. Jin, X. F. Liao. Supporting VCR Functions in P2P VoD Services UsingRing-Assisted Overlays [C]. IEEE International Conference on Communications (ICC),Glasgow,2007,1698-1703
    [27] J. Chen, X. Du. A Layered Semi-Structured Overlay for Supporting VCR-Like Interactions inP2P VoD System [C]. IEEE International Conference on Communications (ICC), Cap Town,2010,1-5
    [28] F. Wang, J. C. Liu, Y. Q. Xiong. Stable Peers: Existence, Importance, and Application inPeer-to-Peer Live Video Streaming [C]. IEEE International Conference on ComputerCommunications (Infocom), Phoenix,2008,1364-1372
    [29] F. Wang, J. C. Liu, Y. Q. Xiong. On Node Stability and Organization in Peer-to-Peer VideoStreaming Systems [J]. IEEE Systems Journal,2011,5(4),440-450
    [30] I. Stoica, D. Liben, D. Karger, et al. Chord: a scalable peer-to-peer lookup protocol forInternet applications [J]. IEEE/ACM Transactions on Networking,2003,11(1):17-32
    [31] N. C. Hung, N. V. Khang, N. H. Giang, et al. Characterizing Chord, Kelips and Tapestryalgorithms in P2P streaming applications over wireless network [C]. InternationalConference on Communications and Electronics, Vietnam,2008,126-131
    [32] X. J. Hei, C. Liang, J. Liang, et al. A Measurement Study of a Large-Scale P2P IPTV System[J]. IEEE Transactions on Multimedia,2007,9(8):1672–1687
    [33] N. Parvez, C. Williamson, A. Mahanti. Analysis of bittorrent-like protocols for on-demandstored media streaming [C]. ACM SIGMETRICS, Maryland,2008,301-312
    [34] M. Mitzenmacher. The power of two choices in randomized load balancing [J]. IEEETransactions on Parallel and Distributed Systems,2001,12(10):1094-1104
    [35] Z. Wen, N. W. Liu, K. L. Yeung, et al. Closest playback-point first: a new peer selectionalgorithm for p2p vod systems [C]. IEEE Global Telecommunications Conference (Globecom),Houston,2011,1-5
    [36] D. Ren, Y. T. Li, S. H. Chan. Fast-Mesh: A Low-Delay High-Bandwidth Mesh forPeer-to-Peer Live Streaming [J]. IEEE Transactions on Multimedia,2009,11(8):1446-1456
    [37] H. Shen, L. Zhao, Z. Li. A DHT-Aided Chunk-Driven Overlay for Scalable and EfficientPeer-to-Peer Live Streaming [C]. The39th International Conference on Parallel Processing(ICPP), San Diego,2010,248-257
    [38] K. Leung, I. Lee. Distributed Video Streaming over DHT P2P Overlays [C]. InternationalSymposium on Computer Network and Multimedia Technology, Wu Han,2009,1-4
    [39] A. Rowstron, P. Druschel. Pastry: scalable, decentralized object location and routing forlarge-scale peer-to-peer systems [C]. IFIP/ACM International Conference on DistributedSystems Platforms, Heidelberg,2001,329-350
    [40] B. Zhao, L. Huang, J. Stribling, et al. Tapestry: A global-scale overlay for rapid servicedeployment [J]. IEEE Journal on Selected Areas in Communications,2004,22(1):41-53
    [41] R. Fortuna, E. Leonardi, M. Mellia, et al. QoE in Pull Based P2P-TV Systems:OverlayTopology Design Tradeoffs [C]. IEEE International Conference on Peer-to-Peer Computing(P2P), Delft,2010,1-10
    [42] L. Z. Cui, Y. Jiang, J. P. Wu. Employing QoS Driven Neighbor Selection for HeterogeneousPeer-to-Peer Streaming [C]. IEEE International Conference on Communications (ICC),Kyoto,2011,1-6
    [43] K. Takayama, T. Fujimoto, R. Endo, et al. Neighbor Selection Based on TransmissionBandwidth on P2P Live Streaming Service [C]. International Conference on AdvancedInformation Networking and Applications Workshops (WAINA), Fukuoka,2012,105-110
    [44] O. Abboud, T. Zinner, K. Pussep, et al. A QoE-Aware P2P Streaming System Using ScalableVideo Coding [C]. IEEE International Conference on Peer-to-Peer Computing (P2P), Delft,2010,1-2
    [45] P. Zeng. A design of layered P2P-based IPTV system [C]. IEEE3rd International Conferenceon Communication Software and Networks (ICCSN), Kuala Lumpur,2011,578-581
    [46] Y. Ding, J. Liu, D. Wang, et al. Peer-to-Peer Video-on-Demand with Scalable Video Coding[J]. Computer Communications, Special Issue on Multimedia Networking and Security inConvergent Networks,2009,33(14):1589-1597
    [47] X. Xiao, Y. C. Shi, B. P. Zhang, et al. OCals: A Novel Overlay Construction Approach forLayered Streaming [C]. IEEE International Conference on Communications (ICC), Beijing,2008,1807-1812
    [48] Y. Yang, A. L. H. Chow, L. Golubchik, et al. Improving QoS in bittorrent-like VoD systems
    [C]. IEEE Internatioal Conference on Computer Communications (Infocom), San Diego,2010,10-19
    [49] N. W. Liu, Z. Wen, K. L. Yeung, et al. Request-peer selection for load-balancing in P2P livestreaming systems [C]. IEEE Wireless Communications and Networking Conference (WCNC),Paris,2012,3227-3232
    [50] Y. Z. Wang, Z. J. Fu, D. M. Chiu. Analysis of load balancing algorithms in P2P streaming [C].The46th Annual Allerton Conference on Communication, Control, and Computing, AllertonHouse,2008,960-967
    [51] Y. P. Zhou, Z. J. Fu, D. M. Chiu. Server-Assisted Adaptive Video Replication for P2P VoD[J]. Elsevier Journal of Signal Processing: Image Communication,2012,27(4):484-495
    [52] M. J. Osborne, A. Rubinste. A Course in Game Theory [M]. Cambridge: The MIT Press,1994,12-30
    [53] X. Xiao, Q. Zhang, Y. Shi, et al. How Much to Share: A Repeated Game Model forPeer-to-Peer Streaming under Service Differentiation Incentives [J]. IEEE Transactions onParallel Distributed System.2012,23(2):288-295
    [54] J. Park, M. V. D. Schaar. A Game Theoretic Analysis of Incentives in Content Production andSharing Over Peer-to-Peer Networks [J]. IEEE Journal of Selected Topics in Signal Processing,2010,4(4):704-717
    [55] Y. Zhang, M. V. D. Schaar. Peer-to-Peer Multimedia Sharing based on Social Norms [J].Elsevier Journal Signal Processing: Image Communication, Special Issue on Advances invideo streaming for P2P networks,2012,27(5):383-400
    [56] M. K. H. Yeung, Y. K. Kwok. On Game Theoretic Peer Selection for Resilient Peer-to-PeerMedia Streaming [J]. IEEE Transactions on Parallel and Distributed Systems,2009,20(10):1512-1525
    [57] Y. Feng, B. C. Li, B. Li. Peer-assisted VoD prefetching in double auction markets [C]. IEEEInternational Conference on Network Protocols (ICNP). Kyoto,2010,275-284
    [58] C. Wu, Z. P. Li, X. J. Qiu, et al. Auction-based P2P VoD Streaming: Incentives and OptimalScheduling [J]. ACM Transactions on Multimedia Computing, Communications andApplications,2012,8(1):122-135
    [59] Z. Chen, G. Feng, Y. Zhou, et al. SDHT: Efficient One-hop DHT Lookup Framework for P2PLive Streaming [J]. China Communications,2012,9(8):88-104
    [60] S. M. Ross. Introduction to Probability Model,10Ed [M]. New York: Academic,2009,379-391
    [61] J. Rosen. Existence and uniqueness of equilibrium points for concave n-person games [J].Econometrica,1965,33:520-534
    [62] E. K. P. Chong, S. H. Zak. An Introduction to Optimization [M]. Canada: John-Wiley&SonsInc,2001,397-410
    [63] D. Ciullo, V. Martina, M. Garetto, et al. Stochastic analysis of self-sustainability inpeer-assisted VoD systems [C]. IEEE International Conference on Computer Communications(Infocom), Orlando,2012,1539-1547
    [64] A. P. Couto, E. Leonardi, M. M. Mellia. Chunk Distribution in Mesh-Based Large-Scale P2PStreaming Systems: A Fluid Approach [J]. IEEE Transactions on Parallel and DistributedSystems,2011,22(3):451-463
    [65] L. Monnerat, C. Amorim. Peer-to-Peer Single Hop Distributed Hash Tables [C]. IEEE GlobalTelecommunications Conference (Globecom), Hawall,2009,1-8
    [66] L. Monnerat, C. Amorim. D1HT: A Distributed One Hop Hash Table [C]. IEEE InternationalParallel&Distributed Processing Symposium (IPDPS), Rhodes Island,2006,26-35
    [67] P. Fonseca, R. Rodrigues, A. Gupta, et al. Full-Information Lookups for Peer-to-PeerOverlays [J]. IEEE Transactions on Parallel and Distributed Systems,2009,20(9):1339-1351
    [68] Y. Q. Ye, I. L.Yen, L. L. Xiao, et al. Highly Available and High Performance Peer-to-PeerStorage Systems [C]. IEEE High Assurance Systems Engineering Symposium,2008, Nanjing,383-391
    [69] S. Bessa, M. E. Correia, P. Brandao. Storage and retrieval on P2P networks: A DHT basedprotocol [C]. IEEE Symposium on Computers and Communications,2007, Aveiro,623-629
    [70] H. Shen, Z. Li, J. Li. A DHT-Aided Chunk-Driven Overlay for Scalable and EfficientPeer-to-Peer Live Streaming [J]. IEEE Transactions on Parallel and Distributed Systems,2013,PP (99)
    [71] J. Noh, S. Deshpande. Pseudo-DHT: Distributed Search Algorithm for P2P Video Streaming
    [C]. IEEE International Symposium on Multimedia,2008, Berkeley,348-355
    [72] Secure Hash Standard, FIPS PUB180-1, Federal Information Processing StandardsPublication,1995
    [73] J. Buford, A. Brown, M. Kolberg. Analysis of an Active Maintenance Algorithm for anO(1)-Hop Overlay [C]. IEEE Global Telecommunications Conference (Globecom),2007,Washington D.C,81-86
    [74] DenaCast. http://denacast.org/
    [75] I. Baumgart, B. Heep, S. Krause. OverSim: A Flexible Overlay Network SimulationFramework [C]. IEEE Global Internet Symposium,2007, Anchorage,79-84
    [76] OverSim. http://www.oversim.org/
    [77] OMNET++. http://www.omnetpp.org/
    [78] W. Liang, J. P. Bi, R. Wu, et al. On Characterizing PPStream: Measurement and Analysis ofP2P IPTV under Large-Scale Broadcasting [C]. IEEE Global Telecommunications Conference(Globecom),2009, Hawaii,1-6
    [79] I. Bermudez, M. Mellia, M. Meo. Investigating Overlay Topologies and Dynamics ofP2P-TV Systems: The Case of SopCast [J]. IEEE Journal on Selected Areas inCommunications,2011,29(9),1863–1871
    [80] R. Fortuna, E. Leonardi, M. Mellia, et al. QoE in Pull Based P2P-TV Systems: OverlayTopology Design Tradeoffs [C]. IEEE International Conference on Peer-to-Peer Computing(P2P), Netherlands,2010,1-10
    [81] A. T. Nguyen, B. C. Li, F. Eliassen. Chameleon: Adaptive Peer-to-Peer Streaming withNetwork Coding [C]. IEEE International Conference on Computer Communications(Infocom), San Diego,2010,1-9
    [82] M. Wang, B. C. Li. Lava: A Reality Check of Network Coding in Peer-to-Peer LiveStreaming [C]. IEEE International Conference on Computer Communications (Infocom),Anchorage,2007,1082-1090
    [83] R. Puri, K. Ramchandran, K. W. Lee, et al. Forward error correction (FEC) codes basedmultiple description coding for internet video streaming and multicast [J]. Elsevier SignalProcess: Image Communications,2001,16(8):745-762
    [84] I. Cidon, A. Khamisy, M. Sidi. Analysis of packet loss processes in high-speed networks [J].IEEE Transactions on Information Theory,1993,39(1):98–108
    [85] E. Setton, P. Baccichet, B. Girod. Peer-to-Peer Live Multicast: A Video Perspective [J].Proceedings of the IEEE, Special Issue on Recent Advances in Distributed MultimediaCommunications,2008,96(1):25-38
    [86] E. Setton, J. Noh, B. Girod. Rate distortion optimized video peer-to-peer multicast streaming
    [C]. ACM Workshop Advances Peer-to-Peer Multimedia Streaming, Singapore,2005,39-48
    [87] N. Magharei, R. Rejaie, Y. Guo. Mesh or Multiple-Tree: A Comparative Study of Live P2PStreaming Approaches [C]. IEEE International Conference on Computer Communications(Infocom), Anchorage,2007,1424–1432
    [88] T. Sikora. MPEG digital video-coding standards [J]. IEEE Signal Processing Magazine,1997,14(5):82-100
    [89] M. Bishop, S. Rao, K. Sripanidkulchai. Considering priority in overlay multicast protocolsunder heterogeneous environments [C]. IEEE International Conference on ComputerCommunications (Infocom), Barcelona,2006,1-13
    [90] G. Y. Shi, Y. S. Long, H. Gong, et al. HiFiP2P: The Simulator Capable of Massive Nodes andMeasured Underlay [C]. The17th Euromicro International Conference on Parallel, Distributedand Network-based Processing, Weimar,2009,285-292
    [91] T. H. Cormen, C. E. Leiseron, R. L. Rivest, et al. Introduction to Algorithms [M], SecondEdition, Cambridge: The MIT Press,2001
    [92] What is a computer ping test? http://compnetworking.about.com/od/.../pingtest.htm.
    [93] K. Calvert, M. Doar, E. W. Zegura. Modeling Internet Topology [J]. IEEE CommunicationsMagazine,35(6),1997:160-163
    [94] K. Sripanidkulchai, A. Ganjam, B. Maggs. The feasibility of supporting LargeScale livestreaming applications with dynamic application EndPoints [C]. ACM SIGCOMM, Portland,2004,275-289
    [95] Z. Xiang, Q. Zhang, W. W. Zhu, et al. Peer-to-Peer Based Multimedia Distribution Service [J]IEEE Transactions on Multimedia,2004,6(2):343-355
    [96] Open video trace file. http://www2.tkn.tu-berlin.de/researchtrace/ltvt.html
    [97] ffmpeg. http://www.ffmpeg.org
    [98] J. Klaue, B. Rathke, A. Wolisz. Evalvid-A framework for video transmission and qualityEvaluation [C]. The13th International Conference on Modeling Techniques and Tools forComputer Performance Evaluation, Urbana,2003,255-272
    [99] D. Q. Wang, C. K. Yeo. Superchunk-Based Efficient Search in P2P-VoD System [J]. IEEETransactions on Multimedia,2011,13(2):376-387
    [100] H. C. Chi, Q. Zhang, J. C. Jia, et al. Efficient Search and Scheduling in P2P-basedMedia-on-Demand Streaming Service [J]. IEEE Journal on Selected Areas inCommunications,2007,5(1):119-130
    [101] Y. P. Zhou, Z. J. Fu, D. M. Chiu. Statistical Modeling and Analysis of P2P Replication toSupport VoD Service [C]. IEEE International Conference on Computer Communications(Infocom), Shanghai,2011,945-953
    [102] W. J. Wu, J. C. S. Lui. Exploring the Optimal Replication Strategy in P2P-VoD Systems:Characterization and Evaluation [C]. IEEE International Conference on ComputerCommunications (Infocom), Shanghai,2011,1206-1214
    [103] H. T. Li, X. Ke, J. Seng, et al. Towards Health of Replication in Large-Scale P2P-VoDSystems [C]. IEEE International Performance Computing and Communications Conference,Phoenix,2009,323-330
    [104] J. H. Wu, B. C. Li. Keep Cache Replacement Simple in Peer-Assisted VoD Systems [C].IEEE International Conference on Computer Communications (Infocom), Rio de Janeiro,2009,2591-2595
    [105] H. Schwarz, D. Marpe, T. Wiegand. Overview of the scalable video coding extension of theH.264/AVC standard [J]. IEEE Transactions on Circuits and Systems for Video Technology,2007,17(9):1103-1120
    [106] Z. P. Ouyang, L. S. Xu, B. Ramamurthy. On Demand Heterogeneity in P2P Live Streaming
    [C]. IEEE International Conference on Communications (ICC), Cape Town,2010,1-5
    [107] X. Xiao, Y. C. Shi, Y. Gao, et al. LayerP2P: A New Data Scheduling Approach for LayeredStreaming in Heterogeneous Networks [C]. IEEE International Conference on ComputerCommunications (Infocom), Rio de Janeiro,2009,603-611

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700