用户名: 密码: 验证码:
体细胞核移植制备转IGF-1基因奶山羊的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前我国的奶山羊品种与发达国家相比差距明显,缺乏国际竞争力,突出表现为产量奶低,多数羊的年产奶量不足300kg,经济效益不高。为解决这一问题,本研究通过转基因技术培育高产奶量的奶山羊。本试验选取在乳腺发育和泌乳中起着重要作用的类胰岛素生长因子(IGF-1)基因作为转入的目的基因。通过分子生物学的方法,构建了乳腺特异性表达类胰岛素生长因子的载体pIN;然后分别转染人乳腺癌细胞系(Bcap-37)和山羊乳腺上皮细胞(GMEC)以验证乳腺特异性表达载体pIN表达IGF-1的能力,进一步的研究将载体pIN灌注泌乳期山羊乳腺以验证其生物学功能。在确认了载体pIN可以表达IGF-1后,我们使用脂质体法将载体pIN转染山羊胎儿成纤维细胞和小羊耳皮成纤维细胞,通过抗性筛选和单克隆挑选获得转IGF-1基因阳性克隆细胞。将获得的转IGF-1基因阳性克隆细胞通过体细胞核移植技术移植到去核的卵母细胞中,融合激活后待其发育到囊胚期,移植至代孕母羊,最后获得4只克隆奶山羊。提取克隆奶山羊的血液基因组,通过荧光定量PCR、Southern-blot以及TAIL-PCR等方法一方面鉴定本研究获得的克隆羊为转IGF-1基因奶山羊,另一方面检测转IGF-1基因奶山羊中外源IGF-1基因插入的拷贝数以及部分插入位点的侧翼序列。总的来说,转IGF-1基因奶山羊的培育,为通过转基因技术提高山羊奶产量奠定了基础。本研究中主要试验内容分为以下五部分:
     1.山羊乳腺特异性表达载体的构建及其验证
     本研究的目的是构建山羊乳腺特异性表达载体pIN,并在体内体外检验载体pIN的生物学活性,为下一步生产高产奶量转基因奶山羊奠定基础。第一步,以萨能奶山羊为材料,采用RT-PCR的方法从奶山羊的肝脏组织中扩增465bp的类胰岛素生长因子1(insulin-like growth factors-1,igf-1)基因;同时以真核表达载体pCDNA3.1为模板,扩增1505bp的真核筛选标记neo基因。第二步,以乳腺特异性表达载体pBC1为骨架载体,先将扩增的igf-1基因插入p-酪蛋白5’端启动子的下游,再将克隆的neo基因克隆到β-酪蛋白3’端终止子的下游,构建乳腺特异性表达载体pIN。第三步,采用脂质体法将构建好的乳腺特异性表达载体pIN转染人乳腺癌细胞系(Bcap-37)和山羊乳腺上皮细胞,同时使用乳腺灌注法将载体pIN导入泌乳期山羊乳腺组织中去检测乳腺特异性表达载体pIN的生物学功能。体外试验结果显示:在Bcap-37细胞中,载体pIN转染组的IGF-1蛋白和mRNA表达量均显著高于对照组(p<0.05);在山羊乳腺上皮细胞中,转染载体pIN的细胞可以成功诱导表达IGF-1。体内试验结果进一步证实本研究所构建的乳腺特异性表达载体pN可以在山羊乳腺组织中成功表达IGF-1,为增加羊奶产量奠定基础。
     2.双亲性小分子DMSO和薄荷醇增加转染效率的研究
     简单、快速和高效地将目的基因转入细胞核将会有利于加速转基因阳性细胞的筛选过程。转染增强剂的使用可以有效的促进外源基因的转运。在众多增强剂中,双亲性小分子化合物二甲基亚枫(DMSO)和薄荷醇可以有效的提高基因的转染效率。本研究首先使用MTT法检测DMSO和薄荷醇的细胞毒性,摸索出对细胞没有伤害或者伤害很小的最适使用浓度;接着在人乳腺癌细胞系(Bcap-37)上,使用荧光定量PCR和流式细胞检测法去评价DMSO和薄荷醇对转染效率的影响。研究结果表明2%(V/V)的DMSO和12.5μM薄荷醇可以显著提高外源基因的转染效率。荧光定量PCR结果显示,在薄荷醇后处理和DMSO前处理的Bcap-37细胞上,生长激素(GH)的mRNA表达量提高了10倍以上;而在DMSO后处理和薄荷醇前处理的Bcap-37细胞上,GH的mRNA表达量则提高了30倍以上。荧光显微镜观察结果和流式细胞检测结果进一步证明DMSO和薄荷醇处理细胞可以增加表达绿色荧光的细胞数量。与单独脂质体转染组相比较,DMSO后处理组和薄荷醇前处理组表达绿色荧光的细胞比例增加了15%。进一步细胞周期分析发现,DMSO和薄荷醇处理均可以显著影响细胞周期,大大的改变了细胞周期停滞的比例。这一结果表明DMSO和薄荷醇可能是通过影响细胞周期来增加转染效率的。总的来说,DMSO和薄荷醇处理细胞均可以显著增加转染效率,其中DMSO后处理细胞的方式可以更有效的增加转染效率
     3.核定位信号肽增加转染效率的研究
     转基因阳性细胞筛选效率低下的问题严重限制转基因动物的发展;其中外源DNA片段(尤其是大分子DNA片段)转运进入细胞核是转基因阳性细胞筛选中最重要的限速步骤。研究发现核定位信号(NLS)可以协助大分子亲核蛋白的入核转运;补骨脂素(SPB)可以非共价结合DNA片段以保护其在转运过程中不被核酸酶降解。因此,本研究人工合成经典的核定为信号肽"CGGPKKKRKVP (NLS)"以及核定为信号肽-补骨脂素复合物"SPB-PKKKRKV(SPB-NLS)"去协助大分子DNA片段的转运,希望能够增加转染效率,继而可以应用到转基因阳性细胞的筛选中去。本研究通过荧光定量PCR,激光共聚焦观察以及流式细胞检测等技术对NLS及SPB-NLS的生物学功能进行检测。荧光定量PCR结果显示:在NLS和SPB-NLS介导的转染中,生长激素(GH)的mRNA表达量分别增加了69%和330%。流式细胞检测发现绿色荧光阳性细胞的数量在SPB-NLS组中增加了32.4%;然而在NLS组中,其阳性细胞的数量却减少了75%。进一步试验(western-blot)证实SPB-NLS介导的转染可以显著的增加转染基因的表达效率(在人乳腺癌细胞的研究中,SPB-NLS介导的转染增加了GFP的表达量;在山羊乳腺上皮细胞的研究中,SPB-NLS介导的转染增加了IGF-1的表达量)。最后,本研究通过激光共聚焦显微镜观察发现SPB-NLS介导的转染可以增加外源基因如何的效率。总的来说,本研究证实SPB-NLS是一种优良的转染增强剂,很有希望被广泛用于外源基因的转染以及转基因阳性细胞的筛选。
     4.转IGF-1基因阳性克隆细胞的筛选及转IGF-1基因奶山羊的制备
     转基因动物的制备一直以来就是人们关注的焦点和难点,尤其是转基因大型家畜的制备。本研究首先分离培养奶山羊胎儿成纤维细胞和小羊耳皮成纤维细胞,摸索不同浓度的G418对两种细胞的毒性,选取2周内能将细胞全部杀死的临界浓度作为抗性筛选浓度(800ng/mL G418:胎儿成纤维细胞,600ng/mL G418:小羊耳皮成纤维细胞)。然后通过电转染法将乳腺特异性表达载体pIN转染到小羊耳皮成纤维细胞和胎儿成纤维细胞中去。转染48小时后,更换培养基并添加G418进行抗性筛选,筛选10天左右出现明显的单克隆细胞团。此时将G418的浓度降至维持浓度(300ng/mL),维持3-5天后,挑取单克隆细胞至48孔细胞培养板。待单克隆细胞扩大培养至6孔板后,将一部分单克隆细胞提取基因组DNA进行PCR验证,另一部分单克隆细胞冻存后用于核移植试验。本试验共筛选到46个单克隆细胞株,挑选其中生长状态良好的12个单克隆细胞进行PCR鉴定;PCR鉴定结果显示igf-1和neo基因整合进入细胞基因组的阳性克隆有2个。挑选验证阳性的单克隆细胞进行体细胞核移植制备转IGF-1基因奶山羊。本试验共获得4只转IGF-1基因奶山羊。
     5.转IGF-1基因奶山羊的鉴定
     转基因动物基因组中不但含有特定的外源基因序列,还包括特定的启动子、调控元件和标记基因等,这些是进行转基因鉴定的基础。在鉴定转基因动物时,除了检测外源基因的存在、表达与否外,还需要对转入基因的完整性、整合位点以及拷贝数等情况进行分析。本研究首先通过普通PCR和Southern-blot鉴定所获得的克隆羊为转IGF-1基因奶山羊;然后通过绝对荧光定量PCR和热不均一交错PCR(TAIL-PCR)进一步检测体细胞核移植技术生产的转IGF-1基因奶山羊中插入的外源基因拷贝数和整合位点。普通PCR检测结果表明转IGF-1基因奶山羊基因组中整合有igf-1基因和neo基因;Southern-blot结果进一步证实所获得的克隆羊为转IGF-1基因奶山羊。绝对荧光定量可以精确的分析外源基因在基因组中的拷贝数,本研究首先制备标准曲线(log2N(拷贝数)=-1.0244△Ct+5.3576(R2=0.9963)),接着检测转IGF-1基因奶山羊中外源IGF-1基因的拷贝数,结果显示4只转IGF-1基因奶山羊中外源基因拷贝数均为8个拷贝;进一步TAIL-PCR成功鉴定了转IGF-1基因奶山羊中外源基因的部分整合位点。3轮特异性的TAIL-PCR得到的多条特异性条带,经测序和BLAST比对得到4个特异性位点,这四个位点分别位于牛基因组的2,11,16和18四条染色体中。本研究初步建立了绝对荧光定量PCR和TAIL-PCR检测外源基因拷贝数和整合位点侧翼序列分析的体系,为今后研究外源基因在转基因奶山羊的中遗传和表达奠定了基础。
Nowadays, the development of dairy goat industry in Chinese is slow and lacks of international competitiveness, especially in goat milk production. The milk yield of one goat is less than300kg each year, which decreased the economic benefits. To solve this problem, our study tries to improve milk yield with transgenic technology. Transgenic technology is a promising strategy to enhance the performance of mammary glands. An essential component of breeding favorable varieties is selecting a right target gene. Insulin-like growth factors-1(IGF-1) can stimulate cell growth, reproduction and regeneration, and further influence the secreting cells of the goat mammary gland, thus it is an ideal choice as a target and chosen to produce IGF-1transgenic goats. Firstly, we constructed a mammary gland specific expression plasmid pIN with the method of molecular biology. Then plasmid pIN was transfected into the Bcap-37cell line and goat mammary epithelial cells to validate its function in expressing goat IGF-1. Furthermore, the plasmid was injected into goat mammary gland to convince its bioactivity of expressing IGF-1. After analyzing the bioactivity of plasmid pIN, we transfected it into goat fetal fibroblasts and goat ear skin fibroblasts by liposome. Using neomycin antibiotic selection, we picked up two IGF-1-positive clone cells. Then we transplanted the GF-1-positive clone cell into enucleated oocytes through the methods of somatic cell nuclear transfer. When the oocytes were activated and came into the blastocyst stage, we transplanted them into surrogate ewe and obtained five cloned dairy goats. Lastly, we extracted the genomic DNA of clone goats to confirm that these clone goats were IGF-1transgenic goats, using PCR and Southern-blot. At the same time, we detected the copy number and the flank sequence of IGF-1transgenic goats with real-time PCR and TAIL-PCR. Overall, our results cultivated4transgenic goats and laid the foundation for increasing goat milk yeild by transgenic technology.
     The main experiments were divided into the following five parts. 1. Construction of mammary gland specific expression plasmid pIN and its expression in vitro and in vivo
     Transgenic technology provides an opportunity to enhance the performance of IGF-1expression, and then modify mammary gland function. This study aims at constructing a mammary gland-specific expression vector, pGN, and validating its function in expressing goat insulin-like growth factor1(IGF-1) both in vitro and in vivo. The backbone plasmid pBCl contained goat β-casein5' arm and β-casein3'arm, which can express gene specific in mammary gland. Firstly, the igf-1gene was amplified from liver tissue harvested from a Saanen dairy goat and inserted into the downstream of β-casein5'arm. Then the neo gene was cloned from plasmid pCDNA3.1and placed to the downstream of β-casein3'arm as a positive selection marker. In order to analyze the bioactivity of the pIN plasmid, pIN was transfected into the Bcap-37cell line and goat mammary epithelial cells, coupling with goat mammary gland injection. In vitro experiments not only proved that the expression of IGF-1protein and mRNA in transfected Bcap-37cells was higher than that of the control group, but also confirmed that mammary gland specific expression plasmid pIN could be induce to express IGF-1on goat mammary epithelial cells. In vivo studies showed that the expression of IGF-1in pIN injected group was significantly higher than that of the control group. Together, these results strongly demonstrated that the pIN plasmid was constructed correctly and exhibited favorable bioactivity in efficiently expressing IGF-1both in vitro and in vivo, which laid a foundation for increasing milk production.
     2. Enhancement of gene transfer efficiency in the Bcap-37cell line by amphiphilic molecules (dimethyl sulphoxide and menthol)
     Simply and efficiently transfer gene into nucleus will facilitate the progress of positive cells screening in producing transgenic animals. One promising method of fast gene delivery is to apply penetration enhancers. Amphiphilic molecules, such as dimethyl sulfoxide (DMSO) and menthol, could serve as non-toxic vehicles in improving gene transfer efficiency. In this study, the cytotoxic effects of DMSO and menthol were evaluated using MTT assays. Gene delivery efficiency in a human breast cancer cell line (Bcap-37) was investigated by quantitative PCR, fluorescence microscopy and flow cytometry. Results proved that non-toxic concentrations of DMSO (2%, V/V) and menthol (12.5μM) enhanced the efficiency of liposome-mediated gene delivery in Bcap-37cells. Quantitative PCR results showed that the expression of growth hormone (GH) in post-menthol and pre-DMSO treatment groups were10times as that of the liposome group, while in the pre-menthol and post-DMSO treatment groups, a30times increase in GH mRNA expression was observed. Both DMSO and menthol treatments increased the numbers of cells expressing green fluorescent protein, which was shown by fluorescence microscopy experiments. Compared to the liposome group, the number of positive cells in the pre-menthol and post-DMSO treatment groups was significantly increased by15%. Furthermore, cell cycle analysis demonstrated that there were significant differences among the DMSO-treated group, the menthol-treated group and the normal group, which implied different effects of DMSO and menthol treatments. In conclusion, both non-toxic and harmless DMSO (2%) and menthol (12.5μM) treatments improved gene transfer efficiency, and post-DMSO treatment may be the most effective protocol in increasing gene transferring efficiency.
     3. Improvement gene transfection efficiency in the Bcap-37cell line with NLS and SPB-NLS
     Low transfection efficiency severely blocks the development of transgenic animals. The process of exogenous DNA fragments entering nucleus is a major rate-limiting step, especially for the large DNA fragments. Nuclear localization sequence (NLS) peptide mediates the trafficking of nuclear protein, from cytoplasm into nucleus. Succinimidy-4-(psoralen-8-yloxy)-butyrate (SPB) can non-covalent couple with DNA molecules to prevent DNA from degradation when delivered into cell. Peptide "CGGPKKKRKVP (classic NLS)" and peptide derivative "SPB-PKKKRKV" were synthesized to mediate transfection in vitro, aiming at improving large DNA fragments transfection efficiency, especially for producing transgenic animals. To explore their biology function, we compared GH mRNA and GFP protein expression by qRT-PCR and flow cytometry. Results identified NLS group (increased by69%) and SPB-NLS group (330%) significantly improved the expression of GH mRNA. Likewise, SPB-NLS group increased the number of GFP positive cells (32.4%), but NLS group decreased the number of GFP positive cells (75%). Further analysis (western blot) demonstrated the function of SPB-NLS in hard-to-transfect Bcap-37cell (increase the expression of GFP) and target GMEC cells (improve the expression of IGF-1). In conclusion, SPB-NLS served as a transfection enhancing agent, can be widely used in both nuclear delivery and producing genetically modified animals.
     4. The screening of IGF-1-positive clone cells and the production of IGF-1transgenic goats
     The production of transgenic animals has always been the focus and difficulty, especially for large-scale livestock (such as goats and castles). In this study, we firstly isolated and cultured dairy goat fetal fibroblasts and ear skin fibroblasts. Then we explored the optimal concentration of G418for positive-cells screening. Results displayed that when the G418concentration came to800ng/mL, fetal fibroblasts would be killed within two weeks. In terms of the ear skin fibroblasts, the optimal G418concentration was600ng/mL. After confirmed the optimal concentration, we transfected mammary gland specific expression vector pIN into goat fetal fibroblasts and ear skin fibroblasts. In the following of10-14days screening, we picked up monoclonal cell mass, then cultured them in48-well cell culture plates and dropped the concentration of G418to300ng/mL. The picked monoclonal cells were cultured until full of a6-well cell culture plates. Then the monoclonal cells were divided into two parts. One part was used to extract genomic DNA for identify, the other part was frozen for nuclear transplantation. Our study finally screened46monoclonal cell lines. From these monoclonal cell lines, we selected12monoclonal cell lines with good growth state by PCR identification. The PCR results showed that there were2positive clones in the cell's genome which IGF-1gene has integrated into. After identification, we transplanted the IGF-1-positive clone cell into enucleated oocytes through the methods of somatic cell nuclear transfer. At last, we obtain4IGF-1transgenic goats.
     5. The identification of IGF-1transgenic goats
     Transgenic technology has recently been employed to create animal lines with new genes inserted into their chromosomes. The genome of transgenic animals comprised of exogenous gene, specific promoter, regulatory elements and marker genes, which were the basis for the identification of transgenic animals. The identification of transgenic animals contained two parts. The first part was detecting the presence and the expression of the exogenous gene, the second part was analyzing the integrity site and the copy number of transferred gene. In this study, we firstly tried to prove the clone goats to be IGF-1transgenic goats by PCR and Southern-blot. Then we used the methods of real-time PCR and TAIL-PCR to analyze the copy number and the integrity site of transferred IGF-1gene. PCR results demonstrated that the igf-1gene and neo gene were integrated into the genome of IGF-1transgenic goats. Further experiments (Southern blot) proved that these clone goats were IGF-1transgenic goats. Absolute quantitative PCR could be used to precisely analysis the copy number of exogenous gene. To begin with, we established the standard curve (log2N (copy number)=-1.0244△Ct+5.3576(R2=0.9963)), then detected the copy number of four IGF-1transgenic goats. Results showed that the four IGF-1transgenic goats contained8copy IGF-1gene in their genome. At last, we attempted to identify the integrated site of exogenous IGF-1gene. TAIL-PCR results identified4specific integrating sites which were listed in bovine chromosome2,11,16and18. Overall, our study initially established a system about detecting the copy number and the integrating site's flanking sequences of exogenous gene, which laid a solid foundation for the genetic research of transgenic dairy goats.
引文
[1]Weissmann C, Flechsig E. PrP knock-out and PrP transgenic mice in prion research. Br Med Bull 2003;66:43-60.
    [2]Lin J, Yu Q, Zhang Q, et al. Construction of mammary gland specific expression plasmid pIN and its expression in vitro and in vivo. African Journal of Biotechnology 2012;11(27):6946-55.
    [3]Gordon JW, Scangos GA, Plotkin DJ, et al. Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci U S A 1980;77(12):7380-4.
    [4]Hammer RE, Pursel VG, Rexroad CE, Jr., et al. Production of transgenic rabbits, sheep and pigs by microinjection. Nature 1985;315(6021):680-3.
    [5]Goldman IL, Sadtchikova EL, Kadulin SG, et al. Technology of obtaining goat zygotes with known time of formation suitable for microinjection of recombinant DNA in order to create transgenic animals. Dokl Biol Sci 2002;384:195-8.
    [6]Galli C, Lagutina I, Vassiliev I, et al. Comparison of microinjection (piezo-electric) and cell fusion for nuclear transfer success with different cell types in cattle. Cloning Stem Cells 2002;4(3):189-96.
    [7]Lavitrano M, Bacci ML, Forni M, et al. Efficient production by sperm-mediated gene transfer of human decay accelerating factor (hDAF) transgenic pigs for xenotransplantation. Proc Natl Acad Sci U S A 2002;99(22):14230-5.
    [8]Canovas S, Gutierrez-Adan A, Gadea J. Effect of exogenous DNA on bovine sperm functionality using the sperm mediated gene transfer (SMGT) technique. Mol Reprod Dev 2010;77(8):687-98.
    [9]Garcia-Vazquez FA, Garcia-Rosello E, Gutierrez-Adan A, et al. Effect of sperm treatment on efficiency of EGFP-expressing porcine embryos produced by ICSI-SMGT. Theriogenology 2009;72(4):506-18.
    [10]Haskell RE, Bowen RA. Efficient production of transgenic cattle by retroviral infection of early embryos. Mol Reprod Dev 1995;40(3):386-90.
    [11]Chan AW, Chong KY, Martinovich C, et al. Transgenic monkeys produced by retroviral gene transfer into mature oocytes. Science 2001;291(5502):309-12.
    [12]Bradley A, Evans M, Kaufman MH, et al. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 1984;309(5965):255-6.
    [13]Wilmut I, Schnieke AE, McWhir J, et al. Viable offspring derived from fetal and adult mammalian cells. Nature 1997;385(6619):810-3.
    [14]Schnieke AE, Kind AJ, Ritchie WA, et al. Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science 1997;278(5346):2130-3.
    [15]Chang CH, Chou TK, Yang CY, et al. Biodistribution and pharmacokinetics of transgenic pig-produced recombinant human factor IX (rhFIX) in rats. In Vivo 2008;22(6):693-7.
    [16]van Berkel PH, Welling MM, Geerts M, et al. Large scale production of recombinant human Iactoferrin in the milk of transgenic cows. Nat Biotechnol 2002;20(5):484-7.
    [17]Maga EA, Shoemaker CF, Rowe JD, et al. Production and processing of milk from transgenic goats expressing human lysozyme in the mammary gland. J Dairy Sci 2006;89(2):518-24.
    [18]Zhang J, Li L, Cai Y, et al. Expression of active recombinant human Iactoferrin in the milk of transgenic goats. Protein expression and purification 2008;57(2):127-35.
    [19]McCreath KJ, Howcroft J, Campbell KH, et al. Production of gene-targeted sheep by nuclear transfer from cultured somatic cells. Nature 2000;405(6790):1066-9.
    [20]Quesada E, Castell JV, Vilanova E, et al. Over-expression of neuropathy target esterase activity in bovine chromaffin cell cultures by adenovirus-mediated gene transfer. Toxicol Lett 2007;168(3):286-91.
    [21]Ahn KS, Kim YJ, Kim M, et al. Resurrection of an alpha-1,3-galactosyltransferase gene-targeted miniature pig by recloning using postmortem ear skin fibroblasts. Theriogenology 2011;75(5):933-9.
    [22]Yu Q, Tian Q, Lin J, et al. Construction and function of mammary gland specific goat GH expression vector. Mol Biol Rep 2012;39(8):8373-8.
    [23]Osborn MJ, DeFeo AP, Blazar BR, et al. Synthetic zinc finger nuclease design and rapid assembly. Hum Gene Ther 2011;22(9):1155-65.
    [24]Carroll D, Morton JJ, Beumer KJ, et al. Design, construction and in vitro testing of zinc finger nucleases. Nat Protoc 2006;1(3):1329-41.
    [25]Meng X, Noyes MB, Zhu LJ, et al. Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol 2008;26(6):695-701.
    [26]Doyon Y, McCammon JM, Miller JC, et al. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol 2008;26(6):702-8.
    [27]Beumer K, Bhattacharyya G, Bibikova M, et al. Efficient gene targeting in Drosophila with zinc-finger nucleases. Genetics 2006;172(4):2391-403.
    [28]Geurts AM, Cost GJ, Freyvert Y, et al. Knockout rats via embryo microinjection of zinc-finger nucleases. Science 2009;325(5939):433.
    [29]Mashimo T, Takizawa A, Voigt B, et al. Generation of knockout rats with X-linked severe combined immunodeficiency (X-SCID) using zinc-finger nucleases. PLoS One 2010;5(1):e8870.
    [30]Carbery ID, Ji D, Harrington A, et al. Targeted genome modification in mice using zinc-finger nucleases. Genetics 2010;186(2):451-9.
    [31]Whyte JJ, Zhao J, Wells KD, et al. Gene targeting with zinc finger nucleases to produce cloned eGFP knockout pigs. Mol Reprod Dev 2011;78(1):2.
    [32]Miller JC, Tan S, Qiao G, et al. A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 2011;29(2):143-8.
    [33]Acosta J, Carpio Y, Borroto I, et al. Myostatin gene silenced by RNAi show a zebrafish giant phenotype. J Biotechnol 2005;119(4):324-31.
    [34]Hasuwa H, Okabe M. RNAi in living mice. Methods Mol Biol 2004;252:501-8.
    [35]Pfeifer A, Eigenbrod S, Al-Khadra S, et al. Lentivector-mediated RNAi efficiently suppresses prion protein and prolongs survival of scrapie-infected mice. J Clin Invest 2006;116(12):3204-10.
    [36]Ramsoondar J, Vaught T, Ball S, et al. Production of transgenic pigs that express porcine endogenous retrovirus small interfering RNAs. Xenotransplantation 2009; 16(3):164-80.
    [37]Hofmann A, Kessler B, Ewerling S, et al. Efficient transgenesis in farm animals by lentiviral vectors. EMBO Rep 2003;4(11):1054-60.
    [38]McGrew MJ, Sherman A, Ellard FM, et al. Efficient production of germline transgenic chickens using lentiviral vectors. EMBO Rep 2004;5(7):728-33.
    [39]Ritchie WA, King T, Neil C, et al. Transgenic sheep designed for transplantation studies. Mol Reprod Dev 2009;76(1):61-4.
    [40]Ezashi T, Telugu BP, Alexenko AP, et al. Derivation of induced pluripotent stem cells from pig somatic cells. Proc Natl Acad Sci U S A 2009; 106(27):10993-8.
    [41]Montserrat N, de Onate L, Garreta E, et al. Generation of feeder-free pig induced pluripotent stem cells without Pou5fl. Cell Transplant 2012;21(5):815-25.
    [42]Wu Z, Chen J, Ren J, et al. Generation of pig induced pluripotent stem cells with a drug-inducible system. J Mol Cell Biol 2009;1(1):46-54.
    [43]West FD, Terlouw SL, Kwon DJ, et al. Porcine induced pluripotent stem cells produce chimeric offspring. Stem Cells Dev 2010; 19(8):1211-20.
    [44]West FD, Uhl EW, Liu Y, et al. Brief report:chimeric pigs produced from induced pluripotent stem cells demonstrate germline transmission and no evidence of tumor formation in young pigs. Stem Cells 2011;29(10):1640-3.
    [45]李宝健,朱华晨.论应用多基因转化策略综合改良生物体遗传性研究方向的前景ACTA SCIENTIARUM 2004;43(6).
    [46]谢龙旭,徐培林,聂燕芳,et a1.抗草甘膦抗虫植物表达载体的构建及其转基因烟草的分析.生物工程学报2003;19(5):545-50.
    [47]Zhao FY, Li YF, Xu P. Agrobacterium-mediated transformation of cotton (Gossypium hirsutum L. cv. Zhongmian 35) using glyphosate as a selectable marker. Biotechnol Lett 2006;28(15):1199-207.
    [48]Ye X, Al-Babili S, Kloti A, et al. Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 2000;287(5451):303-5.
    [49]Capuco AV, Ellis SE, Hale SA, et al. Lactation persistency:insights from mammary cell proliferation studies. J Anim Sci 2003;81 Suppl 3:18-31.
    [50]Silberstein GB. Postnatal mammary gland morphogenesis. Microsc Res Tech 2001;52(2):155-62.
    [51]Watson CJ, Khaled WT. Mammary development in the embryo and adult:a journey of morphogenesis and commitment. Development 2008;135(6):995-1003.
    [52]Cowin P, Wysolmerski J. Molecular mechanisms guiding embryonic mammary gland development. Cold Spring Harb Perspect Biol 2010;2(6):a003251.
    [53]Holland MS, Holland RE. The cellular perspective on mammary gland development: stem/progenitor cells and beyond. J Dairy Sci 2005;88 Suppl 1:E1-8.
    [54]Akers RM. Major advances associated with hormone and growth factor regulation of mammary growth and lactation in dairy cows. J Dairy Sci 2006;89(4):1222-34.
    [55]Djonov V, Andres AC, Ziemiecki A. Vascular remodelling during the normal and malignant life cycle of the mammary gland. Microsc Res Tech 2001;52(2):182-9.
    [56]Neville MC, McFadden TB, Forsyth I. Hormonal regulation of mammary differentiation and milk secretion. J Mammary Gland Biol Neoplasia 2002;7(1):49-66.
    [57]Baldi A, Modina S, Cheli F, et al. Bovine somatotropin administration to dairy goats in late lactation:effects on mammary gland function, composition and morphology. J Dairy Sci 2002;85(5):1093-102.
    [58]Ogorevc J, Kunej T, Razpet A, et al. Database of cattle candidate genes and genetic markers for milk production and mastitis. Anim Genet 2009;40(6):832-51.
    [59]Lemay DG, Lynn DJ, Martin WF, et al. The bovine lactation genome:insights into the evolution of mammalian milk. Genome Biol 2009;10(4):R43.
    [60]Zhang R, Guo C, Sui S, et al. Comprehensive assessment of milk composition in transgenic cloned cattle. PLoS One 2012;7(11):e49697.
    [61]Gustafsson C, Govindarajan S, Minshull J. Codon bias and heterologous protein expression. Trends Biotechnol 2004;22(7):346-53.
    [62]Houdebine LM. Production of pharmaceutical proteins by transgenic animals. Comp Immunol Microbiol Infect Dis 2009;32(2):107-21.
    [63]Plotkin JB, Robins H, Levine AJ. Tissue-specific codon usage and the expression of human genes. Proc Natl Acad Sci U S A 2004;101(34):12588-91.
    [64]Dittmar KA, Goodenbour JM, Pan T. Tissue-specific differences in human transfer RNA expression. PLoS Genet 2006;2(12):e221.
    [65]He Z, Zhao Y, Mei G, et al. Could protein tertiary structure influence mammary transgene expression more than tissue specific codon usage? Transgenic Res 2010; 19(4):519-33.
    [66]Hurtaud C, Lemosquet S, Rulquin H. Effect of graded duodenal infusions of glucose on yield and composition of milk from dairy cows.2. Diets based on grass silage. J Dairy Sci 2000;83(12):2952-62.
    [67]Noble MS, Rodriguez-Zas S, Cook JB, et al. Lactational performance of first-parity transgenic gilts expressing bovine alpha-lactalbumin in their milk. J Anim Sci 2002;80(4):1090-6.
    [68]Wheeler MB, Bleck GT, Donovan SM. Transgenic alteration of sow milk to improve piglet growth and health. Reprod Suppl 2001;58:313-24.
    [69]Soulier S, Stinnakre MG, Da Silva JC, et al. Distal element(s) is(are) required for position-independent expression of the goat alpha-lactalbumin gene in transgenic mice. Potential relationship with the location of the cyclin T1 locus. Genet Sel Evol 2000;32(6):621-30.
    [70]Liu S, Wei Y, Hu G, et al. An expression profile of human alpha-lactalbumin in the milk of transgenic mouse. Sci China C Life Sci 2004;47(3):197-202.
    [71]Zhao FQ, Keating AF. Expression and regulation of glucose transporters in the bovine mammary gland. J Dairy Sci 2007;90 Suppl 1:E76-86.
    [72]Kaselonis GL, McCabe ER, Gray SM. Expression of hexokinase 1 and hexokinase 2 in mammary tissue of nonlactating and lactating rats:evaluation by RT-PCR. Mol Genet Metab 1999;68(3):371-4.
    [73]Xiao C, Cant JP. Glucose transporter in bovine mammary epithelial cells is an asymmetric carrier that exhibits cooperativity and trans-stimulation. Am J Physiol Cell Physiol 2003;285(5):C1226-34.
    [74]Cohick WS. Role of the insulin-like growth factors and their binding proteins in lactation. J Dairy Sci 1998;81(6):1769-77.
    [75]刘宝英,王会信.胰岛素样生长因子1受体激活机制及信号转导特异性.生理科学进展1998;29(3):249-52.
    [76]Prosser CG, Davis SR, Farr VC, et al. Effects of close-arterial (external pudic) infusion of insulin-like growth factor-II on milk yield and mammary blood flow in lactating goats. J Endocrinol 1994;142(1):93-9.
    [77]LeRoith D, Neuenschwander S, Wood TL, et al. Insulin-like growth factor-I and insulin-like growth factor binding protein-3 inhibit involution of the mammary gland following lactation: studies in transgenic mice. Prog Growth Factor Res 1995;6(2-4):433-6.
    [78]Hadsell DL, Bonnette SG, Lee AV. Genetic manipulation of the IGF-I axis to regulate mammary gland development and function. J Dairy Sci 2002;85(2):365-77.
    [79]Su HY, Cheng WT. Increased milk yield in transgenic mice expressing insulin-like growth factor 1. Anim Biotechnol 2004; 15(1):9-19.
    [80]Tamadon A, Kafi M, Saeb M, et al. Relationships between insulin-like growth factor-I, milk yield, body condition score, and postpartum luteal activity in high-producing dairy cows. Trop Anim Health Prod 2011;43(1):29-34.
    [81]Jeltsch A. On the enzymatic properties of Dnmtl:specificity, processivity, mechanism of linear diffusion and allosteric regulation of the enzyme. Epigenetics 2006;1(2):63-6.
    [82]张国梁,董焕声,张西锋,et al.DNA甲基化调节转基因动物外源基因表达的研究进展.青岛农业大学学报:自然科学版2012;28(4):254-60.
    [83]刘秉乾,程传宇,武玉东,et al.表达人α-1,2-岩藻糖苷转移酶,衰变加速因子和CD59基因的转基因小鼠的建立及其抗异种移植排斥反应的研究.中国科学:C辑2009;38(3):265-70.
    [84]Yan B, Li D, Gou K. Homologous illegitimate random integration of foreign DNA into the X chromosome of a transgenic mouse line. BMC Mol Biol 2010;11:58.
    [85]Riezman H, Woodman PG, van Meer G, et al. Molecular mechanisms of endocytosis. Cell 1997;91(6):731-8.
    [86]Schekman R, Orci L. Coat proteins and vesicle budding. Science 1996;271(5255):1526-33.
    [87]Galbiati F, Razani B, Lisanti MP. Emerging themes in lipid rafts and caveolae. Cell 2001;106(4):403-11.
    [88]Pelkmans L, Helenius A. Endocytosis via caveolae. Traffic 2002;3(5):311-20.
    [89]Lam JK, Armes SP, Stolnik S. The involvement of microtubules and actin filaments in the intracellular transport of non-viral gene delivery system. J Drug Target 2011; 19(1):56-66.
    [90]Vaughan EE, Dean DA. Intracellular trafficking of plasmids during transfection is mediated by microtubules. Mol Ther 2006;13(2):422-8.
    [91]Dingwall C, Sharnick SV, Laskey RA. A polypeptide domain that specifies migration of nucleoplasmin into the nucleus. Cell 1982;30(2):449.
    [92]Benimetskaya L, Guzzo-Pernell N, Liu ST, et al. Protamine-fragment peptides fused to an SV40 nuclear localization signal deliver oligonucleotides that produce antisense effects in prostate and bladder carcinoma cells. Bioconjug Chem 2002; 13(2):177-87.
    [93]王殿丽.核定位信号结构特点及工作原理.中华实验和临床感染病杂志(电子版)2009(2):48-52.
    [94]赵元茵,王元忠,曹念,et al.核定位信号及其分析策略Chinese Journal of Biochemistry and Molecular Biology 2009;8:683-89.
    [95]Aitchison JD, Blobel G, Rout MP. Kap104p:a karyopherin involved in the nuclear transport of messenger RNA binding proteins. Science 1996;274(5287):624-7.
    [96]Lee BJ, Cansizoglu AE, Suel KE, et al. Rules for nuclear localization sequence recognition by karyopherin(32. Cell 2006;126(3):543-58.
    [97]Fagerlund R, Melen K, Kinnunen L, et al. Arginine/lysine-rich nuclear localization signals mediate interactions between dimeric STATs and importin alpha 5. J Biol Chem 2002;277(33):30072-8.
    [98]Krauer K, Buck M, Flanagan J, et al. Identification of the nuclear localization signals within the Epstein-Barr virus EBNA-6 protein. Journal of general virology 2004;85(1):165-72.
    [99]Harreman MT, Hodel MR, Fanara P, et al. The auto-inhibitory function of importin alpha is essential in vivo. J Biol Chem 2003;278(8):5854-63.
    [100]Mosammaparast N, Pemberton LF. Karyopherins:from nuclear-transport mediators to nuclear-function regulators. Trends Cell Biol 2004;14(10):547-56.
    [101]付爱玲,孙曼霁.核定位信号介导的细胞转运及其机制.中国药理学通报2003;19(10):1081-83.
    [102]Bear J, Tan W, Zolotukhin AS, et al. Identification of novel import and export signals of human TAP, the protein that binds to the constitutive transport element of the type D retrovirus mRNAs. Molecular and cellular biology 1999;19(9):6306-17.
    [103]Takizawa CG, Morgan DO. Control of mitosis by changes in the subcellular location of cyclin-Bl-Cdkl and Cdc25C. Current opinion in cell biology 2000;12(6):658-65.
    [104]Vasu SK, Forbes DJ. Nuclear pores and nuclear assembly. Current opinion in cell biology 2001;13(3):363-75.
    [105]Ribbeck K, Gorlich D. Kinetic analysis of translocation through nuclear pore complexes. The EMBO journal 2001;20(6):1320-30.
    [106]Conti E, Izaurralde E. Nucleocytoplasmic transport enters the atomic age. Current opinion in cell biology 2001; 13(3):310-19.
    [107]吴国清,朱旭东,刘娟,et al.多肽TAT与核定位信号介导的蛋白质入核递送.中国生物工程杂志2004;24(5).
    [108]Tkachenko AG, Xie H, Coleman D, et al. Multifunctional gold nanoparticle-peptide complexes for nuclear targeting. Journal of the American Chemical Society 2003;125(16):4700-01.
    [109]Chen JX, Wang HY, Quan CY, et al. Amphiphilic cationic lipopeptides with RGD sequences as gene vectors. Org Biomol Chem 2010;8(14):3142-8.
    [110]Wang HY, Chen JX, Sun YX, et al. Construction of cell penetrating peptide vectors with N-terminal stearylated nuclear localization signal for targeted delivery of DNA into the cell nuclei. J Control Release 2011; 155(1):26-33.
    [111]袁志栋,沈孝宙,李建凡,et al.核定位信号肽用于基因转移的研究进展.生命科学2004;16(001):49-54.
    [112]陈本科.核定位信号类短肽的生物医学应用.国际病理科学与临床杂志2009;29(4):312-17.
    [113]Preuss M, Tecle M, Shah I, et al. Comparison between the interactions of adenovirus-derived peptides with plasmid DNA and their role in gene delivery mediated by liposome-peptide-DNA virus-like nanoparticles. Organic & biomolecular chemistry 2003;1(14):2430-38.
    [114]陈妹,杨光,刘晓松,et al.靶向核定位序列siRNA对乙型肝炎病毒共价闭合环状DNA复制的抑制作用.广东医学2012;33(20):3036-39.
    [115]Notman R, den Otter WK, Noro MG, et al. The permeability enhancing mechanism of DMSO in ceramide bilayers simulated by molecular dynamics. Biophys J 2007;93(6):2056-68.
    [116]Notman R, Noro M, O'Malley B, et al. Molecular basis for dimethylsulfoxide (DMSO) action on lipid membranes. J Am Chem Soc 2006;128(43):13982-3.
    [117]Yu ZW, Quinn PJ. The modulation of membrane structure and stability by dimethyl sulphoxide (review). Mol Membr Biol 1998;15(2):59-68.
    [118]Shi Y, Liu X-H, Liang D-S, et al. The Transfection efficiency improvement of hrDNA targeting vectors with NLS peptide. Progress in Biochemistry and Biophysics 2009;36(10):1283-90.
    [119]Vandenbroucke RE, Lucas B, Demeester J, et al. Nuclear accumulation of plasmid DNA can be enhanced by non-selective gating of the nuclear pore. Nucleic Acids Res 2007;35(12):e86.
    [120]Plante I, Stewart MK, Laird DW. Evaluation of mammary gland development and function in mouse models. J Vis Exp 2011(53).
    [121]Kaskous S, Grun E, Gottschalk J, et al. [The behavior of lactogenic and steroid hormones in the blood of Awassi ewes in Syria during lactation]. Berl Munch Tierarztl Wochenschr 2003; 116(3-4):117-23.
    [122]Faulkner A. Changes in plasma and milk concentrations of glucose and IGF-1 in response to exogenous growth hormone in lactating goats. J Dairy Res 1999;66(2):207-14.
    [123]Pawlus B, Walczak M, Kordek A, et al. [Impact of delivery type on EGF and IGF-1 concentration in umbilical blood of newborns and their mothers' milk]. Ginekol Pol 2004;75(11):821-4.
    [124]Wagner CL, Forsythe DW. Effect of human milk and recombinant EGF, TGFalpha, and IGF-1 on small intestinal cell proliferation. Adv Exp Med Biol 2000;478:373-4.
    [125]Daxenberger A, Breier BH, Sauerwein H. Increased milk levels of insulin-like growth factor 1 (IGF-1) for the identification of bovine somatotropin (bST) treated cows. Analyst 1998;123(12):2429-35.
    [126]Esterle L, Sabatier JP, Guillon-Metz F, et al. Milk, rather than other foods, is associated with vertebral bone mass and circulating IGF-1 in female adolescents. Osteoporos Int 2009;20(4):567-75.
    [127]Ruan W, Kleinberg DL. Insulin-like growth factor I is essential for terminal end bud formation and ductal morphogenesis during mammary development. Endocrinology 1999;140(11):5075-81.
    [128]Zinovieva N, Lassnig C, Schams D, et al. Stable production of human insulin-like growth factor 1 (IGF-1) in the milk of hemi- and homozygous transgenic rabbits over several generations. Transgenic Res 1998;7(6):437-47.
    [129]Lee CS, Kim K, Yu DY, et al. An efficient expression of human growth hormone (hGH) in the milk of transgenic mice using rat beta-casein/hGH fusion genes. Appl Biochem Biotechnol 1996;56(3):211-22.
    [130]Hadsell DL, Greenberg NM, Fligger JM, et al. Targeted expression of des(1-3) human insulin-like growth factor I in transgenic mice influences mammary gland development and IGF-binding protein expression. Endocrinology 1996;137(1):321-30.
    [131]Burgos SA, Cant JP. IGF-1 stimulates protein synthesis by enhanced signaling through mTORC1 in bovine mammary epithelial cells. Domest Anim Endocrinol 2010;38(4):211-21.
    [132]Loladze AV, Stull MA, Rowzee AM, et al. Epithelial-specific and stage-specific functions of insulin-like growth factor-I during postnatal mammary development. Endocrinology 2006; 147(11):5412-23.
    [133]Forsyth IA, Gabai G, Morgan G. Spatial and temporal expression of insulin-like growth factor-I, insulin-like growth factor-II and the insulin-like growth factor-I receptor in the sheep fetal mammary gland. J Dairy Res 1999;66(1):35-44.
    [134]Monaco MH, Gronlund DE, Bleck GT, et al. Mammary specific transgenic over-expression of insulin-like growth factor-I (IGF-I) increases pig milk IGF-I and IGF binding proteins, with no effect on milk composition or yield. Transgenic Res 2005; 14(5):761-73.
    [135]Parker MH, Birck-Wilson E, Allard G, et al. Purification and characterization of a recombinant version of human alpha-fetoprotein expressed in the milk of transgenic goats. Protein Expr Purif 2004;38(2):177-83.
    [136]Wright G, Carver A, Cottom D, et al. High level expression of active human alpha-1-antitrypsin in the milk of transgenic sheep. Biotechnology (N Y) 1991;9(9):830-4.
    [137]Kang YK, Lee CS, Chung AS, et al. Prolactin-inducible enhancer activity of the first intron of the bovine beta-casein gene. Mol Cells 1998;8(3):259-65.
    [138]Yahyaoui MH. Genetic polymorphism in goat. Study of the kappa casein, the betalactlobulin and the coenzyme a desaturasegenes.2003.
    [139]Bevilacqua C, Helbling JC, Miranda G, et al. Translational efficiency of casein transcripts in the mammary tissue of lactating ruminants. Reprod Nutr Dev 2006;46(5):567-78.
    [140]Sleight SC, Bartley BA, Lieviant JA, et al. In-Fusion BioBrick assembly and re-engineering. Nucleic Acids Res 2010;38(8):2624-36.
    [141]Berrow NS, Alderton D, Sainsbury S, et al. A versatile ligation-independent cloning method suitable for high-throughput expression screening applications. Nucleic Acids Res 2007;35(6):e45.
    [142]Klock HE, White A, Koesema E, et al. Methods and results for semi-automated cloning using integrated robotics. Journal of structural and functional genomics 2005;6(2):89-94.
    [143]Yee D, Wood TL. The IGF system in mammary development and breast cancer. Preface. J Mammary Gland Biol Neoplasia 2008;13(4):351-2.
    [144]Capuco AV, Wood DL, Baldwin R, et al. Mammary cell number, proliferation, and apoptosis during a bovine lactation:relation to milk production and effect of bST. J Dairy Sci 2001;84(10):2177-87.
    [145]Lechardeur D, Lukacs GL. Intracellular barriers to non-viral gene transfer. Curr Gene Ther 2002;2(2):183-94.
    [146]Leong K, Mao H, Roy K, et al. DNA-polycation nanospheres as non-viral gene delivery vehicles. Journal of controlled release:official journal of the Controlled Release Society 1998;53(1-3):183.
    [147]Kamiya H, Tsuchiya H, Yamazaki J, et al. Intracellular trafficking and transgene expression of viral and non-viral gene vectors. Adv Drug Deliv Rev 2001;52(3):153-64.
    [148]Zhou M, Liu H, Xu X, et al. Identification of nuclear localization signal that governs nuclear import of BRD7 and its essential roles in inhibiting cell cycle progression. Journal of cellular biochemistry 2006;98(4):920-30.
    [149]Man N, Yu L, Zheng F, et al. Efficient gene transfer to rat fetal osteoblastic cells by synthetic peptide vector system. Protein Pept Lett 2009;16(4):368-72.
    [150]Ribbeck K, Gorlich D. The permeability barrier of nuclear pore complexes appears to operate via hydrophobic exclusion. EMBO J 2002;21(11):2664-71.
    [151]Brunner S, Sauer T, Carotta S, et al. Cell cycle dependence of gene transfer by lipoplex, polyplex and recombinant adenovirus. Gene Ther 2000;7(5):401-7.
    [152]Guillard EC, Tfayli A, Laugel C, et al. Molecular interactions of penetration enhancers within ceramides organization:A FTIR approach. European Journal of Pharmaceutical Sciences 2009;36(2):192-99.
    [153]Hewitt PG, Poblete N, Wester RC, et al. In vitro cutaneous disposition of a topical diclofenac lotion in human skin:effect of a multi-dose regimen. Pharm Res 1998;15(7):988-92.
    [154]Mittal A, Sara UV, Ali A, et al. The effect of penetration enhancers on permeation kinetics of nitrendipine in two different skin models. Biol Pharm Bull 2008;31(9):1766-72.
    [155]Li L, Shen W, Min L, et al. Human Iactoferrin transgenic rabbits produced efficiently using dimethylsulfoxide-sperm-mediated gene transfer. Reproduction, Fertility and Development 2006;18(6):689-95.
    [156]Brain KR, Green DM, Dykes PJ, et al. The role of menthol in skin penetration from topical formulations of ibuprofen 5% in vivo. Skin Pharmacol Physiol 2006; 19(1):17-21.
    [157]Ho HO, Chen LC, Lin HM, et al. Penetration enhancement by menthol combined with a solubilization effect in a mixed solvent system. J Control Release 1998;51(2-3):301-11.
    [158]Bremner KH, Seymour LW, Logan A, et al. Factors influencing the ability of nuclear localization sequence peptides to enhance nonviral gene delivery. Bioconjug Chem 2004; 15(1):152-61.
    [159]Jain PT, Gewirtz DA. Enhancement of liposomal gene delivery in human breast cancer cells by dimethyl sulfoxide. Int J Mol Med 1998;1(3):609-11.
    [160]Fiore M, Zanier R, Degrassi F. Reversible G1 arrest by dimethyl sulfoxide as a new method to synchronize Chinese hamster cells. Mutagenesis 2002; 17(5):419-24.
    [161]Escriou V, Carriere M, Bussone F, et al. Critical assessment of the nuclear import of plasmid during cationic lipid-mediated gene transfer. J Gene Med 2001;3(2):179-87.
    [162]Mir LM. Nucleic acids electrotransfer-based gene therapy (electrogenetherapy):past, current, and future. Mol Biotechnol 2009;43(2):167-76.
    [163]Ramezani A, Hawley RG. Strategies to insulate lentiviral vector-expressed transgenes. Methods Mol Biol 2010;614:77-100.
    [164]Sultana Y, Jain R, Aqil M, et al. Review of ocular drug delivery. Curr Drug Deliv 2006;3(2):207-17.
    [165]Wang H, Zhong CY, Wu JF, et al. Enhancement of TAT cell membrane penetration efficiency by dimethyl sulphoxide. J Control Release 2010;143(1):64-70.
    [166]Migita S, Hanagata N, Tsuya D, et al. Transfection efficiency for size-separated cells synchronized in cell cycle by microfluidic device. Biomed Microdevices 2011;13(4):725-9.
    [167]Srinivas S, Sironmani TA, Shanmugam G. Dimethyl sulfoxide inhibits the expression of early growth-response genes and arrests fibroblasts at quiescence. Experimental cell research 1991;196(2):279-86.
    [168]Arenal A, Pimentel R, Garcia C, et al. The SV40 T antigen nuclear localization sequence enhances nuclear import of vector DNA in embryos of a crustacean (< i> Litopenaeus schmitti). Gene 2004;337:71-77.
    [169]Medina-Kauwe L, Xie J, Hamm-Alvarez S. Intracellular trafficking of nonviral vectors. Gene Therapy 2005; 12(24):1734-51.
    [170]Xavier J, Singh S, Dean DA, et al. Designed multi-domain protein as a carrier of nucleic acids into cells. Journal of Controlled Release 2009; 133(2):154-60.
    [171]Dean D, Strong D, Zimmer W. Nuclear entry of nonviral vectors. Gene Therapy 2005;12(11):881-90.
    [172]Whitelaw CB, Farini E, Webster J. The changing role of cell culture in the generation of transgenic livestock. Cytotechnology 1999;31(1-2):3-8.
    [173]Ludtke JJ, Sebestyen MG, Wolff JA. The effect of cell division on the cellular dynamics of microinjected DNA and dextran. Mol Ther 2002;5(5 Pt 1):579-88.
    [174]Munkonge FM, Dean DA, Hillery E, et al. Emerging significance of plasmid DNA nuclear import in gene therapy. Adv Drug Deliv Rev 2003;55(6):749-60.
    [175]Zanta MA, Belguise-Valladier P, Behr J-P. Gene delivery:a single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus. Proceedings of the National Academy of Sciences 1999;96(1):91-96.
    [176]Kim BK, Kang H, Doh KO, et al. Homodimeric SV40 NLS peptide formed by disulfide bond as enhancer for gene delivery. Bioorg Med Chem Lett 2012;22(17):5415-8.
    [177]Yoo HS, Jeong SY. Nuclear targeting of non-viral gene carriers using psoralen-nuclear localization signal (NLS) conjugates. Eur J Pharm Biopharm 2007;66(1):28-33.
    [178]Sun ZM, Yu SZ, Zhang WZ, et al. [Expression vector for the inhibitor of growth-1 gene is constructed and the NLS-GFP fusion protein expresses in MRC-5 cells]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2006;23(3):330-2.
    [179]Subramanian A, Ranganathan P, Diamond SL. Nuclear targeting peptide scaffolds for lipofection of nondividing mammalian cells. Nat Biotechnol 1999;17(9):873-7.
    [180]van der Aa M, Koning G, van der Gugten J, et al. Covalent attachment of an NLS-peptide to linear dna does not enhance transfection efficiency of cationic polymer based gene delivery systems. J Control Release 2005;101(1-3):395-7.
    [181]van der Aa MA, Koning GA, d'Oliveira C, et al. An NLS peptide covalently linked to linear DNA does not enhance transfection efficiency of cationic polymer based gene delivery systems. J Gene Med 2005;7(2):208-17.
    [182]Branden LJ, Mohamed AJ, Smith CE. A peptide nucleic acid-nuclear localization signal fusion that mediates nuclear transport of DNA. Nature biotechnology 1999;17(8):784-87.
    [183]Tanimoto M, Kamiya H, Minakawa N, et al. No enhancement of nuclear entry by direct conjugation of a nuclear localization signal peptide to linearized DNA. Bioconjugate chemistry 2003;14(6):1197-202.
    [184]Matschke J, Bohla A, Maucksch C, et al. Characterization of Ku70(2)-NLS as bipartite nuclear localization sequence for non-viral gene delivery. PLoS One 2012;7(2):e24615.
    [185]Smith J, Guidry J, Wittung-Stafshede P. Novel "three-in-one" peptide device for genetic drug delivery. Protein Pept Lett 2003; 10(1):1-7.
    [186]Gasiorowski JZ, Dean DA. Mechanisms of nuclear transport and interventions. Adv Drug Deliv Rev 2003;55(6):703-16.
    [187]Ludtke JJ, Zhang G, Sebestyen MG, et al. A nuclear localization signal can enhance both the nuclear transport and expression of 1 kb DNA. Journal of cell science 1999; 112(12):2033-41.
    [188]Sebestyen F, Szendrei G, Mak M, et al. Coloured peptides:synthesis, properties and use in preparation of peptide sub-library kits. Journal of Peptide Science 1999;4(4):294-99.
    [189]Wildeman AG. Regulation of SV40 early gene expression. Biochem Cell Biol 1988;66(6):567-77.
    [190]Masuda T, Akita H, Harashima H. Evaluation of nuclear transfer and transcription of plasmid DNA condensed with protamine by microinjection:the use of a nuclear transfer score. FEBS letters 2005;579(10):2143.
    [191]Diaz-Mochon JJ, Bialy L, Watson J, et al. Synthesis and cellular uptake of cell delivering PNA-peptide conjugates. Chem Commun (Camb) 2005(26):3316-8.
    [192]Leahy P, Carmichael GG, Rossomando EF. Novel biotinylated plasmid expression vectors retain biological function and can bind streptavidin. Bioconjugate chemistry 1996;7(5):545-51.
    [193]Ciolina C, Byk G, Blanche F, et al. Coupling of nuclear localization signals to plasmid DNA and specific interaction of the conjugates with importin a. Bioconjugate chemistry 1999;10(1):49-55.
    [194]Boulanger C, Di Giorgio C, Vierling P. Synthesis of acridine-nuclear localization signal (NLS) conjugates and evaluation of their impact on lipoplex and polyplex-based transfection. European journal of medicinal chemistry 2005;40(12):1295-306.
    [195]Grosse S, Thevenot G, Monsigny M, et al. Which mechanism for nuclear import of plasmid DNA complexed with polyethylenimine derivatives? The journal of gene medicine 2006;8(7):845-51.
    [196]Braun K, von Brasch L, Pipkorn R, et al. BioShuttle-mediated plasmid transfer. Int J Med Sci 2007;4(5):267-77.
    [197]Mehier-Humbert S, Bettinger T, Yan F, et al. Ultrasound-mediated gene delivery:kinetics of plasmid internalization and gene expression. J Control Release 2005;104(1):203-11.
    [198]Cereghini S, Yaniv M. Assembly of transfected DNA into chromatin:structural changes in the origin-promoter-enhancer region upon replication. The EMBO journal 1984;3(6):1243.
    [199]Amiri Yekta A, Dalman A, Eftekhari-Yazdi P, et al. Production of transgenic goats expressing human coagulation factor IX in the mammary glands after nuclear transfer using transfected fetal fibroblast cells. Transgenic Res 2013;22(1):131-42.
    [200]Wan YJ, Zhang YL, Zhou ZR, et al. Efficiency of donor cell preparation and recipient oocyte source for production of transgenic cloned dairy goats harboring human lactoferrin. Theriogenology 2012;78(3):583-92.
    [201]van der Zee HH, Laman JD, Prens EP. Can animal skin diseases or current transgenic mice serve as a model for hidradenitis suppurativa? Dermatology 2012;225(1):9-13.
    [202]Miao X. Recent advances in the development of new transgenic animal technology. Cell Mol Life Sci 2013;70(5):815-28.
    [203]CHANG C-H, CHOU T-K, YANG C-Y, et al. Biodistribution and pharmacokinetics of transgenic pig-produced recombinant human factor IX (rhFIX) in rats. In Vivo 2008;22(6):693-97.
    [204]Maga E, Shoemaker C, Rowe J, et al. Production and processing of milk from transgenic goats expressing human lysozyme in the mammary gland. Journal of dairy science 2006;89(2):518-24.
    [205]An LY, Yuan YG, Yu BL, et al. Generation of human lactoferrin transgenic cloned goats using donor cells with dual markers and a modified selection procedure. Theriogenology 2012;78(6):1303-11.
    [206]Dean S. Transgenic animal mutation models:a review of the models and how they function. Methods Mol Biol 2012;817:377-97.
    [207]Deng S, Yu K, Zhang B, et al. Effects of over-expression of TLR2 in transgenic goats on pathogen clearance and role of up-regulation of lysozyme secretion and infiltration of inflammatory cells. BMC Vet Res 2012;8:196.
    [208]Giraldo AM, Ball S, Bondioli KR. Production of transgenic and knockout pigs by somatic cell nuclear transfer. Methods Mol Biol 2012;885:105-23.
    [209]Hong SG, Oh HJ, Park JE, et al. Production of transgenic canine embryos using interspecies somatic cell nuclear transfer. Zygote 2012;20(1):67-72.
    [210]Vajta G, Callesen H. Establishment of an efficient somatic cell nuclear transfer system for production of transgenic pigs. Theriogenology 2012;77(7):1263-74.
    [211]Yang X, Mao J, Walters EM, et al. Xenopus egg extract treatment reduced global DNA methylation of donor cells and enhanced somatic cell nuclear transfer embryo development in pigs. Biores Open Access 2012;1(2):79-87.
    [212]Qin M, Mo ZN, He M, et al. [Effects of strontium chloride activation on the cleavage rate and somatic cell nuclear transfer embryos in mice]. Zhonghua Nan Ke Xue 2012; 18(10):909-14.
    [213]Goissis MD, Suhr ST, Cibelli JB. Effects of donor fibroblasts expressing OCT4 on bovine embryos generated by somatic cell nuclear transfer. Cell Reprogram 2013;15(1):24-34.
    [214]Niemann H, Lucas-Hahn A. Somatic cell nuclear transfer cloning:practical applications and current legislation. Reprod Domest Anim 2012;47 Suppl 5:2-10.
    [215]Smith-Roe SL, Patel SS, Zhou Y, et al. Separation of intra-S checkpoint protein contributions to DNA replication fork protection and genomic stability in normal human fibroblasts. Cell Cycle 2013;12(2):332-45.
    [216]Ishii G, Hashimoto H, Asada K, et al. Fibroblasts associated with cancer cells keep enhanced migration activity after separation from cancer cells:a novel character of tumor educated fibroblasts. Int J Oncol 2010;37(2):317-25.
    [217]Kennedy JP, McCandless SP, Lasher RA, et al. The mechanically enhanced phase separation of sprayed polyurethane scaffolds and their effect on the alignment of fibroblasts. Biomaterials 2010;31(6):1126-32.
    [218]安晓荣,苟克勉,关宏,et al.卵丘细胞核移植技术生产克隆牛犊.中国科学C辑2002;32(1):69-76.
    [219]董雅娟.牛体细胞核移植技术.中国兽医学报2002;22(4):347-50.
    [220]张运海,潘登科,孙秀柱,et al.利用体细胞核移植技术生产表达绿色荧光蛋白的猪转基因克隆胚胎.中国科学:C辑2005;35(5):439-45.
    [221]潘登科,张莉,周艳荣,et al.体细胞核移植生产转ω-3脂肪酸去饱和酶基因sFat-1克隆猪.中国科学:C辑2009(3):295-302.
    [222]Clark A, Burl S, Denning C, et al. Gene targeting in livestock:a preview. Transgenic research 2000;9(4):263-75.
    [223]Tsunoda Y, Kato Y. Not only inner cell mass cell nuclei but also trophectoderm nuclei of mouse blastocysts have a developmental totipotency. Journal of reproduction and fertility 1998;113(2):181-84.
    [224]Zuk PA. The intracellular distribution of the ES cell totipotent markers OCT4 and Sox2 in adult stem cells differs dramatically according to commercial antibody used. Journal of cellular biochemistry 2009;106(5):867-77.
    [225]Tada M, Takahama Y, Abe K, et al. Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr Biol 2001;11 (19):1553-8.
    [226]Lee AY, Lloyd KC. Rederivation of transgenic mice from iPS cells derived from frozen tissue. Transgenic Res 2011;20(1):167-75.
    [227]Marques SC, Lemos R, Ferreiro E, et al. Epigenetic regulation of BACE1 in Alzheimer's disease patients and in transgenic mice. Neuroscience 2012;220:256-66.
    [228]Pandis I, Ospelt C, Karagianni N, et al. Identification of microRNA-221/222 and microRNA-323-3p association with rheumatoid arthritis via predictions using the human tumour necrosis factor transgenic mouse model. Ann Rheum Dis 2012;71(10):1716-23.
    [229]Brooks SP, Janghra N, Workman VL, et al. Longitudinal analysis of the behavioural phenotype in R6/1 (C57BL/6J) Huntington's disease transgenic mice. Brain Res Bull 2012;88(2-3):94-103.
    [230]Woychik RP, Alagramam K. Insertional mutagenesis in transgenic mice generated by the pronuclear microinjection procedure. Int J Dev Biol 1998;42(7):1009-17.
    [231]Hao YH, Yong HY, Murphy CN, et al. Production of endothelial nitric oxide synthase (eNOS) over-expressing piglets. Transgenic Res 2006;15(6):739-50.
    [232]Lai L, Kolber-Simonds D, Park KW, et al. Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 2002;295(5557):1089-92.
    [233]Wall RJ, Powell AM, Paape MJ, et al. Genetically enhanced cows resist intramammary Staphylococcus aureus infection. Nat Biotechnol 2005;23(4):445-51.
    [234]Kazmi SJ, Byer SJ, Eckert JM, et al. Transgenic mice overexpressing neuregulin-1 model neurofibroma-malignant peripheral nerve sheath tumor progression and implicate specific chromosomal copy number variations in tumorigenesis. Am J Pathol 2013;182(3):646-67.
    [235]Kong Q, Wu M, Huan Y, et al. Transgene expression is associated with copy number and cytomegalovirus promoter methylation in transgenic pigs. PLoS One 2009;4(8):e6679.
    [236]Zimonjic DB, Ullmannova-Benson V, Factor VM, et al. Recurrent and nonrandom DNA copy number and chromosome alterations in Myc transgenic mouse model for hepatocellular carcinogenesis:implications for human disease. Cancer Genet Cytogenet 2009;191(1):17-26.
    [237]Joshi M, Keith Pittman H, Haisch C, et al. Real-time PCR to determine transgene copy number and to quantitate the biolocalization of adoptively transferred cells from EGFP-transgenic mice. Biotechniques 2008;45(3):247-58.
    [238]Chandler KJ, Chandler RL, Broeckelmann EM, et al. Relevance of BAC transgene copy number in mice:transgene copy number variation across multiple transgenic lines and correlations with transgene integrity and expression. Mamm Genome 2007;18(10):693-708.
    [239]孔庆然,武美玲,朱江,et al.转基因猪中外源基因拷贝数和整合位点的研究.生物化学与生物物理进展2009(012):1617-25.
    [240]武美玲,朱江,郇延军,et al.转基因猪中外源基因拷贝数和整合位点的研究.
    [241]Babushok DV, Ostertag EM, Courtney CE, et al. L1 integration in a transgenic mouse model. Genome Res 2006;16(2):240-50.
    [242]Pillai MM, Venkataraman GM, Kosak S, et al. Integration site analysis in transgenic mice by thermal asymmetric interlaced (TAIL)-PCR:segregating multiple-integrant founder lines and determining zygosity. Transgenic Res 2008;17(4):749-54.
    [243]Wu B, Zhu ZY. [Integration sites of transgenes in transgenic animals]. Yi Chuan 2003;25(1):77-80.
    [244]Pillai MM, Venkataraman GM, Kosak S, et al. Integration site analysis in transgenic mice by thermal asymmetric interlaced (TAIL)-PCR:segregating multiple-integrant founder lines and determining zygosity. Transgenic research 2008;17(4):749-54.
    [245]谭贝贝,苏红,胡嘉祺,et al.转基因克隆牛外源基因整合位点的研究.中国农学通报2012;28(17):28-32.
    [246]吴波,朱作言.转基因动物整合位点的研究进展.遗传2003;25(1):77-80.
    [247]Liu YG, Mitsukawa N, Oosumi T, et al. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. The Plant Journal 1995;8(3):457-63.
    [248]Bender B, Bodrogi L, Mayer B, et al. Position independent and copy-number-related expression of the bovine neonatal Fc receptor alpha-chain in transgenic mice carrying a 102 kb BAC genomic fragment. Transgenic Res 2007;16(5):613-27.
    [249]Rahman MA, Hwang GL, Razak SA, et al. Copy number related transgene expression and mosaic somatic expression in hemizygous and homozygous transgenic tilapia (Oreochromis niloticus). Transgenic Res 2000;9(6):417-27.
    [250]Schob H, Kunz C, Meins F, Jr. Silencing of transgenes introduced into leaves by agroinfiltration: a simple, rapid method for investigating sequence requirements for gene silencing. Mol Gen Genet 1997;256(5):581-5.
    [251]李莉,李小平,任林柱,et al. hiTAIL-PCR技术鉴定转基因猪整合位点的研究.中国兽医学报2010;30(9):1235-38.
    [252]郑杰辉,林熠华,徐瑛,et al.实时荧光定量PCR检测转基因小鼠外源基因拷贝数方法的建立和应用.中国优生与遗传杂志2011;19(2):34-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700