用户名: 密码: 验证码:
基于圆柱螺旋样条的刀具轨迹模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
曲面的高精度高速度数控加工,要求刀具轨迹的插补算法稳定且计算量小。用NURBS曲线描述曲面的刀具轨迹时,插补点的位置、插补误差、进给速度等关键的插补数据与曲线的弧长之间没有直接的显式关系,插补计算量大,不适合高速实时运算;而用小直线段逼近曲面加工的刀具轨迹时,数据量大,段长小且不可避免频繁的跨段转接,速度波动和插补误差均难以控制。圆弧样条、圆柱螺旋样条、圆锥螺旋样条这一类曲线,不仅能以弧长为参数进行精确插补计算,同时相对小直线段而言,可以用较少的段数逼近刀具轨迹。因此本文提出用螺旋线段描述曲面数控加工的刀具轨迹,研究相应的刀具轨迹拟合及插补方法。
     研究了空间双螺旋线、单螺旋线插值以及单螺旋线与圆弧的混合插值三种插值算法,仿真验证了三种算法的有效性。提出了圆柱螺旋样条的试探插值逼近构造算法,该算法综合利用了插值、逼近的优点。分别用小直线段和圆柱螺旋样条拟合空间3次B样条,结果圆柱螺旋样条所用段数少,光滑程度高。
     研究了圆柱螺旋样条轨迹的连续插补以及速度控制技术,得到了圆柱螺旋线以弧长为参数的插补点坐标递推计算公式,公式简洁、精确;对插补弦高误差进行了理论分析和数值计算,找到了插补误差关于弧长的近似计算公式;从曲线的自然坐标系出发,推导了段内位移、速度、加速度的计算公式;研究了圆柱螺旋样条跨段插补时进给速度与转接误差控制以及确定转接点的算法,由于插补点与弧长一一对应,算法简单、稳定。
     通过大型船舰用螺旋桨叶片实例,分析、验证圆柱螺旋样条轨迹的建模以及插补算法。叶片用NURBS曲面表达,在每片叶片的10截面上,给定允许逼近误差0.001时分别得到2234段螺旋段以及6010段直线段;两种轨迹分别进行插补分析,圆柱螺旋样条每插补一个点运算耗时6.1μs,直线段耗时4.2μs,但是插补完同样长度的曲线段时螺旋样条耗时少;两种插补产生的轮廓误差相当,都小于一个脉冲当量;从两种插补的进给速度、最大偏差以及方差值三个方面比较发现螺旋样条插补的速度更平滑。对叶片截面上NURBS曲线直接插补,每插补一个点的运算时间为42.6μs,比圆柱螺旋样条和直线段插补计算时间长。
     设计了圆柱螺旋样条插补实验平台并验证了圆柱螺旋样条连续插补算法的有效性,与华中数控世纪星现有的小线段连续插补做了对比,实验结果与理论分析一致。通过非圆齿扇插齿、冰刀刃磨、圆柱和圆锥立铣刀刃磨三个实例探讨了圆弧样条、圆柱螺旋样条的应用。
To realize the high accuracy and high speed NC machining of surface, the tool-path interpolating algorithm should be simple and stable. When the tool-path of surface is represented with NURBS curves, the important interpolating data, such as the position of interpolating point, the interpolating error, the feed speed etc. have not direct and apparent relationship with the arc length of curves. In this case, the amount of calculation is too large to meet the real time interpolating computation. While the tool-path for surface machining are approximated by small straight line segments, the number of segments is large, the length of segments are short, and it is inevitable to transfer cross segments frequently in the continuous interpolation. So, it is difficult to control the feedrate waving and interpolating error. Circular arcs, cylindrical helixes and conic helixes splines etc. are not only real and accurate arc-length parameter curves but also tool-path can be approximated by their less segment number. Based on this kind of characteristics, a new tool trajectory expressed by cylindrical helix splines has been presented in NC surface machining, the methods of fitting and interpolating on cylindrical helix have also discussed in this dissertation.
     The interpolation method of spatial double cylindrical helix, single cylindrical helix and the blending interpolation between single cylindrical helix and arc have been studied, and the efficiencies of three methods have been tested by simulation. In order to construct the cylindrical helix splines, a new algorithm‘Try-Approximation-Interpolation’which assembles the strong points of interpolation and approximation has been presented. Approximated the cubic B splines with the little straight line segments and cylindrical helix segments by this method, the cylindrical helix splines have less segments and more smoothness.
     The method of real-time trajectory generation in NC machining and feed rate control in the continuous interpolation of cylindrical helix splines have been researched, and the recursive de-coupling interpolation formula has been deduced, the method is simple and efficient, and the chord error of real-time interpolation segment has also been studied theoretically and calculated numerically, we acquired an effective approximate formula. The formulae and profiles of acceleration/deceleration, velocity and displacement in one segment can be gained. A new control algorithm of corner speed within the given error and the computation of transfer point in the across segment interpolation has been presented. Because the interpolating points have close relationship with arc length, the algorithm is simple and stable.
     The methods of modeling and interpolating of helix splines have been researched and experimented by the large-scale marine propeller. Given the error of 0.001mm, we can get the helix splines of 2234 segments and the linear splines of 6010 segments on the ten sections of every piece blade. By contrast the interpolating calculation of two kinds of tool-path, we can find that every one interpolating point need 6.1μs for helix splines, and 4.2μs for linear segments, but helix splines consumes less time wholely. The contour errors made by two interpolations are equivalent, and less than one pulse equivalent. We can also find that the oscillation of feed rate of helix splines is smaller than linear segments from the maximum deviation and standard deviation. To interpolate this B-splines segment directly, every one interpolation point costs 42.6μs, it consumes much more.
     An experiment platform for validating the algorithm of space cylindrical helix splines interpolation has been designed. The efficiency of the interpolation algorithm for cylindrical helix splines has been testified. Comparation with the existed little straight lines segments continuous interpolation of Huazhong Century Star CNC from the consuming of interpolation time and velocity oscillation, the experiment results show the cylindrical helix splines is better. The practical applications of arc splines and cylindrical helix splines have been discussed, three practical examples, i.e. machining of non-circular gear sector, grinding of the blade curve of short track skates, the grinding of cylindrical and taper milling cutter show that cylindrical helix splines has a good application foreground.
引文
[1]陈吉红,李斌,朱志红等.由汉诺威EMO2005看数控系统的发展趋势及思考.世界制造技术与装备市场, 2006, (1):96~103
    [2]李志英,黄晓明,张伯霖.超高速加工技术发展现状及趋势.现代制造工程,2001,(11):71~72
    [3]宋秀玲.数控技术和装备发展趋势.吉林工程技术师范学院学报, 2005, 21(11):53~54
    [4]李宏胜.现代数控系统的技术特点与发展趋势.制造业自动化,2002,24(11):1~3
    [5] Liao Y S, Lin H M. Mechanism of minimum quantity lubrication in high-speed milling of hardened steel. International Journal of Machine Tools and Manufacture, 2007, (47):1660~1666
    [6] Tapie L, Mawussi K B, Anselmetti B. Circular tests for HSM machine tools: Bore machining application. International Journal of Machine Tools & Manufacture, 2007,(47):805~819
    [7] Wang D, Li C. Self-Adaptive Dynamic Matrix Control for High-Speed Machining Servo Control. Int J Adv Manuf Technol,2003, (21):733~738
    [8]李佳特.高精高速加工对CNC的要求.机电产品开发与创新.2003,(1):64
    [9]周凯,陆启建.高速高精度采样插补技术,中国机械工程, 1998, 9(10):15~18
    [10]汤志斌,唐小琦,李斌.数控高速高精运动控制方法的研究.制造技术与机床, 2003, (3):32~35
    [11]廖效果,刘又午.数控技术.武汉:湖北科学技术出版社, 2000
    [12] Erkormaz K, Altintas Y. High speed CNC system design. Part I: jerk limited trajectory generation and quintic spline interpolation, International Journal of Machine Tools and Manufacture, 2001, (41):1323~1345
    [13] Koren Y, Pasek Z J, Ulsoy A G. Real-time open control architectures and system performance, Annals CIRP, 1996, 45(1): 377~380
    [14]施法中.计算机辅助几何设计与非均匀有理B样条(CAGD&NURBS).第一版.北京.北京航空航天大学出版社, 1994
    [15]周会成.曲面的自组织重构与自引导加工方法的方法以及相关技术研究,华中科技大学博士后出站报告, 2004.
    [16] Ge Q J. Kinematics-driven geometric modeling: a framework for simultaneous NC tool-path generation and sculptured surface design. Proceedings of IEEEInternational Conference on Robotics and Automation, Minneapolis, 1996, 1819~1824
    [17]钟庆,李季,黄树槐.快速成型中的微线段连续高速高精度插补.华中理工大学学报, 2000, 28(3):39~41
    [18] Yellowley I, Pottier P. A note on a simple method for the improvement of interpolation accuracy in a general purpose, multiprocessor based motion controller. International Journal of Machine Tools & Manufacture, 1989, (29): 287~292
    [19] Yang L, Yellowley I. High-speed contouring using a novel dynamic interpolation mechanism. International Journal of Machine Tools & Manufacturing, 2001, (41):773~794
    [20] Yuan C. The optimal method of interpolation operation in NC- feeding according to the closest distance. International Journal of Machine Tools & Manufacture, 1987, 27(2):155~165
    [21] Yang M Y, Hong W P, Choi J Y. New interpolation algorithm for retrofitted NC, in: 3rd International Conference on Manufacturing Technology, Hong Kong, 1995, 362~367
    [22] Shima A, et al. 64-bit RISC-based Series 15 NURBS interpolation. FANUC Technical Review , 1996, 9(1): 23~28
    [23]李卫东,朱剑英,吴洪涛. B样条列表曲线直线插补的自适应算法.机械科学与技术, 1999, 18(1):86~88
    [24]王峰,王爱玲. B样条曲线的插补算法实现.华北工学院学报, 2001, 22(6):449~452
    [25]吴光琳等. B样条曲线的快速实时插补算法.模具工业, 2000, (10):14~16
    [26]邓勇. B样条曲线的实时插补.机械与电子, 2001, (4):23~24
    [27] Shpitalni M, Koren Y, Lo C C. Real-time Curve Interpolators. Computer-Aided Design, 1994, 26(11):832~838
    [28] Li J H. Development of a 5-axis CNC milling machine with an open-architecture controller and a real-time NURBS surface interpolator. The PH.D. Thesis of the University of Cansas. 2000
    [29] Jia J. Spline interpolation techniques for computer numerically controlled machining. The PH.D. Thesis of the University of UTAH. 1998
    [30] Yeung M K, Walton D J. Curve Fitting with Arc Splines for NC Tool Path Generation. Computer-Aided Design, 1994, 26(11): 845~849
    [31] Sata T, et al. A New Method of NC Interpolation for Machining the Sculptured Surface. Annals of the CIRP, 1981, 30(1): 369~372
    [32] Bedi S, Ali I, Quan N. Advanced Interpolation Techniques for NC Machines.Transactions of the ASME Journal of Engineering for Industry, 1993, 115(8): 329~336.
    [33] Wang F C, Scvhofield S, Wright P K. A Real Time Quintic Spline Interpolator for an Open Architecture Machine Tool. Proceedings of the ASME Dynamics Systems and Control Division, 1996, DSC-Vol. 58:291~298
    [34] Kiritsis D. High Precision Interpolation Algorithm for 3D Parametric Curve Generation. Computer-Aided Design, 1994, 26(11): 850~856
    [35] Chou J J, Yang D C H. On the Generation of Coordinated Motion of Five-Axis CNC/CMM Machines. Transactions of the ASME Journal of Engineering for Industry, 1992, 114(2): 15~22
    [36] Chou J J, Yang D C H. Command Generation for Three-Axis CNC Machining. Transactions of the ASME Journal of Engineering for Industry, 1991, 113(8): 305~310
    [37] Huang J T, Yang D C H. A Generalized Interpolator for Command Generation of Parametric Curves in Computer-Controlled Machines. Japan/USA Symposium on Flexible Automation, ASME 1992, (1): 393~399
    [38] Yang D C H, Kong T. Parametric Interpolator Versus Linear Interpolator for Command Generation in CNC Machining. ASME, Manufacturing Science and Engineering, 1993, PED-Vol. 64: 59~67
    [39] Koren Y, Lo C C, Shpitalni M. CNC Interpolators Algorithms and Analysis. ASME, Manufacturing Science and Engineering, 1993, PED-Vol. 64:83~92.
    [40] Chen Y, Ni J, Wu S. Real-time CNC tool path generation for machining IGES surfaces. ASME Journal of Engineering for Industry, 1993,(11):480-486
    [41]朱心雄.自由曲线曲面造型技术.北京:科学出版社, 2000
    [42] Farin G. A history of Curve and Surface in CAGD, In: Handbook of CAGD. Elsevier, 2002
    [43] Piegl L, Tiller W. Algorithm for approximate NURBS skinning. Computer-Aided Design, 1996, 28(9): 699~706.
    [44]李卫国,陈文亮,丁秋林.利用径向基函数重建飞机表面的Cp值曲面.计算机辅助设计与图形学学报, 2000, 12(2):101~104
    [45] Forrest A R. Lecture Notes on Computer-Aided Geometric Design and Computational Geometry, University of East Anglia, U.K., 1978
    [46] Zhang Q Y . Real-time NURBS curve trajectory generation for a robot using an open-architecture controller. The PH.D. Thesis of the Kansas University, 1994
    [47] Yeh S S, Hsu P L. The speed-controlled interpolator for machining parametric curves. Computer-Aided Design, 1999, 31(5): 349~357
    [48] Yong T, Narayanaswami R. A parametric interpolator with confined chord errors, acceleration and deceleration for NC machining. Computer-Aided Design, 2003, 35(13):1249~1259
    [49] Nam S, Yang M. A Study on a Generalized Parametric Interpolator with Real-time Jerk-limited Acceleration. Computer-aided Design, 2004, 36(1):27~36
    [50]周济,周艳红.数控加工技术.北京:国防工业出版社, 2002
    [51] Wang F C, Yang D C. Nearly arc-length parameterized quintic-spline interpolation for precision machining. Computer-Aided Design, 1993, 25(5):282~287
    [52] Erkorkmaz K. Optimal trajectory generation and precision tracking control for multi-axis machines. The PH.D. Thesis of the University of British Columbia, 2004
    [53] Fleisig R V. Motion command generation for multi-axismachining. The PH.D. Thesis of the McMaster University. 2000
    [54]周云飞.多坐标曲面加工直接插补算法和新型CNC系统研究.华中理工大学博士学位论文, 1993
    [55]刘可照,彭方瑜,吴昊等.基于机床动力学特性的NURBS曲线直接插补.机床与液压, 2004, (11):19~22
    [56]赵国勇.数控系统运动平滑处理、伺服控制及轮廓控制技术研究.大连理工大学博士学位论文, 2006
    [57]田锡天.五次样条在数控加工中的全过程应用技术,西北工业大学博士学位论文, 2003
    [58] Bolton K M. Biarc curves. Computer Aided Design, 1975,7(2): 89~92
    [59]苏步青,刘鼎元.计算几何,上海:上海科学技术出版社, 1981
    [60] Meek D S, Walton D J. Approximating quadratic NURBS curves by arc splines. Computer-Aided Design, 1993, (25): 371~376.
    [61] Meek D S, Walton D J. Approximation of quadratic Bézier curves by arc splines. Journal of Computational and Applied Mathematics, 1994, (54): 107~120.
    [62] Meek D S, Walton D J. Approximation of discrete data by G1 arc splines. Computer Aided Design, 1992, 24(6):301~306
    [63] Meek D S, Walton D J. Approximating smooth planar curves by arc splines. Journal of Computational and Applied Mathematics, 1995, (59):221~231
    [64] Marciniak K, Putz B. Approximation of spirals by piecewise curves of fewest circular arc segments. Computer Aided Design, 1984,16(2): 87~90
    [65] Ong C J, et al. An optimization approach for biarc curve-fitting of B-spline curves. Computer-Aided Design, 1996, 28(12):951~959
    [66] Yang Y N. Efficient circular arc interpolation based on active tolerance control.Computer- Aided Geometric Design, 2002, 34: 1037~1046
    [67] Yeung M, Walton D J. Curve fitting with arc splines for NC tool path generation. Computer Aided Design, 1994, 26(11):845~849
    [68] Rosin P L. A survey and comparison of traditional piecewise circular approximations to the ellipse. Computer Aided Geometric Design, 1999, 16:269~86
    [69] Vickers G W, Bradley C. Curved surface machining through circular arc interpolation. Comput lnd, 1992, 19:329~337
    [70] Lim F S, Wong Y S, Rahman M. Circular interpolators for numerical control: A comparison of the modified DDA techniques andan LSI interpolator. Computers in Industry, 1992, 18:41~52
    [71]邓春梅.自由曲面数字化建模和自组织拟合的研究.华中科技大学博士学位论文, 2001
    [72] Sun K, Qiao X. Descriptions of the Cylindrical Helix With NURBS. Transactions of Nanjing University of Aeronautics & Astronautics, 1997, 14(2):190~197
    [73] Mehlum E. Nonlinear splines. In: Barnhill R E, Riesenfeld R F eds. Computer Aided Geometric Design. New York: Academic Press, 1974. 173~207
    [74]王国瑾. KURGLA I逼近的收敛性.浙江大学学报, 1981, (3):92~99
    [75]王国瑾.圆柱螺线逼近及其收敛性定理.浙江大学学报, 1981, (3): 123~140
    [76]陈动人,王国瑾.基于非线性规划解的双圆柱螺旋样条的局部构造.工程图学学报, 2000, (3):76~82
    [77] Yang Y N. High accurancy approximation of helices by quintic curves. Computer- Aided Geometric Design, 2003, (20): 303~317
    [78] Chen H Y, Pottmann H. Approximation by ruled surfaces. Journal of Computional and applied Math. 1999, 102(1): 143~156
    [79] Pottmann H, Peternell M, Ravani B. Approximation in line space: applications in robot kinematics and surface reconstruction. In: Lenarcis J andHusty M eds. Advances in Robot Kinematics: Analysis and Control, Kluwer,1998, 403~412
    [80]张兴旺. CAGD中可展曲面设计和球域Bézier曲线的研究.浙江大学硕士学位论文, 2006
    [81]吕勇刚. CAGD自由曲线曲面造型中均匀样条的研究.浙江大学博士学位论文, 2002
    [82] Sharrock T J. Biarcs in three dimensions. In: R. Martin, editor, The Mathematics of. Surfaces II, Oxford University Press, 1987, 395~412.
    [83] Hoschek J. Circular splines. Computer Aided Design, 1992, 24(11): 611~618
    [84]胡来瑢.空间啮合原理及应用.北京:煤炭工业出版社, 1988
    [85]孙家广.计算机图形学.北京:清华大学出版社, 1998
    [86] Nutbournc A W, Martin R R. Differential Geometry Applied to Curve and Surface Design, Vol 1: Foundations. Ellis Horwood, England, 1988
    [87] Rossignac J R, Requicha A A. Piecewise-circular curves for geometric modeling. IBM Journal of Research and Development, 1987, 31(3): 296~313
    [88] Wang W, Joe B. Classification and properties of space biarcs. SPIE Conference Proceedings: Curves and Surfaces in Computer Vision and GraphicⅢ, Boston, 1992
    [89] Wang W P, Joe B. Robust computation of the rotation minimizing frame for sweep surface modeling. Computer-Aided Design, 1997, 29(5): 379~391
    [90]张三元,鲍虎军.三维数据点列的拟圆柱螺旋样条插值.计算机辅助设计与图形学学报, 1999, 11(6):490~492
    [91] Ding G L, Zhou H C, Chen J H. Cylindrical Helix Spline Approximation of Spatial Curves. International Journal of Plant Engineering and Management, 2007, 12(2): 69~78
    [92]孙家昶.局部坐标下的样条函数与圆弧样条曲线.数学学报, 1977, (20):28~40
    [93]祁欣,陆容.曲线的光顺与圆弧拟合.北京:国防工业出版社. 1978
    [94]罗良玲,曹苏明.基于时间分割法的阿基米德螺线的插补算法研究.南昌大学学报, 2002, 24(3):22~24
    [95]罗良玲,刘旭波.基于时间分割法的圆柱螺旋线直接插补算法研究.南昌大学学报, 2001, 23(4):57~60
    [96]张春良.时间分割法圆锥螺线插补算法.制造技术与机床, 2000,(5):52~53
    [97]叶佩青.微小直线段的连续插补控制算法研究.中国机械工程, 2004, 15(15):1354~1356
    [98] Sonja M. On-Line Smooth Trajectory Planning for Manipulators. The PH.D. Thesis of The University of New Brunswick, 1999
    [99] Richard V. Task Space Velocity for Real-Time Trajectory Generation. Proceedings of The IEEE International Conference on Robotics and Automation, Atlanta Georgia, May 1993
    [100]张得礼,周来水.数控加工运动的平滑处理.航空学报, 2006, 27(1):125~130
    [101]彭芳瑜,李黎,陈徐兵等.连续小直线段高速高精插补中的动力学约束条件.计算机辅助设计与图形学学报, 2006, 18(12):1812~1816
    [102] Altintas Y.数控技术与自动化.罗科学译.北京:化工工业出版社, 2002
    [103]徐志明,冯正进,汪永生等.连续微小路径段的高速自适应前瞻插补算法.制造技术与机床, 2003,(12):20~23
    [104]邹孝明.大型舰船用螺旋桨五轴加工技术研究.华中科技大学,硕士学位论文.2007.
    [105]丁国龙,陈吉红,周会成.直插齿加工过程的仿真与实时跟踪.工具技术, 2007, 41(4):54~56
    [106]丁国龙,陈吉红,周会成.基于圆弧样条的短道速滑冰刀刃磨.机械设计与制造, 2007, (5):98~100.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700