用户名: 密码: 验证码:
APPswe/PSldE9双转基因AD小鼠成年海马神经发生及微环境的调控机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿尔茨海默病(Alzheimer’s disease , AD)是一种中枢神经系统进行性变性疾病,临床症状可表现为进行性的认知损伤、注意力下降、记忆障碍、空间记忆缺失以及情绪失衡,生活自理能力丧失,严重危害着老年人的身体健康和生活质量。目前认为,AD是由遗传学因素、环境因素和代谢因素等多种因素,共同作用所引起的一种病理过程。其特征性病理改变为细胞外的老年斑(senile plaques,SP)沉积和神经元细胞轴突内的神经原纤维缠结,两者分别由β淀粉样蛋白(β-amyloid peptide, Aβ)和过度磷酸化的Tau蛋白组成。大量的研究证实,神经末梢的Aβ异常聚集可导致突触损伤和神经元的退行性病变。海马作为与学习记忆、空间认知等高级功能密切关联的重要脑区,也是AD病程中受累及的主要脑区之一。对海马病变的病理机制的深入研究必将有助于我们全面认识AD并为治疗提供有力线索。
     近年来,成年神经发生已在鸟类、爬行类、啮齿类、灵长类包括人类的不同种属间得到证实。一般认为,成年哺乳动物脑内的神经发生限于侧脑室的室下区和海马齿回(dentate gyrus,DG)的颗粒下区(subgranular zone,SGZ)。SGZ新生的神经元能迁移到颗粒细胞层并分化为成熟的颗粒神经元。海马是公认的与学习记忆相关的结构,而DG是海马回路的重要通路,与海马相关的学习任务训练能增加成年大鼠新生神经元数量。以学习记忆、认知功能障碍等为特征的AD病变中,成年海马神经发生是否异常以及其机制研究,这是近年来的研究热点。以往在不同AD病人和动物模型的研究中,观察到的海马成年神经发生出现增强或减弱的两种截然相反的报道。我们认为这种不一致性主要是由于AD患病人群的种群差异,家族性早发性AD与散发性AD的相关基因的表达差异,以及动物模型的遗传背景、动物品系等差异。
     目前对成年海马神经发生的调控机制的研究表明,局部微环境或者壁龛(Niche)控制神经发生。对神经干细胞(neural stem cells,NSCs)微环境的认识,在理解NSCs如何增殖、分化,最终整合到成熟的神经环路中有重要提示。从分子机制的角度看,有几个重要的微环境成分被提出。其中骨形成蛋白(bone morphogenetic protein,BMPs)和拮抗蛋白Noggin,已被证实是NSCs微环境的关键组成成分。BMP4是转化生长因子β蛋白家族中的一员,BMPs和它们的调节基因与早期胚胎发生相关,在细胞分化中起重要的的定向诱导作用。BMP4和noggin在出生后和成年中枢神经系统表达,提示BMP4和Noggin是NSCs正常分化所需微环境的关键成分,并可能在成年神经发生中也发挥重要的调控作用。已有的研究证实,Noggin与BMPs共同调控成年脑内室下区NSCs的分化。室下区室管膜细胞表达Noggin,拮抗BMPs信号作用而促进神经元产生。由此推测,室管膜通过产生Noggin来封闭内源性BMPs信号,为邻近的室下区干细胞提供有利于神经发生的微环境。Noggin和BMP4在出生后大鼠海马SGZ增殖区有表达。对于APPswe/PS1dE9转基因小鼠,成年海马齿状回NSCs的增殖与分化是否正常,神经发生异常与组织病变有无关联,微环境中有哪些重要信号分子参与成年海马神经发生,目前尚缺乏相关报道。另外,老年斑内Aβ1-42蛋白与活化的星形胶质细胞同样作为AD脑内微环境的重要组分之一,是否也参与了海马NSCs的“命运”转归的调控?机制怎样?我们推测,BMP4/Noggin、Aβ、星形胶质细胞在分子水平与细胞水平参与AD海马NSCs的异常成年神经发生的调节。
     本研究主要的实验内容:
     1. APPswe/PS1dE9小鼠成年海马神经发生水平下降。
     运用BrdU标记方法来观察APPswe/PS1dE9小鼠海马DG区神经干细胞的神经发生情况,并进一步观察APPswe/PS1dE9小鼠Morris水迷宫空间学习记忆行为及其特征性脑组织病理学变化。探讨APPswe/PS1dE9小鼠成年神经发生异常及其病理学、行为学的关联。结果显示:APPswe/PS1dE9小鼠在成年及老年期的海马神经发生水平下降。能够模拟AD主要病理特征的Aβ沉积、星形胶质细胞活化的老年斑结构,但无显著神经元丢失。老年期存在空间学习记忆能力障碍。结果提示,APPswe/PS1dE9小鼠成年海马神经发生下降与海马区Aβ淀粉样斑块的不断聚集存在显著的相关性。Aβ淀粉样蛋白可能参与了AD成年神经发生的异常。
     2. BMP4、Noggin分子参与调节APPswe/PS1dE9小鼠成年海马神经发生。
     采用原位杂交与免疫组化方法,观察APPswe/PS1dE9小鼠海马区BMP4和Noggin在mRNA和蛋白水平的表达情况,并且运用侧脑室注射Noggin蛋白来进一步观察海马区NSCs的增殖与分化的改变。探讨BMP4和Noggin在APPswe/ PS1dE9小鼠海马区的表达及其与成年海马神经发生的潜在联系。结果显示:BMP4 mRNA和蛋白质的高表达,Noggin的mRNA和蛋白质的低表达,都具有年龄依赖性,且二者之间具有显著的相关性。首次发现APPswe/PS1dE9小鼠海马BMP4的高表达与海马齿状回NSCs增殖能力的下降具有正相关性。Noggin的低表达与海马齿状回NSCs增殖能力的下降具有负相关性。并且运用Noggin嵌合蛋白拮抗BMP4作用,可促进APPswe/PS1dE9小鼠海马NSCs的增殖与分化。结果提示BMP4与Noggin可能协同参与海马神经发生的调控。
     原代分离纯化小鼠海马神经干细胞,添加不同浓度BMP4细胞因子,观察BMP4对NSCs的增殖与分化的影响。结果显示BMP4能抑制海马NSCs增殖,抑制其向神经元分化。进一步采用Noggin重组腺病毒感染神经干细胞,再加入BMP4细胞因子,以观察Noggin对NSCs的增殖和分化的影响。结果显示Noggin通过拮抗BMP4的作用,能有效促进海马NSCs的增殖,并促进其向神经元分化。
     3. Aβ、星形胶质细胞参与对海马神经干细胞增殖与分化的调控。
     成功分离原代星形胶质细胞和原代小鼠海马神经干细胞,利用Transwell共培养体系,分别观察Aβ、星形胶质细胞对NSCs的增殖与分化的影响。结果显示:在体外培养条件下,Aβ42蛋白和星形胶质细胞均可有效的诱导NSCs的细胞迁移,显著促进NSCs的细胞增殖与神经分化,但是以胶质分化为主。结果提示Aβ、星形胶质细胞可能在AD某一病程阶段,发挥正性作用,参与神经干细胞增殖与分化的调节。
     综上所述,本研究首次发现APPswe/PS1dE9小鼠的成年海马神经发生下降,这种异常发生状态与BMP4、Noggin在成年海马区的异常表达以及协同作用机制有密切关联。并经体外实验证实老化聚集的Aβ蛋白和活化的星形胶质细胞可以激发神经干细胞的增值与分化。这些结果提示了成年海马神经发生的下降可能是导致AD病变发生发展的重要机制之一,微环境因素也积极参与了干细胞巢神经发生的调控。本研究不仅更加深入的认识了AD成年海马神经发生的可能机制,而且为我们这些调控环节中寻求新的AD治疗靶点提供了更多理论知识。
Alzheimer’s disease (AD), the most common neurodegenerative disorder and cause of dementia and memory loss in the elderly, is neuropathologically marked by the extracellular deposits of beta amyloid (Aβ) plaques,and the intracellular neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau protein. Neurologically, it is initially manifested as a series of mild cognitive impairments, deficits in short-term memory, loss of spatial memory, and emotional imbalances.Several lines of evidence have suggested that the abnormal accumulation of Aβoligomers at nerve terminals in AD can lead to the synaptic damage and ultimately to neurodegeneration. More recent studies have uncovered evidence that neurodegenerative processes taking place in AD may include interference with neurogenesis in the hippocampal formation. The hippocampus is regarded as one of the most important region associated with the learning and memory,and also as the major damaged region in AD.So,the intensive investigation of the pathogenesis in the hippocampus of AD would help us to know more about AD.
     Adult hippocampus neurogenesis has been confirmed in birds, reptiles, rodents, and primates, including humans. Adult neurogenesis has consistently been found in the subventricular zone (SVZ) of the lateral ventricle and in the hippocampal subgranular zone. Throughout adulthood, stem cells in the subgranular zone (SGZ) of the dentate gyrus generate neuroblasts that migrate into the inner granule cell layer and differentiate into new granule cells. A critical feature of adult neurogenesis is that stem cell proliferation and cell migration are spatially restricted to a specific permissive environment . Previous reports have suggested that perturbations of neurogenesis can lead to functional changes in the hippocampus. Such findings have focused attention on the status of hippocampal neurogenesis in individuals with AD. Some studies have reported a decline in neurogenesis in AD brain, while others have reported increased neurogenesis; no clear consensus has yet emerged. Moreover, in transgenic animal models of AD, clear evidence has been presented of perturbed neurogenesis with both decreases and increases being reported.The differences in the human population of AD patients,the difference in expression of the AD-related gene between the family early-onset AD and dispersed AD,the differences in the genetic background of the mouse model of AD,all these differences might account for these contradictory results mentioned above.
     Much effort has been made on the molecular mechanisms that regulate adult hippocampal neurogenesis in recent years. Stem cell self-renewal and progenitor differentiation is regulated by the specialized microenviroment-or“niche”-in which these cells reside. Such niches are composed of soluble factors as well as membrane bound molecules and extracellular matrix (ECM). Adult SVZ cells themselves produce bone morphogenetic proteins (BMPs) and their receptors. Noggin, a secreted BMP antagonist, is strongly expressed in ependymal cells. Noggin encodes a BMP antagonist that binds with high affinity to BMP2/4; it is thought to bind to other BMPs but with lower affinity. Noggin binding to BMPs inhibits their activation of BMP receptors. It has been demonstrated that noggin antagonizes BMP4 to create a niche for subventricular zone neurogenesis.Precise control of BMP4 signaling in the extracellular space appears to play a critical role in multiple events during development, including neural induction,tissue patterning, epithelial- mesenchymal interactions, and in the creation of stem cell "niches" in developing and adult organs. BMPs and Noggin are known to play important roles in the brain, including the regulation of neural induction and of the stem cell“niche”in adult organs. Previous reports showed that both Noggin and BMP4 are expressed in the proliferative SGZ of postnatal rats; an antisense Noggin oligodeoxynucleotide was found to decrease cell proliferation in the dentate gyrus (DG) of adult rats. Increased BMP4 expression in the hippocampal DG might therefore contribute to the decrease in cell proliferation in the DG of the APP/PS1 transgenic mouse model. Although experimental evidence demonstrates that BMP can modulate dentate neurogenesis under pathological conditions, little is known of the role that Noggin might play in this process. On the other hand,the Aβand activated astrocyte in the senile plaques, also act as the important composition of the microenvironment in the brain of AD.Whether and how are involved in the regulation of neural stem cells in the hippocampus? So,we hypothesis that the BMP4/Noggin,the Aβand astrocytes are involved in the modulation of the adult hippocampal neurogenesis of AD at the molecular and cellular levels.
     To test this hypothesis , the experiments were designed as followed:
     1. Decreased adult neurogenesis in hippocampus of the APPswe/PS1dE9 mouse model of Alzheimer’s disease.
     BrdU labeled technique is applied to observe the status of the adult hippocampal neurogenesis in the APPswe/PS1dE9 mouse model of AD. Then, the capability of spatial learning and memory was tested by the Morris water maze,and the classical pathological changes were also tested.All these research were designed to explore the relationship among the adult hippocampal neurogenesis, the behavior and the pathogenesis.The data showed that adult hippocampal neurogenesis is decreased.The brain of this AD mouse is defined as the Aβdeposition and activated astrocyte,while no neural loss was observed yet.The mouse also showed a deficit of the spatial recognition. These results implied an intensive correlation among the abnormal adult neurogenesis and the progressive deposition of Aβpalques,and the possibility of the Aβpeptides involved the abnormal adult hippocampal neurogenesis.
     2. Involvement of BMP4 and Noggin in the regulation of the adult hippocampal neurogenesis in the APPswe/PS1dE9 mouse model of AD.
     The in situ hybridization(ISH) and immonuhistochemistry are used to examine that expression of BMP4 and Noggin in hippocampal DG region at the mRNA and protein levels respectively,and the Noggin/Fc chimera were injected into the lateral ventricle to investigate the role of the Noggin played in the proliferation and differentiation of the neural stem cells(NSCs) in the DG of hippocampus. We planed to explore the possible relationship between the expression of BMP4/Noggin and the adult hippocampal neurogenesis. The results showed that the higher expression of BMP4 and lower expression of Noggin are proved to be age dependent,and obviously to be correlated with each other. We firstly reported that there existed a significant positive correlation between the higher expression of BMP4 and the decreased expression of the adult neurogenesis,and also a significant negative correlation between the lower expression of Noggin and the decreased expression of the adult neurogenesis.The application of the antagonism of the Noggin to BMP4 would promote the proliferation and differentiation of the hippocampal NSCs.These might imply that BMP4 and Noggin might co-modulate the adult neurogenesis.
     We isolated and purified the hippocampal NSCs of mouse and added different dosage of the BMP4 into the cultural medium of NSCs to observe the influence of BMP4 on the proliferation and differentiation of the hippocampal NSCs.The data showed that the BMP4 inhibited the proliferation and differentiation of the hippocampal NSCs,and inhibited its differentiation in neurons. The Noggin- recombinated Adenovirus was used to infect the NSCs to prove the effect of Noggin on the proliferation and differentiation of the hippocampal NSCs.Results showed that Noggin could effectively promote the proliferation and differentiation of the hippocampal NSCs,and help the induction of neuronal differentiation.
     3. Involvement of the Aβand astrocyte in the modulation of the proliferation and differentiation of the hippocampal NSCs.
     The mouse primary astrocytes were isolated and co-cultured with astrocyte in Transwell system.The aged Aβ1-42 peptides were also used to test the induced migration of the mouse NSCs and the proliferation,neural differentiation of NSCs.The in vitro study demonstrates that the aged Aβ1-42 peptides could induce the significant migration of hippocampal NSCs compared with the NS control group,and the astrocyte combined with the aged Aβ1-42 peptides could promote the percentage of the S phase in the cell cycle. The flow cytometry(FCM) also showed more proliferative NSCs,and enhance the differentiation of NSCs in vitro,although the NSCs-drived astroglia accounted for most of the new born cells. We might hypothesis that the Aβand astrocyte might play a positive role in the regulation of the proliferation,neural differentiation of NSCs under early pathological process of AD.
     In conclusion, the present study indicates the adult hippocampal neurogenesis in the APPswe/PS1dE9 mouse model of AD is decreased,and this status is significantly associated with the abnormal expression of BMP4 and Noggin in the hippocampal DG region.The in vitro study also proved that the aged- Aβand astrocyte might activate the proliferation and differentiation of NSCs..All results demonstrated that the decreased adult hippocampal neurogenesis might be responsible for the development of pathogenesis of AD.The microenvironmental factors are also involved in the regulation of the adult neurogenesis in the neural stem cell niche. Our study support us with more knowledge about the possible mechanism of the adult hippocampal neurogenesis in AD,and also suggest a prospect for the endogenous NSCs therapy for AD in future.
引文
1. Yaari R, Corey-Bloom J. Alzheimer's disease. Semin Neurol, 2007, 27(1):32-41
    2. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics[J].Science,2002,297(5580): 353- 356.
    3. Walsh DM, Klyubin I, Fadeeva JV, et al. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo . Nature,2002, 416(6880): 535- 539.
    4. Reynolds BA,Weiss S.Generation of neurons and astrocytes from isolated cell of the adult mammalian central nervous systemScience,1992,255(5052): 1707-171
    5. Richards LJ,Kilpatrick TJ,Bartlett PF.De novo generation of neuronal cells fromthe adultmouse brain.Proc Natl Acad Sci USA,1992,89(18):8591-859
    6. Alvarez-Buylla A, Garcia-Verdugo JM. Neurogenesis in adult subventricular zone. J. Neurosci, 2002,22:629-34
    7. Kokaia Z, Lindvall O. Neurogenesis after ischaemic brain insults. Curr Opin Neurobiol, 2003 , 13(1): 127-32.
    8. Karin Van der B,Peter M,Paul GM L,Bart JLE and Eddy A Van der Zee.Effects of active shock avoidance learning on hippocampal neurogenesis and plasma levels of corticosterone. Behavioural. Brain Research , 2005,157(1): 23-30
    9. Shors TJ, Miesegaes G, Beylin A, Zhao M, Rydel T, Gould E. Neurogenesis in the adult is involved in the formation of trace memories. Nature,2001,410 (6826):314- 317.
    10. Fiona Doetsch. A niche for adult neural stem cells. Current opinion in genetics & development, 2003,13: 543-550
    11. Moore K.A. and Lemischka I.R.. Stem cells and their niches. Science,2006, 311:1880-1885
    12. Fan X, Xu H, Cai W, Yang Z, Zhang J.Spatial and temporal patterns of expression of Noggin and BMP4 in embryonic and postnatal rat hippocampus.Developmental Brain Research.2003, 146( 1-2): 51-58
    13. Donovan MH, Yazdani U, Norris RD. Decreased adult hippocampal neurogenesis inthe PDAPP mouse model of Alzheimer's disease. J Comp Neurol, 2006 Mar 1,495(1): 70-83
    14. Jin K, Peel AL, Mao XO, et al. Increased hippocampal neurogenesis in Alzheimer's disease. Proc Natl Acad Sci U S A. 2004 Jan 6,101(1):343-7
    15. Jin K, Galvan V, Xie L, et al. Enhanced neurogenesis in Alzheimer's disease transgenic (PDGF-APPSw, Ind) mice. Proc Natl Acad Sci U S A. 2004 Sep 7,101(36): 13363-13367.
    16. Jin K, Peel AL, Mao XO, et al. Increased hippocampal neurogenesis in Alzheimer’s disease. Proc Natl Acad Sci U S A 2004, 101: 343-347
    17. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science, 2002,297(5580): 353-356.
    18. Kawasumi M , Hashimoto Y, Chiba T , et al . Molecular mechanisms for neuronal cell death by Alzheimer’s amyloid precursor protein - relevant insults[M] . Neurosignals , 2002 :236 - 250.
    19. Alvarez-Buylla A, Garcia-Verdugo JM. Neurogenesis in adult subventricular zone. J. Neurosci, 2002,22:629–634.
    20. Gage FH. Mammalian neural stem cells. Science, 2000,287:1433–1438
    21. Kempermann G, Gage FH. Neurogenesis in the adult hippocampus. Novartis.Found. Symp, 2000,231:220–235.
    22. Miguel A. L′opez-Toledano,Michael L. Shelanski. Increased Neurogenesis in Young Transgenic Mice Overexpressing Human APPSw,Ind .Journal of Alzheimer’s Disease,2007,12:229–240
    23. Jun He, Fulton T. Crews. Neurogenesis decreases during brain maturation from adolescence to adulthood Pharmacology, Biochemistry and Behavior,2007,86: 327–333
    24. Jankowsky JL; Fadale DJ; Anderson J; Xu GM; Gonzales V; Jenkins NA; Copeland NG; Lee MK; Younkin LH; Wagner SL; Younkin SG; Borchelt DR. Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for augmentation of a 42-specific gamma secretase. Hum Mol Genet 2004. 13(2): 159-70.
    25. Janus C, D’Amelio S,Amitay O , et a l . Spatial learning in transgenic mice expressing human presenilin 1 (PS1) transgenes. Neurobiol Aging, 2000,21:541-549
    26. Groo tendo rst J , de Kloet ER,Dalm S, et a l . Reversal of cognitive deficit of apolipoprotein E knockout mice after repeated exposure to a common environmental experience. Neuroscience, 2001,108(2):237-247
    27. Glabe C. Intracellular mechanisms of amyloid accumulation and pathogenesis in Alzheimer’s disease. J Mol Neurosci, 2001,17(2):137-145
    28. Yankner BA, Lu T。Amyloid beta-protein toxicity and the pathogenesis of Alzheimer disease. J Biol Chem. 2009 Feb 20;284(8):4755-9
    29. Price DL, Tanzi RE, Borchelt DR, et al. Alzheimer's disease: genetic studies and transgenic models. Annu Rev Genet, 1998,32:461-93
    30. Glenner GG, Wong CW. Alzheimer’s disease :initial report of the pubilication and characterization of a novel cerebrovascular amyloid protein. Biochem.Biophys. Res. Commun, 1984,120:885 - 890
    31. Sherrington R, Rogaev EI, Liang Y,et al . Cloning of a gene bearing missense mutations in early - onset familial Alzheiner’s disease. Nature, 1995,375:754-760
    32. Levy - Lahad E, Wasco W, PoorKaj P ,et al. Candidate ene for the chromosome 1 familial Alzheimer’s disease locus. Science, 1995,269:973-977
    33. Hook V, Schechter I, Demuth HU, Hook G. Alternative pathways for production of beta-amyloid peptides of Alzheimer's disease. Biol Chem. 2008 Aug 8
    34. Venugopal C, Demos CM, Rao KS, Pappolla MA, Sambamurti K. Beta-secretase: structure, function, and evolution. CNS Neurol Disord Drug Targets. 2008 Jun;7(3): 278-94
    35. McCarthy JV, Twomey C, Wujek P. Presenilin-dependent regulated intramembrane proteolysis and gamma-secretase activity. Cell Mol Life Sci. 2009 Feb 4
    36. Liauw J , Nguyen V , Huang J , et al. Differential display analysis of presenilin 1-deficient mouse brains. Brain Res Mol Brain Res, 2002,109:56-62
    37. BorcheltDR1Metabolism of p resenilin 1: influence of presenilin 1 on amyloid p recursor p rotein p rocessing1Neurobiol Aging, 1998; 19 (1 Supp l) : S15 - 18
    38. Lalonde R, Kim HD, Fukuchi K. Exploratory activity, anxiety, and motor coordination in bigenic APPswe + PS1/⊿ E9 mice. Neurosci Lett. 2004 Oct 14,369(2):156-61
    39. Jankowsky JL; Fadale DJ; Anderson J; Xu GM; Gonzales V; Jenkins NA; Copeland NG; Lee MK; Younkin LH; Wagner SL; Younkin SG; Borchelt DR. Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for augmentation of a 42-specific gamma secretase. Hum Mol Genet 2004. 13(2): 159-70.
    40. Kowalska A. Genetic basis of neurodegeneration in familial Alzheimer’s disease . Pol J Pharmacol , 2004 , 56 (2) : 171 -178.
    41. CitronM,Westaway D, XiaW, et al. Mutant p resenilins of Alzheimer′s disease increase p roduction of 422residue amyloid beta2p rotein in both transfected cells and transgenic mice. NatMed, 1997, 3 (1) : 67-72.
    42. Eriksson PS, Perfilieva E, Bj?rk-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH. Neurogenesis in the adult human hippocampus. Nat. Med. 1998, 4(11):1313-1317
    43. Morris RG, Garrud P, Rawlins JN, O'Keefe J.Place navigation impaired in rats with hippocampal lesions. Nature, 1982 Jun 24,297(5868):681-3
    44. Jankowsky JL, Fadale DJ, Anderson J,et al. Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for augmentation of a
    42-specific gamma secretase. Hum Mol Genet. 2004 Jan 15,13(2):159-70
    45. Wyss-Coray T, Loike JD, Brionne TC, et al. Adult mouse astrocytes degrade amyloid-beta in vitro and in situ. Nat Med, 2003,9(4):453-7
    46. Irizarry MC, Soriano F, McNamara M, et al. Aβdeposition is associated with neuropil changes, but not with overt neuronal loss in the human amyloid precursor protein V717F (PDAPP) transgenic mouse. J Neurosci, 1997,17:7053–7059
    47. Takeuchi A, Irizarry MC, Duff K, et al. Age-related amyloid beta deposition in transgenic mice overexpressing both Alzheimer mutant presenilin 1 and amyloid beta precursor protein Swedish mutant is not associated with global neuronal loss. Am J Pathol, 2000,157(1):331-9
    48. Gomez-Isla T, Hollister R, West H, et al.Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. Ann Neurol 1997,41:17–24
    49. West MJ, Coleman PD, Flood DG, Troncoso JC: Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer’s disease. Lancet, 1994,344:769–772
    50. Terry RD, Masliah E, Salmon DP, et al.Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol, 1991,30:572–580
    51. Gomez-Isla T, Price JL, McKeel DW Jr, et al. Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. J Neurosci, 1996,16: 4491–4500
    1. Elima K.Osteo inductive proteins.Ann Med,1993,25(4):395-402.
    2. Pathi S,Rutenberg JB,Johnson RL;et al. Interaction of Ihh and BMP/Noggin signaling during cartilage differentiation. Dev Biol, 1999,209(2): 239-253.
    3. Lim DA,TrAmontin AD ,Trevejo JM,et al.Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron, 2000,28(3):713-726.
    4. Palm K, Salin-Nordstrom T, Levesque MF, Neuman T. Fetal and adult human CNS stem cells have similar molecular characteristics and developmental potential. Brain Res Mol Brain Res, 2000,78(1-2):192-195.
    5. Fan XT, Xu HW, Cai WQ,et al.Antisense Noggin oligodeoxynucleotide administration decreases cell proliferation in the dentate gyrus of adult rats. Neurosci Lett.2004, 366(1): 107-111
    6. Haughey NJ,Nath A,Chan SL,et al.Disruption of neurogenesis by amyloid beta-peptide,and perturbed neural progenitor cell homeostasis,in models of Alzheimer's disease.J Neurochem,2002, 83(6): 1509-24
    7. Donovan MH,Yazdani U,Norris RD. Games D, German DC, Eisch AJ. Decreased adult hippocampal neurogenesis in the PDAPP mouse model of Alzheimer's disease.J Comp Neurol,2006,495(1): 70-83
    8. Jin K,Galvan V,Xie L,et al.Enhanced neurogenesis in Alzheimer’s disease transgenic (PDGF-APPSw,Ind) mice.Proc Natl Acad Sci U S A 2004,101:13363–13367
    9. Jin K,Peel AL,Mao XO,et al.Increased hippocampal neurogenesis in Alzheimer’s disease.Proc Natl Acad Sci U S A 2004,101:343–347
    10. Stottmann RW, Berrong M, Matta K, Choi M, Klingensmith J. The BMP antagonist Noggin promotes cranial and spinal neurulation by distinct mechanisms.Dev Biol.2006 ,295(2):647-63
    11. Heldin C.H., Miyazono K., Dijke P. ten, TGF-beta signalling from cell membrane to nucleus through SMAD proteins, Nature 390 (1997)465–471.
    12. Xiao YT, Xiang LX, Shao JZ. Bone morphogenetic protein. Biochemical andBiophysical Research Communications,2007, 362:550-553.
    13. Zimmerman, L.B., De Jesus-Escobar, J.M., and Harland, R.M. The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell,1996,86:599-606.
    14. Mark Wijgerde, Seth Karp, Jill McMahon, Andrew P. McMahon. Noggin antagonism of BMP4 signaling controls development of the axial skeleton in the mouse. Developmental Biology, 2005,286:149- 157.
    15. Shannon W. Davis, Sally A. Camper. Noggin regulates Bmp4 activity during pituitary induction Developmental Biology,2007,305:145-160
    16. Zhu W, Kim J, Cheng C., Rawlins BA., Oheneba Boachie-Adjei,Ronald G. Crystal, Hidaka C. Noggin regulation of bone morphogenetic protein (BMP) 2/7 heterodimer activity in vitro. Bone,2006,39: 61-71.
    17. Valenzuela DM, Economides AN, Rojas E, Lamb TM, Nunez L, Jones P, Lp NY, Espinosa R 3rd, Brannan CI, Gilbert DJ, et al. Identification of mammalian Noggin and its expression in the adult nervous system.J Neurosci. 1995,15: 6077-6084
    18. Fan X, Xu H, Cai W, Yang Z, Zhang J. Spatial and temporal patterns of expression of Noggin and BMP4 in embryonic and postnatal rat hippocampus.Brain Res Dev. 2003;146(1-2):51-58
    19. Fan XT, Xu HW, Cai WQ,et al.Antisense Noggin oligodeoxynucleotide administration decreases cell proliferation in the dentate gyrus of adult rats. Neurosci Lett.2004, 366(1): 107-111
    1. GrittiA, Vescovi AL, Galli R·Adult neural stem cells: plasticity and developmental potential·J PhysiolParis, 2002, 96: 81-9
    2. Arturo Alvarez-Buylla and Daniel A. Lim. For the long run: maintaining Germinal Niches in the Adult Brain. Neuron, 2004,Vol. 41, 683–686.
    3. Paradis E,Douilard H,Koutroumanis M,et al.Amyloid beta peptide of Alzheimer' s disease downregulates Bcl-2 and upregulates Bax expression in human neurons.J Neurosci,1996;16:7533-7539
    4. Tortosa A,Lopez E,Ferrer I.Bcl-2 and Bax protein expression in Alzheimer' s disease.Acta Neuropathol Berl,1998;95:407-41
    5. Fiala M,Zhang L,Gan X,et al.Amyloid-beta induces chemokine secretion and monocyte migration across a human blood-brain bar-rier model.Mol Med,1998, 4(7):480-489
    6. Behl C,Davis JB,Lessley R,et al.Hydrogen peroxide mediates amyloidβprotein toxity.Cell,1994;77:817-82
    7. Laure Verret, Joanna L. Jankowsky,Guilian M. Xu,David R. Borchelt,Claire Rampon. Alzheimer’s-Type Amyloidosis in Transgenic Mice Impairs Survival of Newborn Neurons Derived from Adult Hippocampal Neurogenesis. Journal of Neuroscience, 2007, 27(25):6771– 6780
    8. Kim AS, Pleasure SJ. Expression of the BMP antagonist Dan during murine forebrain development.Brain Res Dev Brain Res. 2003;145(1):159-62
    9. Groppe J, Greenwald J, Wiater E, et al. Structural basis of BMP signalling inhibition by the cystine knot protein Noggin. Nature, 2002, 420(6916):636-642
    10. Anderson RM, Stottmann RW, Choi M, Klingensmith J. Endogenous bone morphogenetic protein antagonists regulate mammalian neural crest generation and survival.Dev Dyn. 2006;235(9):2507-20
    11. Spradling A,Drummond-Barbos D,KaI t.Stem cells find their niche. Nature,2001,414:98-104
    12. Fuchs E,Tumbar T,Guasch G.Socializing with the neighbors:stem cells and their niche.Cell,2004,116:769-778
    13. Doetsch F,Scharff C.Challenges for brain repair:insights from adult neurogenesis in birds and mammals.Brain Behav Evol,2001,58(5):306-32
    14. Lim DA, Alvarez-Buylla A: Interaction between astrocytes and adult subventricular zone precursors stimulates neurogenesis. Proc Natl Acad Sci USA 1999, 96:7526-7531.
    15. Song H, Stevens CF, Gage FH. Astroglia induce neurogenesis from adult neural stem cells[J].Nature,2002,417(6884):39-4
    16. Ullian EM,Sapperstein SK,Christopherson KS,et al.Control of synapse number by glia.Science,2001,291(5504):657-66
    17. Song HJ, Stevens CF, Gage FH: Neural stem cells from adult hippocampus develop essential properties of functional CNS neurons. Nat Neurosci 2002, 5:438-445.
    18. Toda H, Takahashi J, Mizoguchi A, Koyano K, Hashimoto N:Neurons generated from adult rat hippocampal stem cells form functional glutamatergic and GABAergic synapses in vitro. Exp Neurol 2000, 165:66-76.
    19. Dengke K Ma, Guo-li Ming and Hongjun Song. Glial influences on neural stem cell development:cellular niches for adult neurogenesis. Current Opinion in Neurobiology 2005, 15:514–520
    20. Haughey NJ , Liu D , Nath A , et al . Disruption of neurogenesis in the subvent ricular zone of adult mice ,and in human cortical neuronal precursor cells in culture , by amyloid beta2peptide : implications for the pathogenesis of Alzheimer’s disease . Neuromolecular Med ,2002 ,1 (2) :125-135.
    21. Heo C , Chang KA , Choi HS , et al . Effect s of the monomeric , oligomeric , and fibrillar Abeta (42) peptides on the proliferation and differentiation of adult neural stem cells f rom subvent ricular zone . J Neurochem , 2007 ,102 (2) :493-500.
    22. López2Toledano MA , Shelanski ML. Neurogenic effect ofβ2Amyloid peptide in the development of neural stem cells . J. Neurosci , 2004 , 24 ( 23 ) :5439-5444.
    1. Gross CG. Neurogenesis in the adult brain:death of a dogma.Nat. Rev. Neurosci,2000,1:67-73.
    2. Reynolds BA and Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 1992, 255(5052): 1707-1710.
    3. Reynolds BA, Tetzlaff W, Weiss S. A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J Neurosci. 1992 ,12(11): 4565-4574.
    4. Eriksson PS, Perfilieva E, Bj?rk-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH. Neurogenesis in the adult human hippocampus. Nat Med. 1998,4(11): 1313-1317.
    5. Lie DC, Song H, Colamarino SA, Ming GL, Gage FH. Neurogenesis in the adult brain: new strategies for central nervous system diseases. Annu Rev Pharmacol Toxicol, 2004,44:399-421.
    6. Kaneko N., Sawamoto K. Adult neurogenesis and its alteration under pathological conditions. Neurosci. Res. 63(2009)155-164.
    7. Abdipranoto A., Wu S., Stayte S., Vissel B.. The role of neurogenesis in neurodegenerative diseases and its implications for therapeutic development. CNS Neurol. Disord. Drug Targ. 2008,7:187-210.
    8. Gould E, Reeves AJ,Graziano MSA,Gross CG..Neurogenesis in the neocortex of adult primates. Science, 1999, 286:548-552.
    9. Kornack DR, Rakic P.Continuation of neurogenesis in the hippocampus of the adult macaque monkey.Proc Natl Acad Sci USA,1999,96(10): 5768-5773.
    10. Miller G. New neurons strive to fit in. Science, 2006 ,311(5763):938-940.
    11. Christine Y. Brazel and Mahendra S. Rao. Aging and neuronal replacement. Ageing Research Reviews,2004,3:465-483.
    12. Altman J, Das GD. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp. Neurol, 1965,124:319-335.
    13. Altman J. Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J Comp Neurol. 1969,137(4):433-57.
    14. Thomas LB, Gates MA,Steindler DA.Young neurons from the adult subependymal zone proliferate and migrate along an astrocyte, extracellular matrix- rich pathway. Glia,1996,17:1-14.
    15. Nacher J,Crespo C,McEwen BS. Doublecortin expression in the adult rat telencephalon. Eur J Neurosci, 2001,14: 629—644.
    16. Ng K.L. Dependence of olfactory bulb neurogenesis on prokineticin 2 signaling. Science, 2005,308:1923-1927.
    17. Eriksson PS, Perfilieva E, Bjork-Eriksson T, et al. Neurogenesis in the adult human hippocampus. Nat. Med, 1998, 4:1313-1317.
    18. Wen PH, Hof PR, Chen X, et al. The presenilin-1 familial Alzheimer disease mutant P117L impairs neurogenesis in the hippocampus of adult mice. Exp Neurol, 2004,188(2):224-237.
    19. Kempermann G, Gast D, Kronenberg G, Yamaguchi M, Gage FH. Early determination and long-term persistence of adult-generated new neurons in the hippocampus of mice. Development, 2003,130:391–399.
    20. Van Praag H, Schinder AF, Christie BR, et al. Functional neurogenesis in the adult hippocampus. Nature, 2002, 415:1030-1034.
    21. Jones SP, Rahimi O, O’Boyle MP, et al. Maturation of granule cell dendrites after mossy fiber arrival in hippocampal field CA3. Hippocampus, 2003,13:413-427.
    22. Lois, C. and Alvarez-Buylla, A.Long-distance neuronal migration in the adult mammalian brain. Science 1994,264:1145-1148.
    23. Levison, S.W., Romanko, M.J., Rothstein, R.P., Snyder, M.J., Hypoxia/ischemia eliminates progenitors, but not stem cells from the perinatal subventricular zone: Consequences for brain development. Dev. Neurosci. 2002.24:459.
    24. Bruel-Jungerman E, Davis S, Rampon C, Laroche S. Long-term potentiation enhances neurogenesis in the adult dentate gyrus. J Neurosci. 2006,26(22): 5888-5893.
    25. Chun SK, Sun W, Park JJ, Jung MW. Enhanced proliferation of progenitor cells following long-term potentiation induction in the rat dentate gyrus. Neurobiol Learn Mem. 2006 ,86(3):322-329.
    26. Snyder JS, Kee N, Wojtowicz JM. Effects of adult neurogenesis on synaptic plasticity in the rat dentate gyrus. J Neurophysiol. 2001,85(6):2423-2431.
    27. Kuhn HG, Dickinson-Anson H, Gage FH. Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci. 1996,16(6):2027-2033.
    28. Schauwecker PE. Genetic influence on neurogenesis in the dentate gyrus of two strains of adult mice. Brain Res. 2006 ,1120(1):83-92.
    29. Kempermann G, Kuhn HG, Gage FH. Genetic influence on neurogenesis in the dentate gyrus of adult mice. Proc Natl Acad Sci U S A. 1997,94(19):10409-114
    30. Kempermann G, Gage FH. Genetic influence on phenotypic differentiation in adult hippocampal neurogenesis. Dev. Brain Res. 2002,134(1-2):1-12.
    31. Perfilieva E, Risedal A, Nyberg J, Johansson BB, Eriksson PS. Gender and strain influence on neurogenesis in dentate gyrus of young rats. J Cereb Blood Flow Metab. 2001,21(3):211-217.
    32. Veena J, Srikumar BN, Mahati K, Bhagya V, Raju TR, Shankaranarayana Rao BS. Enriched environment restores hippocampal cell proliferation and ameliorates cognitive deficits in chronically stressed rats. Neurosci Res. 2009 ,87(4):831-843.
    33. Nilsson M, Perfilieva E, Johansson U, Orwar O, Eriksson PS. Enriched environment increases neurogenesis in the adult rat dentate gyrus and improves spatial memory. J Neurobiol. 1999 ,39(4):569-578.
    34. Kempermann G, Kuhn HG, Gage FH. Experience-induced neurogenesis in the senescent dentate gyrus. J Neurosci. 1998 ,18(9):3206-3212.
    35. Kempermann G, Kuhn HG, Gage FH. More hippocampal neurons in adult mice living in an enriched environment. Nature. 1997,386(6624):493-495.
    36. Brown J, Cooper-Kuhn CM, Kempermann G, Van Praag H, Winkler J, Gage FH, Kuhn HG. Enriched environment and physical activity stimulate hippocampal but not olfactory bulb neurogenesis. Eur J Neurosci. 2003 ,17(10):2042-2046
    37. Gould E, Tanapat P, Hastings NB, Shors TJ. Neurogenesis in adulthood: a possible role in learning. Trends Cogn Sci. 1999,3(5):186-192.
    38. Gould E, Beylin A, Tanapat P, Reeves A, Shors TJ. Learning enhances adult neurogenesis in the hippocampal formation. Nat Neurosci. 1999,2(3):260-265.
    39. Ambrogini P, Cuppini R, Cuppini C, Ciaroni S, Cecchini T, Ferri P, Sartini S, Del Grande P. Spatial learning affects immature granule cell survival in adult rat dentate gyrus. Neurosci Lett. 2000,286(1):21-24.
    40. Suhonen JO, Peterson DA, Ray J,Gage FH. Differentiation of adult hippocampus- derived progenitors into olfactory neurons in vivo. Nature, 1996, 383:624-627.
    41. Gage FH, Coates PW, Palmer TD, Kuhn HG, Fisher LJ, Suhonen JO, Peterson DA, Suhr ST, Ray J. Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain. Proc Natl Acad Sci U S A. 1995,92(25): 11879-11883.
    42. Shihabuddin LS, Horner PJ, Ray J, Gage FH. Adult spinal cord stem cells generate neurons after transplantation in the adult dentate gyrus. J. Neurosci, 2000,20: 8727-8735.
    43. Lie DC, Dziewczapolski G,Willhoite AR, et al. The adult substantia nigra contains progenitor cells with neurogenic potential. J. Neurosci, 2002, 22:6639-6649.
    44. Arturo Alvarez-Buylla and Daniel A. Lim. MinirevieFor the Long Run: Maintaining Germinal Niches in the Adult Brain. Neuron, Vol. 41, 683–686, March 4, 2004,
    45. K.A. Moore, I.R. Lemischka, Stem cells and their niches,Science 311 (2006) 1880-1885.
    46. Song H, Stevens CF, Gage FH. Astroglia induce neurogenesis from adult neural stem cells. Nature, 2002,417:39-44.
    47. Song HJ, Stevens CF, Gage FH. Neural stem cells from adult hippocampus develop essential properties of functional CNS neurons. Nat. Neurosci, 2002, 5:438-445.
    48. Barkho BZ, Song H, Aimone JB, Smrt RD, Kuwabara T, Nakashima K, Gage FH, Zhao X. Identification of astrocyte-expressed factors that modulate neural stem/progenitor cell differentiation. Stem Cells Dev. 2006 ,15(3):407-421.
    49. Ortega S, Ittmann M, Tsang SH, Ehrlich M, Basilico C. Neuronal defects and delayed wound healing in mice lacking fibroblast growth factor 2 .Proc Natl Acad Sci U S A.1998,95(10):5672-5677.
    50. Wagner JP, Black IB, DiCicco-Bloom E. Stimulation of neonatal and adult brain neurogenesis by subcutaneous injection of basic fibroblast growth factor. J Neurosci. 1999,19(14):6006-6016.
    51.刘柏炎,黎杏群,张花先.海马干细胞的分离、培养与鉴定.中国现代医学杂志,2002 ,12(19) :21 - 23.
    52. Ozawa K, Seo M, Imamura T. A quantitative method for evaluation of FGF family and FGF receptor family gene expression by RT - PCR.Brain Res Protoc,1997,1:211-216.
    53. Vaccarino FM, Sxhwartz ML ,Raballo R , et al . Changes in cerebral cortex size are govemed by fibroblnst growth factor during embryogenesis. Nat. Neurosci , 1999,2 :246-253.
    54. Yoshimura S , Takagi Y, Harada J. FGF-2 regulation of neurogenesis in adult hippocampus after brain injury. Proc Natl Acad Sci.USA,2001,98(10) :5 874-5879.
    55. Aberg MA ,Aberg ND , Eviksson PS , et al. Peripheral infusion of IGF2I selectively induces neurogenesis in the adult rat hippocampus. J Neurosci ,2000 ,20:2896-2903.
    56. Mairet-Coello G, Tury A, DiCicco-Bloom E. Insulin-like growth factor-1 promotes G(1)/S cell cycle progression through bidirectional regulation of cyclins and cyclin-dependent kinase inhibitors via the phosphatidylinositol 3-kinase/Akt pathway in developing rat cerebral cortex. J Neurosci. 2009,29(3):775-788.
    57. Patima T ,Nicholas BH ,Alison J , et al . Estrogen stimulates a transient increase in the number of new neurons in the dentate gyrus of the adult female rat . J Neurosci,1999,19:5792-5801.
    58. Alvarez-Buylla A, Lim DA. For the long run: maintaining germinal niches in the adult brain. Neuron , 2004,41(5):683 -686.
    59. Hata A, Seoane J, Lsgna G, Tsukazaki T, et al. OZA use distinct DNA - and p rotein -binding zinc fingers in separate BMP - Smadand Olf signaling pathways . Cell, 2000,100 (4):229-240.
    60. Yabe T, Samuels I, Schwartz JP. Bone morphogenetic proteins BMP26 and BMP27 have differential effects on survival and neurite outgrowth of cerebellar granule cellneurons. J Neurosci. Res, 2002, 15:161-168.
    61. BachillerD , Klingensmith J, Kemp C , et al. The organizer factors Chordin and Noggin are required for mouse forebrain development. Nature ,2000, 403(6770): 658-661.
    62. Fan XT, Xu HW, Cai WQ, et al. Spatial and temporal patterns of expression of Noggin and BMP4 in embryonic and postnatal rat hippocampus. Dev Brain Res, 2003, 146 (1- 2):51-58.
    63. Lim DA,Tramontin AD,Trevejo JM, Herrera DG, Garcia-Verdugo JM, Alvarez- Buylla A. Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron, 2000,28:713-726.
    64. Moon RT, Bowerman B, BoutrosM, et al. The p romise and perils of Wnt signaling through beta-catenin. Science, 2002, 296(5573):1644 -1646.
    65. Nelson WJ, Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways. Science, 2004, 303(5663):1483-1487.
    66. Lie DC, Colamarino SA, Song HJ, et al.Wnt signalling regulates adult hippocampal neurogenesis. Nature, 2005,437(7063):1370-1375.
    67. Yu JM, Kim JH, Song GS, Jung JS. Increase in Proliferation and Differentiation of Neural Progenitor Cells Isolated from Postnatal and Adult Mice Brain by Wnt-3a and Wnt-5a. Mol. Cell Biochem. 2006,288(1-2):17-28.
    68. Willert K, Brown JD, Danenberg E, et al. Wnt proteins are lipid modified and can act as stem cell growth factors. Nature,2003, 423 (6938): 448-452.
    69. Oliveira AA , J r , Hodges HM. Alzheimer’s disease and neural transplantation as prospective cell t herapy. Curr Alzheimer Res ,2005 , 2 (1) :79-95.
    70. Haughey NJ, Nath A, Chan SL, et al.Disruption of neurogenesis by amyloid beta-peptide, and perturbed neural progenitor cell homeostasis, in models of Alzheimer's disease. J Neurochem, 2002,83(6):1509-1524.
    71. Feng R, Rampon C, Tang YP, et al. Deficient neurogenesis in forebrain-specific presenilin-1 knockout mice is associated with reduced clearance of hippocampal memory traces. Neuron, 2001,32:911–926.
    72. Wen PH, Shao X, Shao Z, et al. Overexpression of wild type but not an FAD mutantpresenilin-1 promotes neurogenesis in the hippocampus of adult mice. Neurobiol Dis, 2002,10:8-19.
    73. Dong H, Goico B, Martin M, et al. Modulation of hippocampal cell proliferation, memory, and amyloid plaque deposition in APPsw (Tg2576) mutant mice by isolation stress. Neuroscience, 2004,127:601-609
    74. Wang R, Dineley KT, Sweatt JD, Zheng H. Presenilin 1 familial Alzheimer’s disease mutation leads to defective associative learning and impaired adult neurogenesis. Neuroscience, 2004,126:305–312.
    75. Donovan MH, Yazdani U, Norris RD, et al. Decreased adult hippocampal neurogenesis in the PDAPP mouse model of Alzheimer's disease. J Comp Neurol, 2006,495(1):70-83.
    76. German DC, Eisch AJ. Mouse models of Alzheimer’s disease: insight into treatment. Rev Neurosci, 2004,15:353–369 .
    77. Haughey NJ, Nath A, Chan SL, et al.Disruption of neurogenesis by amyloid beta-peptide, and perturbed neural progenitor cell homeostasis, in models of Alzheimer's disease. J Neurochem, 2002,83(6):1509-1524.
    78. Donovan MH, Yazdani U, Norris RD, et al. Decreased adult hippocampal neurogenesis in the PDAPP mouse model of Alzheimer's disease. J Comp Neurol, 2006,495(1):70-83.
    79. Mattson MP. Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol Rev, 1997,77:1081-1132.
    80. Pike CJ, Burdick D, Walencewicz AJ, Glabe CG, Cotman CW. Neurodegeneration induced by beta-amyloid peptides in vitro: the role of peptide assembly state. J Neurosci, 1993,13:1676–1687.
    81. Luo Y, Sunderland T, Roth GS, Wolozin B. Physiological levels of beta-amyloid peptide promote PC12 cell proliferation. Neurosci Lett, 1996, 217:125-128.
    82. Donovan MH, Yazdani U, Norris RD, et al. Decreased adult hippocampal neurogenesis in the PDAPP mouse model of Alzheimer's disease. J Comp Neurol, 2006,495(1):70-83.
    83. Selkoe DJ, Schenk D. 2003. Alzheimer’s disease: molecular understanding predictsamyloid-based therapeutics. Annu Rev Pharmacol Toxicol, 43: 545-584.
    84. Cleary JP, Walsh DM, Hofmeister JJ, et al. Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function. Nat Neurosci, 2005, 8:79–84.
    85. German DC, Yazdani U, Speciale SG, et al. Cholinergic neuropathology in a mouse model of Alzheimer’s disease. J Comp Neurol, 2003, 462:371–381.
    86. Monje ML, Toda H, Palmer TD. Inflammatory blockade restores adult hippocampal neurogenesis. Science, 2003,302:1760–1765.
    87. Cooper-Kuhn CM, Winkler J, Kuhn HG. Decreased neurogenesis after cholinergic forebrain lesion in the adult rat. J Neurosci Res, 2004, 77:155–165.
    88. Jin K, Peel AL, Mao XO, et al. Increased hippocampal neurogenesis in Alzheimer's disease. Proc Natl Acad Sci U S A, 2004,101(1):343-7.
    89. Jin K, Galvan V, Xie L, et al. Enhanced neurogenesis in Alzheimer's disease transgenic (PDGF-APPSw, Ind) mice. Proc Natl Acad Sci U S A, 2004, 101(36): 13363-13367.
    90. Kelleher Andersson J . Discovery of neurogenic,Alzheimer’s disease t herapeutics. Curr Alzheimer Rer , 2006,3 (1) :55-62.
    91. Agrawal S , Schaffer DV. In situ stem cell t herapy : novel target s , familiar challenges. Trends Biotechnol , 2005 , 23 (2) :78-83
    92. Jin K, Sun Y, Xie L , et al . Neurogenesis and aging : FGF22 and HB2EGF restore neurogenesis in hippocampus and subventricular zone of aged mice. Aging Cell , 2003,2 (3):175-183.
    93. Butovsky O , Koronyo2hamaoui M , Kunis G, et al . Glatirameracetate fight s against Alzheimer’s disease by inducing dendritic-like growth factor 1. Proc Natl Acad Sci USA,2006,103(31)::11784-11789.
    94. Billings LM , Green KN , McGaugh JL , et al . Learning Decreases Aβ56 and Tau Pat hology and Ameliorates Behavioral Decline in 3x Tg2AD Mice. J Neuroswci ,2007,27(4) :751-761.
    95. Lazarov O , Robinson J , Tang YP , et al . Environmental enrichment reduces Abeta levels and amyloid deposition in t ransgenic mice. Cell,2005,120 (5):701-713.
    96. van Praag H , Shubert T , Zhao C , et al . Exercise enhances learning andhippocampal neurogenesis in aged mice. J Neurosci ,2005,25 (38):8680-8685.
    97. Rockenstein E , Mante M , Adame A , et al . Effects of Cerebrolysintrade mark on neurogenesis in an APP transgenic model of Alzheimer’s disease. Acta Neuropat hol (Berl ) ,2007,113(3):265-275.
    98. Kruman II , Mouton PR , Emokpae R J r , et al . Folate deficiency inhibit s proliferation of adult hippocampal progenitors. Neuroreport,2005,16 (10): 1055- 1059.
    99. Brinton RD , Wang JM. Preclinical analyses of t he t herapeutic potential of allopregnanolone to promote neurogenesis in vitro and in vivo in t ransgenic mouse model of Alzheimer’s disease.Curr Alzheimer Res,2006,3(1):11-17.
    100. Mohapel P , Leanza G, Kokaia M , et al . Forebrain acetylcholine regulates adult hippocampal neurogenesis and learning. Neurobiol Aging,2005,26 (6):939-946.
    101. Kaneko N , Okano H , Sawamoto K. Role of t he cholinergic system in regulating survival of newborn in t he adult mouse dentate gyrus and olfactory bulb. Genes Cells ,2006 ,11(10):1145-1159.
    102. Becker M , Lavie V , Solomon B. Stimulation of endogenous neurogenesis by anti-EFRH immunization in a t ransgenic mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA,2007,104(5):1691-1696.
    103. Rizk P , Salazar J , Raisman-Vozari R , et al . The alpha2-adrenoceptor antagonist dexefaroxan enhances hippocampal neurogenesis by increasing the survival and differentiation of new granulecells. Neuropsychopharmacology,2006,31(6):1146 -1157.
    104. Mattson MP , Maudslyey S , Martin B. BDNF an 52HT : a dynamic duo in age2related neuronal plasticity and neurodegenerative disordesr . Trends Neurosci , 2004,27 (10) :589-594.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700