用户名: 密码: 验证码:
载脂蛋白A-I及其半胱氨酸突变体重组高密度脂蛋白对于内毒素血症小鼠作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高密度脂蛋白很早以前就被证明能够中和内毒素的毒性。载脂蛋白A-I是高密度脂蛋白中主要的蛋白成分,因此其在中和内毒素毒性方面上发挥了至关重要的作用。根据载脂蛋白A-I的两个天然突变体的突变位点及Edmunson轮,我们课题组利用PET表达系统已经成功构建出包括天然突变体ApoA-Imilano在内的七个半胱氨酸突变体,分别为A-I(S52C)、A-I(N74C)、A-I(K107C)、A-I(G129C)、A-I_M(R173C)、A-I(K195C)、A-I(S228C)。实验证明,这些突变体无论是在二级结构还是体外功能上都不尽相同,这就增加了突变后会影响其体内功能的可能性。
     实验目的:
     本研究对野生型apoA-I和分别发生在apoA-I多肽链7个α螺旋片段上的半胱氨酸突变体结合脂质后生成的八种重组高密度脂蛋白(rHDLwt,rHDL52,rHDL74,rHDL107,rHDL129,rHDL173,rHDL195和rHDL228)的抗炎性能做了比较,以观察这些特定的半胱氨酸突变体的结构和功能之间是否存在某些必然的联系。我们希望这些问题的解答能够对我们更深入、更全面的认识高密度脂蛋白抗炎保护特性的机制有所帮助。
     实验方法:
     利用pET原核表达系统对野生型及突变的apoA-I进行蛋白质表达,Ni~(2+)亲和柱进行目的蛋白纯化,获得多肽链C-末端带有6个组氨酸标签(6×His tag)的高纯度蛋白(纯度>90%),再经过去内毒素处理,最后利用胆酸盐透析方法做成重组的高密度脂蛋白用于下面的体内功能实验。我们利用尾静脉注射脂多糖来诱导小鼠内毒素血症模型的生成,并以其肛温升高0.5度作为标准,然后再注射重组的高密度脂蛋白。同时为了更加准确的评估这几种重组高密度脂蛋白的抗炎性能,我们选择了两个时间点加以分析,以注射脂多糖为计时点,检测其注射后3h和24h的重组高密度脂蛋白的治疗效果,主要通过ELISA试剂盒检测血清中的促炎症因子的水平,并对注射LPS 24h后的小鼠的肺组织做了常规的病理切片分析。
     为了进一步探索高密度脂蛋白的抗炎机制,我们分析了利用野生型aDoA-I及其半胱氨酸突变体结合脂质后形成的重组高密度脂蛋白的成份,即:脂质与apoA-I或其半胱氨酸突变体的比率。
     实验结果:
     内毒素血症小鼠模型的构建:
     BALB/c小鼠尾静脉注射LPS后,大约11.5min,即可检测到其肛温升高0.5℃,从而可以判定内毒素血症小鼠模型构建成功。
     血清中炎症因子的检测:
     LPS注射后24h的结果:
     LPS注射24h后,经ELISA试剂盒检测,结果显示:与野生型A-I构建的重组高密度脂蛋白rHDLwt相比,rHDL74和rHDL52更能显著降低小鼠血清中TNF-α的水平,而且,经过rHDL74治疗后,其TNF-α的水平已经降低到正常水平。与此相反的是,经rHDL195及rHDL228处理的小鼠,其TNF-α水平与只注射LPS的对照组相比不但没有降低,反而升高。另外经过rHDLwt处理的小鼠,其TNF-α水平与LPS对照组相比,也明显的降低。同时,结果也显示,rHDLwt及其它半胱氨酸突变体构成的重组高密度脂蛋白(rHDL228除外)能显著降低LPS诱导产生的IL-1β水平,而且,与rHDLwt相比,rHDL74和rHDL52更能有效的降低IL-1β水平。除此之外,结果还显示,rHDL74能显著降低IL-6的水平,相反,rHDL52及rHDL107却能导致IL-6水平的升高。
     LPS注射3h的结果:
     与LPS注射24h结果相似,与只注射LPS的对照组相比,rHDL74、rHDL52以及rHDLwt治疗后的小鼠有较低的TNF-α水平,但其它重组高密度脂蛋白治疗后的小鼠没有明显的变化。同时,rHDL74、rHDL52以及rHDL107能降低IL-1β的水平,其它重组高密度脂蛋白对于IL-1β的水平没有明显的影响。另外,没有任何一种重组高密度脂蛋白能显著影响IL-6的水平。
     肺组织常规病理切片H&E染色分析:
     结果显示,只注射LPS的对照组,其肺组织有明显的病理学变化,包括:1)充血;2)肺间质组织增厚;3)白细胞浸润,包括单核细胞和中性粒细胞。而经过rHDLwt治疗后的小鼠的肺组织切片只显示了较轻的病理学变化,比如:较轻的肺间质组织增厚等等。经rHDL74治疗后的肺组织切片强力支持其具有保护肺组织抵抗LPS诱导的肺损伤,其H&E染色结果非常接近只注射生理盐水的对照组的染色结果,基本上没有明显的病理学变化。然而,rHDL228处理过的小鼠的肺组织切片却显示出相对于只注射LPS的对照组更严重的病理学变化。经其它几种重组高密度脂蛋白处理后,小鼠肺组织的病理学变化都明显比只注射LPS组的小鼠的肺组织要轻一些,显示除了rHDL228外,其它几种高密度脂蛋白都能发挥一定的抗炎作用。
     重组高密度脂蛋白成分的分析:
     rHDL74中的DPPC与apoA-I的质量比率要比rHDLwt中的高(1.93±0.06 vs.1.75±0.11),相反rHDL228是几种重组高密度脂蛋白中比率最低的,与rHDLwt相比,rHDL228:(0.82±0.05 vs.1.75±0.11,P<0.05);rHDL107(1.49±0.12 vs.1.75±0.11,P<0.05)and rHDL129(1.47±0.04 vs.1.75±0.11,P<0.05),这三种高密度脂蛋白中的DPPC与apoA-I的比率与rHDLwt相比都有所降低。其它重组高密度脂蛋白未见明显的差异。
     结论:
     1.rHDL74及rHDL52比rHDLwt更能有效的降低炎症因子TNF-α和IL-1β的水平。
     2.rHDL74比rHDLwt更能有效的降低炎症因子IL-6的水平。
     3.rHDL74及rHDL52能够比rHDLwt更有效的保护肺组织抵抗LPS诱导的损伤。
     4.rHDL228不但没有任何抗炎作用,相反它还能加剧炎症反应,增加LPS诱导的肺损伤。
     5.rHDL74中所含有的DPPC要比rHDLwt高,相反,rHDL228中的DPPC是这几种重组高密度脂蛋白中最低的。
     总之,半胱氨酸突变体不仅对apoA-I的二级结构和体外功能造成了一定的改变,而且还对其体内中和LPS的抗炎功能产生了巨大的影响,基于rHDL74在本实验中的保护作用,它可能会成为临床上极具潜力的治疗内毒素引起的败血症的基因工程药物。
High density lipoprotein(HDL) has been shown able to neutralize the toxicity of the lipopolysaccharide(LPS).ApoA-I is the principal protein constituent in HDL,and it is the key factor in the neutralization of the lipopolysaccharide.According to the mutant site of two natural mutants:ApoA-Imilano,ApoA-Ipairs and Edmunson wheels,our lab have succeeded in reconstituting seven ApoA-I cysteine mutants including ApoA-Imilano(A-I(S52C)、A-I(N74C)、A-I(K107C)、A-I(G129C)、A-I_M(R173C)、A-I(K195C)、A-I(S228C)),and the results showed that these mutants had different structural features or biological activities,suggesting the potential influence of the in vivo function of these mutations.
     AIM:
     In this study,we compared the anti-inflammation properties of wild-type apoA-I (wtapoA-I) and its 7 cysteine substitution mutants in lipid bound state.Our aim is to explore how the replacement of cysteine influences the structure and function of apoA-I,and whether there is a relationship between the structures and functions of mutants with specific cysteine mutant sites.We hope that our findings could shed some lights on the anti-inflammation mechanisms of HDL.
     METHODS:
     Both of wtapoA-I and the cysteine mutants were expressed with pET30b(+) as the expression vector and BL21(DE3) as the host bacterial,respectively.After purified by Ni~(2+) affinity chromatography,all of the proteins treated by Triton X-114 and Detoxi-GelTM Endotoxin Removing Gel in order to remove any residual endotoxin.Recombinant HDLs were prepared by using sodium cholate dialysis technique,then their in vivo anti-inflammation functions were examined by the septic mice which was induced by LPS.In order to assess the anti-inflammation of these rHDLs perfectly,we choose 3h and 24h two time point to measure the level of pro-inflammation cytokines in plasma by ELISA kits.Twenty four hours after LPS injection,lung was isolated from mice and fixed in 10%formaldehyde solution at room temperature,sectioned followed by stained with hematoxylin-eosin(H&E).
     In order to further explore the anti-inflammation mechanism of rHDL,we examine the ratios of DPPC to apoA-I in these rHDLs.
     RESLUTS:
     The construction of endotoxemia mice model
     LPS was injected into mice through tail vein.After the anal temperature increased 0.5℃after LPS injection,we can get the endotoxemia model.
     Detection the level of inflammatory cytokines in the plasma of the mice
     24h post LPS injection,compared to controls injected with rHDLwt (135.28±12.84pg/ml),mice receiving either rHDL74 or rHDL52 exhibited significantly lower plasma levels of TNF-α(rHDL74:24.47±3.96pg/ml, P=0.002<0.05 vs.rHDLwt;rHDL52:39.96±2.44pg/ml,P=0.009<0.05 vs.rHDLwt). The plasma concentration of TNF-αin rHDL74 treated mice was reduced down to the baseline level(24.16±1.63pg/ml).Differently,mice treated with rHDL195 or rHDL228 had much higher plasma concentration of TNF-αcompared with LPS single injection groups(rHDL195:P=0.037<0.05,rHDL228:P<0.001,respectively). Treatment with recombinant HDL containing wt apoA-I also resulted in a significant decrease of plasma TNF-α(135.28±12.84pg/ml,P=0.045<0.05 vs.LPS group). However,no statistical differences were observed in other groups of mice which were treated with rHDL107,rHDL129 or rHDL173 compared with LPS group.We also observed that the treatment of rHDLwt and all the other rHDL mutants except rHDL228 resulted in a decrease of plasma IL-1β(P<0.001 vs.LPS).Mice treated with rHDL74 and rHDL52 had significantly lower secretion of IL-1βthan those treated with rHDLwt,(rHDL74:P<0.001;rHDL52:P=0.021<0.05,respectively). And other rHDLs(rHDL107,rHDL129,rHDL173 or rHDL195,P<0.001,compared with LPS) also showed the capability of decreasing plasma IL-1βinduced by LPS injection.Besides these,we also found that treating mice with rHDL74 significantly attenuated plasma IL-6 production induced by in vivo LPS injection,compared with single LPS injection group(P=0.006<0.05);however,treatments with rHDL52 and rHDL107 led to an increase of plasma IL-6(rHDL52:P=0.009<0.01.rHDL107: P=0.02<0.05,respectively).
     Similar to our observations at 24h after LPS injection,at 3h after LPS injection mice treated with rHDLwt,rHDL74 and rHDL52 had lower level of TNF-αthan those only received LPS injection(rHDLwt:P=0.049<0.05,rHDL74:P=0.012<0.05, rHDL52:P=0.048<0.05,respectively).No significant alteration was observed in other groups of mice treated with rHDL107,rHDL129,rHDL173 and rHDL228 compared with LPS group.Recombinant HDL74,rHDL52 and rHDL107 could decrease the level of IL-1β,compared with LPS group(rHDL74:P=0.003<0.05,rHDL52: P=0.007<0.05,rHDL107:P=0.034<0.05),while we did not see any significant effects of other rHDLs on reducing plasma IL-1β.
     None of the rHDLs showed a reduction of plasma IL-6 at 3h post LPS injection.
     Compared with 24h of LPS injection,the effect of rHDL on cytokine levels at 3 hours after LPS is biologically very small,suggesting a better neutralization of residual LPS in the circulation by rHDL injection for a longer time.
     Histological sections of lung tissue
     The lung of mice only receiving LPS had significant pathological changes: 1)congestion.2) broadening of pulmonary interstitial tissue.3) leucocyte infiltration including monocytes and neutrophils,we observed that the mice treated with rHDLwt only exhibited slight pathological lung change,such as the moderate broadening of pulmonary interstitial tissue,compared with the saline group.In addition,the ability of rHDL74 to protect lung against LPS induced injury in this septic mice model is strongly supported by its histological results,which were very close to the saline group,and there was almost no pathological change in the Mut74 group.However,in lung sections from mice treated with rHDL228,we could not see any effect of reducing histological tissue injury,in stead of the aggravation of pathological changes, compared with LPS group.In addition,the histological sections of the other four rHDLs all had many pathological changes compared with the saline group.
     The weight ratios of DPPC and ApoA-I or ApoA-I mutants in rHDL assay
     The weight ratios of DPPC to apoA-I in rHDL74 was slightly higher than in rHDLwt(1.93±0.06 vs.1.75±0.11).However,this ratios in rHDL228(0.82±0.05 vs.1.75±0.11,P<0.05),rHDL107(1.49±0.12 vs.1.75±0.11,P<0.05) and rHDL129 (1.47±0.04 vs.1.75±0.11,P<0.05) were significantly lower than in rHDLwt.No significant alteration was observed in other rHDL groups.
     CONCLUSION:
     1.RHDL74 and rHDL52 are more effective than rHDLwt at reducing TNF-a and IL-1β.
     2.RHDL74 are more effective than rHDLwt at reducing IL-6.
     3.RHDL74 and rHDL52 are more effective than rHDLwt at attenuating endotoxin-induced clinical symptoms and protecting lung against LPS induced injury.
     4.Compared with rHDLwt,rHDL228 can significantly increase plasma concentration of TNF-αand exacerbate LPS induced lung injury.
     5.The weight ratios of DPPC to apoA-I in rHDL74 was slightly higher than in rHDLwt,However,this ratios in rHDL228 was the lowest among these rHDLs.
     In summary,for the first time,our study first compared the different effects of rHDL containing apoA-I cysteine mutants on the in vivo LPS induced endotoxemia in mice.Our data suggested that cysteine mutation not only induces the alteration of secondary structure and in vitro functions of apoA-I but also influences the capability of HDL to neutralize endotoxin or LPS.Due to its significant positive protection against LPS induced endotoxemia in our study,rHDL74 may be a potential clinical candidate for therapy of endotoxin induced septic shock.
引文
1. Murch O., M. Collin, C.J. Hinds, C. Thiemermann. 2007.Lipoproteins in inflammation and sepsis. I. Basic science. Intensive Care Med. 33:13-24.
    
    2. Cockerill GW, McDonald MC, Mota-Filipe H, Cuzzocrea S, Miller NE,Thiemermann C .2001. High density lipoproteins reduce organ injury and organ dysfunction in a rat model of hemorrhagic shock. FASEBJ. 15:1941-1952
    
    3. Cuzzocrea S, Dugo L, Patel NS Di PR, Cockerill GW, Genovese T, Thiemermann C .2004.High-density lipoproteins reduce the intestinal damage associated with ischemia/reperfusion and colitis. Shock 21:342-351
    
    4. McDonald MC, Dhadly P, Cockerill GW, Cuzzocrea S, Mota-Filipe H, Hinds CJ, Miller NE,Thiemermann C .2003. Reconstituted high-density lipoprotein attenuates organ injury and adhesion molecule expression in a rodent model of endotoxic shock. Shock 20:551-557
    
    5. Thiemermann C, Patel NS, Kvale EO, Cockerill GW, Brown PA, Stewart KN, Cuzzocrea S,Britti D, Mota-Filipe H, Chatterjee PK.2003. High density lipoprotein (HDL) reduces renal ischemia/ reperfusion injury. J Am Soc Nephrol. 14:1833-1843
    
    6. Levine D.M., T.S. Parker, T.M. Donnelly, A. Walsh, A.L. Rubin. 1993.In vivo protection against endotoxin by plasma high density lipoprotein. Proc. Natl. Acad. Sci. 90:12040-12044.
    
    7. Romeo D., A. Hinckley, L. Rothfield. 1970.Reconstitution of a functional membrane enzyme system in a monomolecular film. II. Formation of a functional ternary film of lipopolysaccharide, phospholipid and transferase enzyme. J Mol Biol. 53:491-501.
    
    8. Weiser M.M., L. Rothfield. 1968.The reassociation of lipopolysaccharide, phospholipid, and transferase enzymes of the bacterial cell envelope. Isolation of binary and ternary complexes.J Biol Chem. 243:1320-1328.
    
    9. Schumann R.R., S.R. Leong, GW. Flaggs, P.W. Gray, S.D. Wright, J.C. Mathison, P.S.Tobias, R.J. Ulevitch. 1990.Structure and function of lipopolysaccharide binding protein.Science. 249:1429-1431.
    
    10. Beutler B., I.W. Milsark, A.C. Cerami. 1985.Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effect of endotoxin. Science. 229:869-871
    11. Vesy C.J., R.L. Kitchens, G. Wolfbauer, J.J. Albers, Munford RS.2000.Lipopolysaccharide-binding protein and phospholipid transfer protein release lipopolysaccharides from gram-negative bacterial membranes. Infect Immun. 68:2410-7.
    
    12. Chow JC, D.W. Young, D.T. Golenbock, W.J. Christ, F. Gusovsky. 1999 .Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J Biol Chem. 274:10689-92
    
    13. Emancipator, K., G. Csako, R.J. Elin. 1992. In vitro inactivation of bacterial endotoxin by human lipoproteins and apolipoproteins. Infect. Immun. 60:596-601.
    
    14. Flegel W.A., A. Wolpl, D.N.. Mannel, H. Northoff. 1989. Inhibition of endotoxin-induced activation of human monocytes by human lipoproteins. Infect. Immun. 57:2237- 2245.
    
    15. Read, T.E, H.W. Harris, C. Grunfeld, K.R. Feingold, J.P. Kane, and J.H. Rapp. 1993. The protective effect of serum lipoproteins against bacterial lippolysaccharide. European Heart J.14:125-129.
    
    16. Baumberger, C, R.J. Ulevitch, J.M. Dayer. 1991. Modulation of endotoxic activity of lipopolysaccharide by high-density lipoprotein Pathobiology. 59:378-383.
    
    17. Chan L. 1989.The apolipoprotein multigene family: structure, expression, evolution, and molecular genetics. Klin Wochenschr.67:225-37.
    
    18. Thomas M.J, S.Bhat, M.G. Sorci-Thomas..2006.The use of chemical cross-linking and mass spectrometry to elucidate the tertiary conformation of lipid-bound apolipoprotein A-I. Curr Opin Lipidol. 17:214-20.
    
    19. Segrest, J. P., D. W. Garber, C. G Brouillette, S. C. Harvey, and G. M. Anantharamaiah. 1994.The amphipathic alpha helix: a multifunctional structural motif in plasma apolipoproteins.Adv. Protein Chem.45: 303-369.
    
    20. Zhu X., G. Wu, W. Zeng, H. Xue, and B. Chen. 2005.Cysteine mutants of human apolipoprotein A-I: a study of secondary structural and functional properties. J Lipid Res.46:1303-1311.
    
    21. Reichelt P., C. Schwarz, M. Donzeau. 2006.Single step protocol to purify recombinant proteins with low endotoxin contents. Protein Expr Purif. 46:483-488.
    
    22. Bordier C. 1981.Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem. 256:1604-1607.
    
    23. Liu S., R .Tobias, S. McClure, G Styba, Q. Shi, GJackowski. 1997 .Removal of endotoxin from recombinant protein preparations. Clin Biochem. 30:455-463.
    
    24. Chen C.H., J.J .Albers. 1982. Albers.Characterization of proteoliposomes containing apoprotein A-I: a new substrate for the measurement of lecithin: cholesterol acyltransferase activity. J Lipid Res. 23:680-691..
    
    25. Rail DP, Gaskins JR., Kelly MG..1957.Reduction of febrile response to bacterial polysaccharide following incubation with serum. Am J Physiol .188:559-562
    
    26. Ulevitch RJ, Johnston AR. 1978.The modification of biophysical and endotoxic properties of bacterial lipopolysaccharides by serum. J Clin Invest.62:1313-1324.
    
    27. Ulevitch RJ, Johnston AR, Weinstein DB. 1979.New function for high density lipoproteins. Their participation in intravascular reactions of bacterial lipopolysaccharides. J Clin Invest.64:1516-1524
    
    28. Marina A. Freudenberg, Thorkild C, el at. 1980.Interaction of Lipopolysaccharides with Plasma High-Density Lipoprotein in Rats. Infect Immun.28:373-380.
    
    29. Yan Y.J., Y. Li, B. Lou, M.P. Wu. 2006.Beneficial effects of ApoA-I on LPS-induced acute lung injury and endotoxemia in mice. Life Sci. 79:210-215.
    
    30. Lee R.P., N.T. Lin, Y.F. Chao, C.C. Lin, H.J. Harn, H.I. Chen. 2007. High-density lipoprotein prevents organ damage in endotoxemia. Res Nurs Health. 30:250-60.
    
    31. Hubsch A.P., A.T. Casas, J.E. Doran.1995. Protective effects of reconstituted high-density lipoprotein in rabbit gram-negative bacteremia models. J Lab Clin Med. 126:548-558.
    
    32. Lamping N, Dettmer R, Schroder NW, Pfeil D, Hallatschek W, Burger R, Schumann RR .1998. LPS-binding protein protects mice from septic shock caused by LPS or gram-negative bacteria. J Clin Invest .101:2065-2071
    
    33. Vesy CJ, Kitchens RL, Wolfbauer G, Albers JJ, Munford RS. 2000.Lipopolysaccharide-binding protein and phospholipid transfer protein release lipopolysaccharides from Gram-negative bacterial membranes. Infect Immun .68:2410-2417
    
    34. Rohrer L, Hersberger, M von EA .2004.High density lipoproteins in the intersection of diabetes mellitus, inflammation and cardiovascular disease. Curr Opin Lipidol .15:269-278
    
    35. Ulevitch RJ, Johnston AR .1978. The modification of biophysical and endotoxic properties of bacterial lipopolysaccharides by serum. J Clin Invest .62:1313-1324
    
    36. Ulevitch RJ, Johnston AR, Weinstein DB .1979.New function for high density lipoproteins. Their participation in intravascular reactions of bacterial lipopolysaccharides. J Clin Invest .64:1516-1524
    
    37. Baumberger C, Ulevitch RJ, Dayer JM. 1991. Modulation of endotoxic activity of lipopolysaccharide by high-density lipoprotein. Pathobiology. 59:378-383
    
    38. Cavaillon JM, Fitting C, Haeffner-Cavaillon N, Kirsch SJ, Warren HS .1990. Cytokine response by monocytes and macrophages to free and lipoprotein-bound lipopolysaccharide.Infect Immun.5S:2375-2382
    
    39. Kitchens RL, Wolfbauer G, Albers JJ, Munford RS. 1999. Plasma lipoproteins promote the release of bacterial lipopolysaccharide from the monocyte cell surface. J Biol Chem .274:34116-34122
    
    40. Feingold KR, Funk JL, Moser AH, Shigenaga JK, Rapp JH, Grunfeld C.1995. Role for circulating lipoproteins in protection from endotoxin toxicity. Infect Immun. 63:2041-2046
    
    41. Harris HW, Grunfeld C, Feingold KR, Rapp JH.1990.Human very low density lipoproteins and chylomicrons can protect against endotoxin-induced death in mice. J Clin Invest.86:696-702
    
    42. Rensen PC, Oosten M, Bilt E, Eck M, Kuiper J, Berkel TJ .1997. Human recombinant apolipoprotein E redirects lipopolysaccharide from Kupffer cells to liver parenchymal cells in rats In vivo.J Clin Invest .99:2438-2445
    
    43. Flegel WA, Baumstark MW, Weinstock C, Berg A, Northoff H.1993. Prevention of endotoxin-induced monokine release by human lowand high-density lipoproteins and by apolipoprotein A-I. Infect Immun .61:5140-5146
    
    44. Van OM, Rensen PC, Van Amersfoort ES, Van EM, Van Dam AM, Breve JJ, Vogel T, Panet A, van Berkel TJ, Kuiper J. 2001. Apolipoprotein E protects against bacterial lipopolysaccharide-induced lethality. A new therapeutic approach to treat gram-negative sepsis. J Biol Chem. 276:8820-8824
    
    45. Casas AT, Hubsch AP, Rogers BC, Doran JE .1995. Reconstituted high-density lipoprotein reduces LPSstimulated TNF alpha. J Surg Res .59:544-552
    
    46. Cockerill GW, Rye KA, Gamble JR, Vadas MA, Barter PJ. 1995. High-density lipoproteins inhibit cytokine-induced expression of endothelial cell adhesion molecules. Arterioscler Thromb Vasc Biol .15:1987-1994
    47. Park SH, Park JH, Kang JS, Kang YH. 2003. Involvement of transcription factors in plasma HDL protection against TNF-alpha-induced vascular cell adhesion molecule-1 expression.Int J Biochem Cell Biol.35:168-182
    
    48. Soma MR, Donetti E, Parolini C, et al. 1995. Recombinant apolipoprotein A-IMilano dimer inhibits carotid intimal thickening induced by perivascular manipulation in rabbits. Circ Res.76:405-411.
    
    49. Shah PK, Nilsson J, Kaul S, et al. 1998.Effects of recombinant apolipoprotein AI_(Milano) on aortic atherosclerosis in apolipoportein E-deficient mice. Circulation. 97:780-785
    
    50. Shah PK, Yano J, Reyes O, et al. 2001.High-dose recombinant apolipoprotein AI_(Milano) mobilizes tissue cholesterol and rapidly reduces plaque lipid and macrophage content in apolipoprotein E-deficient mice. Circulation.103:3047-3050.
    
    51. Chiesa G, Monteggia E, Marchesi M, et al. 2002.Recombinant apolipoprotein AI_(Milano) infusion into rabbit carotid artery rapidly removes lipid from fatty streaks. Circ Res.90:974-980.
    
    52. Grunfeld C, M. Marshall, J.K. Shigenaga, A.H. Moser, P. Tobias, K.R.Feingold.1999.Lipoproteins inhibit macrophageactivation by lipoteichoic acid. J Lipid Res.40:245-252.
    
    53. Cue J.I., J.T. DiPiro, L.J. Brunner, J.E. Doran, M.E. Blankenship, A.R. Mansberger, M.L.Hawkins. 1994. Reconstituted high density lipoprotein inhibits physiologic and tumor necrosis factor alpha responses to lipopolysaccharide in rabbits. Arch Surg. 129:193-197.
    
    54. A.C. Issekutz.1983.Removal of gram-negative endotoxin from solutions by aYnity chromatography. J. Immunol. Methods .61 :275—281.
    
    55. Y. Aida, M.J. Pabst. 1990.Removal of endotoxin from protein solutions by phase separation using Triton X-114. J. Immunol. Methods. 132:191-195.
    
    56. S.H. Pyo, J.H. Lee, H.B. Park, S.S. Hong, J.H. Kim. 2001. A large-scale puri-Wcation of recombinant histone H1.5 from Escherichia coli. Protein Expr. Purif. 23:38-44.
    
    57. Petsch D, Anspach FB. 2000.Endotoxin removal from protein solutions. J Biotechnol.76:97-119.
    1、Brewer HB et al.Biochem Biophys Res Commun,1978,80:623-630
    2、Chan L.Klin Wochenschr,1989,67:225-237
    3、Frank PG et al.J Lipid Res,2000,41:853-872
    4、Palgunachari MN et al.Arterioscler Thromb Vase Biol,1996,16:328-338
    5、Kyte J et al.J Mol Biol,1982,157:105-132
    6、Rye KA et al.Arterioscler Thromb Vase Biol,2004,24:421-428
    7、Zannis VI et al.J Mol Med,2006,84:276-294
    8、Davidson WS et al.J Biol Chem,2007,282:22249-22253
    9、Ajees AA et al.Proc Natl Acad Sci USA,2006,103:2126-2131
    10、Wang G.FEBS Lett,2002,529:157-161
    11、Saito H et al.J Biol Chem,2003,278:23227-23232
    12、Bhat S et al.Biochemistry,2007,46:7811-7821
    13、Segrest JP et al.J Biol Chem,1999,274:31755-31758
    14、Davidson WS et al.J Biol Chem,2003,278:27199-27207
    15、Silva RA et al.Biochemistry,2005,44:8600-8607
    16、Bhat Set al.J Biol Chem,2005,280:33015-33025
    17、Saito H et al.Prog Lipid Res,2004,43:350-380
    [1].Murch O,Collin M,Hinds C J,el at.Lipoproteins in inflammation and sepsis.I.Basic science.Intensive Care Med,2007,33:13-24.
    [2].Rall DP,Gaskins JR,Kelly MG.Reduction of febrile response to bacterial polysaccharide following incubation with serum.Am J Physiol,1957,188:559-562
    [3].Ulevitch RJ,Johnston AR.The modification of biophysical and endotoxic properties of bacterial lipopolysaccharides by serum.J Clin Invest,1978,62:1313-1324.
    [4].Ulevitch RJ,Johnston AR,Weinstein DB.New function for high density lipoproteins.Their participation in intravascular reactions of bacterial lipopolysaccharides.J Clin Invest,1979,64:1516-1524.
    [5].Marina A.Freudenberg,Thorkild C,el at.Interaction of Lipopolysaccharides with Plasma High-Density Lipoprotein in Rats.Infect Immun,1980,28:373-380.
    [6].Emancipator K,Csako G,Elin RJ.In vitro inactivation of bacterial endotoxin by human lipoproteins and apolipoproteins.Infect Immun.,1992,60:596-601.
    [7].Levine DM,Parker TS,Donnelly TM,el at.In vivo protection against endotoxin by plasma high density lipoprotein.Proc Natl Acad Sci,1993,90:12040-12044.
    [8]. Flegel WA, Wolpl A, Mannel DN, el at.Inhibition of endotoxin-induced activation of human monocytes by human lipoproteins. Infect Immun, 1989,57:2237-2245.
    [9]. Cavaillon JM, Fitting C, Haeffner-Cavaillon N, el at. Cytokine response by monocytes and macrophages to free and lipoprotein-bound lipopolysaccharide.Infect Immun, 1990, 58:2375-2382.
    [10]. Lamping N, Dettmer R, Schroder NW, el at. LPS-binding protein protects mice from septic shock caused by LPS or gram-negative bacteria. J Clin Invest,1998,101:2065-2071
    [11]. Kitchens RL, Wolfbauer G, Albers JJ, el at. Plasma lipoproteins promote the release of bacterial lipopolysaccharide from the monocyte cell surface. J Biol Chem, 1999,274:34116-34122.
    [12]. McDonald MC, Dhadly P, Cockerill GW, el at.Reconstituted high-density lipoprotein attenuates organ injury and adhesion molecule expression in a rodent model of endotoxic shock.. Shock, 2003 ,20:551-557.
    [13]. Kitchens RL, Wolfbauer G, Albers JJ, el at. Plasma Lipoproteins Promote the Release of Bacterial Lipopolysaccharide from the Monocyte Cell Surface. J Biol Chem,1999 274:34116-34122.
    [14]. Cockerill GW, McDonald MC, Mota-Filipe H, el at. High density lipoproteins reduce organ injury and organ dysfunction in a rat model of hemorrhagic shock..FASEB J, 2001,15:1941-1952.
    [15]. Cuzzocrea S, Dugo L, Patel NS, el at.High-density lipoproteins reduce the intestinal damage associated with ischemia/reperfusion and colitis. Shock,2004,21:342-351.
    [16]. Thiemermann C, Patel NS, Kvale EO, el at. High density lipoprotein (HDL) reduces renal ischemia/reperfusion injury. J Am Soc Nephrol,2003,14:1833-1843.
    [17]. Cockerill GW, Rye KA, Gamble JR, el at. High-density lipoproteins inhibit cytokine-induced expression of endothelial cell adhesion molecules. Arterioscler Thromb Vasc Biol, 1995, 15:1987-1994.
    [18]. Park SH, Park JH, Kang JS, el at. Involvement of transcription factors in plasma HDL protection against TNF-alpha-induced vascular cell adhesion molecule-1 expression.Int J Biochem Cell Biol,2003,35:168-182.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700