用户名: 密码: 验证码:
血浆脂蛋白与病原细菌相互作用研究(Ⅰ)
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
运输脂类物质是血浆脂蛋白的基本作用。越来越多的报道显示血浆脂蛋白与微生物感染之间有重要的相互联系,血浆脂蛋白往往对微生物感染起到部分防御的作用。
     有大量证据说明高密度脂蛋白(high-density lipoprotein, HDL)是天然免疫的一部分,具有直接保护宿主,抗感染和炎症的作用。本研究偶然发现重组表达的M41型A群链球菌[group A Streptococcus (GAS)]的I型胶原样蛋白(streptococcal collagen-like protein 1,Scl1)能与HDL结合。Scl1是GAS表面的一种毒力因子。一些M型的GAS表达的Scl1可以与低密度脂蛋白(low-density lipoprotein, LDL)结合。
     为证实Scl1与HDL的相互作用,本研究从M41血清型A群链球菌(GAS)的两种菌株(MGAS6183、CMCC32198)中克隆了Scl1基因,构建了全长和不同截短的表达载体并在大肠杆菌BL21中表达和纯化。通过亲和色谱实验以及Western blot,Dot blot, ELISA实验证实了两种菌株来源的rScl1都可以通过N末端的可变区(variable regions,V区,含84个氨基酸)结合HDL,而截去V区N末端42个氨基酸或C末端42个氨基酸的rScl1,均不能与HDL结合,说明完整的V区结构在rScl1与HDL的结合中起重要作用。进一步研究发现Tween 20能抑制rScl1与HDL的结合,提示rScl1与HDL的结合可能是通过疏水相互作用。由于rScl1能同时结合HDL和LDL,因此,在制备无脂血清方面可能有潜在的用途。据我们所知,这是在国际上首次发现GAS M41的rScl1与HDL结合,但是这种HDL与GAS的相互作用在GAS致病性或机体抗感染中的作用还有待于深入的研究。
     目前,脂蛋白(a)[Lipoprotein(a), Lp(a)]的生理功能仍然不清,但是Lp(a)的组成成分-载脂蛋白(a)[Apo(a)],与纤溶酶原(Plasminogen,Plg)有高度的相似性,因此可以假设Lp(a)很可能与细菌表面的Plg受体结合,从而抑制Plg与细菌的结合,最终抑制细菌对Plg的激活作用,阻碍细菌生长和穿越人体组织屏障,在一定程度上起到抵抗细菌感染的作用。
     为验证这一假设,本研究用柱层析技术从血浆中分离制备Lp(a),并用酶联免疫吸附试验(ELISA)检测Lp(a)与金黄色葡萄球菌是否结合。结果初步证明Lp(a)可与金黄色葡萄球菌的菌株CMCC26003结合,而且一定浓度的赖氨酸类似物6-氨基己酸(20mM)可以抑制金黄色葡萄球菌与Lp(a)结合,提示血浆Lp(a)有可能通过其Kringle结构域上的赖氨酸结合位点与金黄色葡萄球菌结合。将金黄色葡萄球菌与Plg以及Lp(a)共孵育,再加入尿激酶(uPA),结果显示由于Lp(a)的加入,菌表面的纤溶酶活性降低,说明Lp(a)可抑制金黄色葡萄球菌对Plg的吸附。
     总之,本研究在国际上首次发现Lp(a)有可能与金黄色葡萄球菌结合并抑制金黄色葡萄球菌对Plg的吸附,这一发现初步证实了本研究室提出的Lp(a)抗感染假说,有助于更好地了解Lp(a)在抗感染中的作用,并且为防治病原细菌感染提供可能的新理念或技术手段。
     另外,本研究结果为本研究室提出的脂蛋白免疫学理论体系提供了支持和佐证。
Plasma lipoproteins function primarily in lipid transportation. The cumulative evidence suggests a correlation between plasma lipoproteins and pathogenic infection, and plasma lipoproteins usually play an important role in preventing some infections.
     It is well documented that high-density lipoprotein (HDL) as part of innate immunity serves a protective role against infection and inflammation. We unexpectedly found that HDL bound to a recombinant Streptococcal collagen-like protein 1 (rScl1), which is a virulence factor on the surface of Group A Streptococcus (GAS). Interestingly, Scl1 expressed by some M-type GAS strains was recently demonstrated to bind low-density lipoprotein (LDL).
     To confirm the interaction of Scl1 with HDL, DNA fragment encoding the extracellular portions of Scl1 ,which were derived from two serotype M41 GAS strains (MGAS6183, CMCC32198) , were coloned into the plasmid vector pASK-IBA2.
     Full-length or different truncted variant of Scl1 were expressed in E. coli BL21. Purified rScl1s were immobilized onto affinity-chromatography columns and tested for the direct binding to purified HDL or HDL in plasma. SDS-PAGE ,Western blot and enzyme-linked immunosorbent assay (ELISA) revealed that both of rScl1s derived from above two strains via their variable region (V region) of 84 amino acids (84aa) could bind to HDL. However, neither N-terminal 42 aa- truncated variant nor C-terminal 42 aa-deleted variant at V region of rScl1 was not able to bind to HDL. This might imply that the entire structure of V region might be responsible for the binding. Furthermore, the rScl1-HDL binding might be mediated by hydrophobic interaction since Tween 20 inhibited it. Additionally, rScl1 might have a potential application in the production of lipid-free serum due to the dual HDL and LDL binding capabilities. To our knowledge, it is the first time to identify the binding of rScl1 to HDL. However, the pathogenic or anti-infective role of the HDL-GAS interaction remains elusive.
     The biological function of lipoprotein (a) [Lp(a)] is yet unclear. The apolipoprotein (a) [Apo (a)] of Lp(a) has a high similarity to plasminogen (Plg). We hypothesized that Lp(a) may bind to Plg receptor on bacterial surface, thereby inhibiting the binding of Plg to bacteria, and ultimately inhibiting the activation of bacterium-absorbed Plg by Plg activator from either host or some bacteria, as well as impeding the bacteria from passing the barriers of human tissues.
     To test our hypothesis, the binding between Lp (a) and S. aureus were detected by enzyme-linked immunosorbent assay , and the preliminary data showed that Lp (a) bound to the cell of S. aureus CMCC26003 strain, and the lysine analogues EACA (20mM) inhibited the binding. The results indicated that Lp (a) might through its lysine binding sites bind to S. aureus. Incubation of S. aureus with plasminogen and Lp(a) followed by uPA treatment showed the decreased plasmin activity on the surface of S.aureus when compared with the similar activiation experiment in the absence of Lp(a). These findings suggested that Lp(a) inhibited plg from recruiting by S. aureus.
     To our knowledge, this is the first time to demonstrate that Lp (a) might bind to S. aureus, and inhibited the recruitment of Plg by S. aureus. These findings primarily confirm our initial hypothesis and might shed light on the role of Lp(a) in preventing infections. Moreover, a potential technique in the treatment and prevention of infection in humans might be developed based on our results.
     In addition, these results provide the novel evidence to further support that plasma lipoproteins may be important components of the host defense system.
引文
1 Havel RJ, Eder HA, Bragdon JH. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum[J]. J Clin Invest. 1955, 34(9):1345-1353.
    2 Chung BH, Wilkinson T, Geer JC, et al. Preparative and quantitative isolation of plasma lipoproteins: rapid, single discontinuous density gradient ultracentrifugation in a vertical rotor[J]. J Lipid Res. 1980, 21(3):284-291.
    3 Cobb SA, Sanders JL. Enzymic determination of cholesterol in serum lipoproteins separated by electrophoresis[J]. Clin Chem. 1978, 24(7):1116-1120.
    4 Noble RP. Electrophoretic separation of plasma lipoproteins in agarose gel[J]. J Lipid Res. 1968, 9(6):693-700.
    5 Muniz N. Measurement of plasma lipoproteins by electrophoresis on polyacrylamide gel[J]. Clin Chem. 1977, 23(10):1826-1833.
    6 Alaupovic P, Lee DM, McConathy WJ. Studies on the composition and structure of plasma lipoproteins. Distribution of lipoprotein families in major density classes of normal human plasma lipoproteins[J]. Biochim Biophys Acta. 1972, 260(4):689-707.
    7 Alaupovic P. The concept of apolipoprotein-defined lipoprotein families and its clinical significance[J]. Curr Atheroscler Rep. 2003, 5(6):459-467.
    8 Kapur NK, Ashen D, Blumenthal RS. High density lipoprotein cholesterol: an evolving target of therapy in the management of cardiovascular disease[J]. Vasc Health Risk Manag. 2008, 4(1):39-57.
    9 Forti N, Diament J. High-density lipoproteins: metabolic, clinical, epidemiological and therapeutic intervention aspects. An update for clinicians[J]. Arq. Bras. Cardiol. 2006, 87(5):671-679.
    10 Shiflett AM, Bishop JR, Pahwa A, et al. Human high density lipoproteins are platforms for the assembly of multi-component innate immune complexes[J]. J Biol Chem. 2005, 280(38):32578-32585.
    11 Warnick GR, Cheung MC. Measurement and clinical significance of high-density lipoprotein subclasses. In Rifa N, Warnick GR, Dominiczak MH, eds. Handbook of Lipoprotein Testing. Wahington DC: AACC Press, 2001. pp. 311-328.
    12 Concha MI, Smith VJ, Castro K, et al. Apolipoproteins A-I and A-II are potentially important effectors of innate immunity in the teleost fish Cyprinus carpio[J]. Eur. J. Biochem. 2004, 271(14):2984-2990.
    13 Khovidhunkit W, Kim MS, Memon RA, et al. Effects of infection and inflammation on lipid and lipoprotein metabolism: mechanisms and consequences to the host[J]. J.Lipid Res. 2004, 45(7):1169-1196.
    14 Feingold KR, Memon RA, Moser AH, et al. Endotoxin and interleukin-1 decrease hepatic lipase mRNA levels[J]. Atherosclerosis. 1999, 142(2):379-387.
    15 Mathison JC, Ulevitch RJ. In vivo interaction of bacterial lipopolysaccharide (LPS) with rabbit platelets: modulation by C3 and high density lipoproteins[J]. J Immunol. 1981, 126(4):1575-1580.
    16 Levels JH, Abraham PR, van den Ende A, et al. Distribution and kinetics of lipoprotein-bound endotoxin[J]. Infect. Immun. 2001, 69(5):2821-2828.
    17 Levels JH, Abraham PR, van Barreveld EP, et al. Distribution and kinetics of lipoprotein-bound lipoteichoic acid[J]. Infect. Immun. 2003, 71(6):3280-3284.
    18 Casas AT, Hubsch AP, Rogers BC, et al. Reconstituted high-density lipoprotein reduces LPS-stimulated TNF alpha[J]. J. Surg. Res. 1995, 59(5):544-552.
    19 Kitchens RL, Wolfbauer G, Albers JJ, et al. Plasma lipoproteins promote the release of bacterial lipopolysaccharide from the monocyte cell surface[J]. J. Biol. Chem. 1999, 274(48):34116-34122.
    20 Hubsch AP, Powell FS, Lerch PG, et al. A reconstituted, apolipoprotein A-I containing lipoprotein reduces tumor necrosis factor release and attenuates shock in endotoxemic rabbits[J]. Circ. Shock. 1993, 40(1):14-23.
    21 Levine DM, Parker TS, Donnelly TM, et al. In vivo protection against endotoxin by plasma high density lipoprotein[J]. Proc. Natl. Acad. Sci. U. S. A. 1993, 90(24):12040-12044.
    22 Pajkrt D, Doran JE, Koster F, et al. Antiinflammatory effects of reconstituted high-density lipoprotein during human endotoxemia[J]. J. Exp. Med. 1996, 184(5):1601-1608.
    23 Wurfel MM, Hailman E, Wright SD. Soluble CD14 acts as a shuttle in the neutralization of lipopolysaccharide (LPS) by LPS-binding protein and reconstituted high density lipoprotein[J]. J. Exp. Med. 1995, 181(5):1743-1754.
    24 Thompson PA, Tobias PS, Viriyakosol S, et al. Lipopolysaccharide (LPS)-binding protein inhibits responses to cell-bound LPS[J]. J. Biol. Chem. 2003, 278(31):28367-28371.
    25 Parker TS, Levine DM, Chang JC, et al. Reconstituted high-density lipoprotein neutralizes gram-negative bacterial lipopolysaccharides in human whole blood[J]. Infect. Immun. 1995, 63(1):253-258.
    26 Park CT, Wright SD. Plasma lipopolysaccharide-binding protein is found associated with a particle containing apolipoprotein A-I, phospholipid, and factor H-relatedproteins[J]. J. Biol. Chem. 1996, 271(30):18054-18060.
    27 Torzewski M, Suriyaphol P, Paprotka K, et al. Enzymatic modification of low-density lipoprotein in the arterial wall: a new role for plasmin and matrix metalloproteinases in atherogenesis[J]. Arterioscler Thromb Vasc Biol. 2004, 24(11):2130-2136.
    28 Wu X, Yang S, Duan D, et al. Experimental osteonecrosis induced by a combination of low-dose lipopolysaccharide and high-dose methylprednisolone in rabbits[J]. Joint Bone Spine. 2008, 75(5):573-578.
    29 Van Oosten M, Rensen PC, Van Amersfoort ES, et al. Apolipoprotein E protects against bacterial lipopolysaccharide-induced lethality. A new therapeutic approach to treat gram-negative sepsis[J]. J. Biol. Chem. 2001, 276(12):8820-8824.
    30 de Bont N, Netea MG, Demacker PN, et al. Apolipoprotein E knock-out mice are highly susceptible to endotoxemia and Klebsiella pneumoniae infection[J]. J. Lipid Res. 1999, 40(4):680-685.
    31 Berbee JF, van der Hoogt CC, Kleemann R, et al. Apolipoprotein CI stimulates the response to lipopolysaccharide and reduces mortality in gram-negative sepsis[J]. FASEB J. 2006, 20(12):2162-2164.
    32 Berbee JF, Mooijaart SP, de Craen AJ, et al. Plasma apolipoprotein CI protects against mortality from infection in old age[J]. J. Gerontol. A. Biol. Sci. Med. Sci. 2008, 63(2):122-126.
    33 Berbee JF, van der Hoogt CC, de Haas CJ, et al. Plasma apolipoprotein CI correlates with increased survival in patients with severe sepsis[J]. Intensive Care Med. 2008, 34(5):907-911.
    34 Recalde D, Ostos MA, Badell E, et al. Human apolipoprotein A-IV reduces secretion of proinflammatory cytokines and atherosclerotic effects of a chronic infection mimicked by lipopolysaccharide[J]. Arterioscler. Thromb. Vasc. Biol. 2004, 24(4):756-761.
    35 Owens BJ, Anantharamaiah GM, Kahlon JB, et al. Apolipoprotein A-I and its amphipathic helix peptide analogues inhibit human immunodeficiency virus-induced syncytium formation[J]. J. Clin. Invest. 1990, 86(4):1142-1150.
    36 Singh IP, Chopra AK, Coppenhaver DH, et al. Lipoproteins account for part of the broad non-specific antiviral activity of human serum[J]. Antiviral Res. 1999, 42(3):211-218.
    37 Superti F, Seganti L, Marchetti M, et al. SA-11 rotavirus binding to human serum lipoproteins[J]. Med Microbiol Immunol. 1992, 181(2):77-86.
    38 Srinivas RV, Birkedal B, Owens RJ, et al. Antiviral effects of apolipoprotein A-I and its synthetic amphipathic peptide analogs[J]. Virology. 1990, 176(1):48-57.
    39 Van Lenten BJ, Wagner AC, Anantharamaiah GM, et al. Influenza infection promotes macrophage traffic into arteries of mice that is prevented by D-4F, an apolipoprotein A-I mimetic peptide[J]. Circulation. 2002, 106(9):1127-1132.
    40 Raper J, Portela MP, Lugli E, et al. Trypanosome lytic factors: novel mediators of human innate immunity[J]. Curr. Opin. Microbiol. 2001, 4(4):402-408.
    41 Lugli EB, Pouliot M, Portela Mdel P, et al. Characterization of primate trypanosome lytic factors[J]. Mol. Biochem. Parasitol. 2004, 138(1):9-20.
    42 Molina-Portela Mdel P, Lugli EB, Recio-Pinto E, et al. Trypanosome lytic factor, a subclass of high-density lipoprotein, forms cation-selective pores in membranes[J]. Mol Biochem Parasitol. 2005, 144(2):218-226.
    43 Samanovic M, Molina-Portela MP, Chessler AD, et al. Trypanosome lytic factor, an antimicrobial high-density lipoprotein, ameliorates leishmania infection[J]. PLoS Pathog. 2009, 5(1):e1000276.
    44 Vanhamme L, Paturiaux-Hanocq F, Poelvoorde P, et al. Apolipoprotein L-I is the trypanosome lytic factor of human serum[J]. Nature. 2003, 422(6927):83-87.
    45 Thompson PA, Kitchens RL. Native high-density lipoprotein augments monocyte responses to lipopolysaccharide (LPS) by suppressing the inhibitory activity of LPS-binding protein[J]. J. Immunol. 2006, 177(7):4880-4887.
    46 Thompson PA, Berbee JF, Rensen PC, et al. Apolipoprotein A-II augments monocyte responses to LPS by suppressing the inhibitory activity of LPS-binding protein[J]. Innate Immun. 2008, 14(6):365-374.
    47 Voisset C, Op de Beeck A, Horellou P, et al. High-density lipoproteins reduce the neutralizing effect of hepatitis C virus (HCV)-infected patient antibodies by promoting HCV entry[J]. J. Gen. Virol. 2006, 87(Pt 9):2577-2581.
    48 Dreux M, Pietschmann T, Granier C, et al. High density lipoprotein inhibits hepatitis C virus-neutralizing antibodies by stimulating cell entry via activation of the scavenger receptor BI[J]. J. Biol. Chem. 2006, 281(27):18285 -18295.
    49 Courtney HS, Zhang YM, Frank MW, et al. Serum opacity factor, a streptococcal virulence factor that binds to apolipoproteins A-I and A-II and disrupts high density lipoprotein structure[J]. J. Biol. Chem. 2006, 281(9):5515-5521.
    50 Grunfeld C, Feingold KR. HDL and innate immunity: a tale of two apolipoproteins[J]. J. Lipid Res. 2008, 49(8):1605-1606.
    51 Cunningham MW. Pathogenesis of group A streptococcal infections[J]. Clin MicrobiolRev. 2000, 13(3):470-511.
    52 Cunningham MW. Pathogenesis of group A streptococcal infections and their sequelae[J]. Adv Exp Med Biol. 2008, 609:29-42.
    53 Sumby P, Barbian KD, Gardner DJ, et al. Extracellular deoxyribonuclease made by group A Streptococcus assists pathogenesis by enhancing evasion of the innate immune response[J]. Proc Natl Acad Sci U S A. 2005, 102(5):1679-1684.
    54 Fontaine MC, Lee JJ, Kehoe MA. Combined contributions of streptolysin O and streptolysin S to virulence of serotype M5 Streptococcus pyogenes strain Manfredo[J]. Infect Immun. 2003, 71(7):3857-3865.
    55 Panizzi P, Boxrud PD, Verhamme IM, et al. Binding of the COOH-terminal lysine residue of streptokinase to plasmin(ogen) kringles enhances formation of the streptokinase.plasmin(ogen) catalytic complexes[J]. J Biol Chem. 2006, 281(37):26774-26778.
    56 Starr CR, Engleberg NC. Role of hyaluronidase in subcutaneous spread and growth of group A streptococcus[J]. Infect Immun. 2006, 74(1):40-48.
    57 McNamara C, Zinkernagel AS, Macheboeuf P, et al. Coiled-coil irregularities and instabilities in group A Streptococcus M1 are required for virulence[J]. Science. 2008, 319(5868):1405-1408.
    58 Kristian SA, Datta V, Weidenmaier C, et al. D-alanylation of teichoic acids promotes group A Streptococcus antimicrobial peptide resistance, neutrophil survival, and epithelial cell invasion[J]. J Bacteriol. 2005, 187(19):6719-6725.
    59 Churchward G. The two faces of Janus: virulence gene regulation by CovR/S in group A streptococci[J]. Mol Microbiol. 2007, 64(1):34-41.
    60 Gorton D, Norton R, Layton R, et al. Presence of fibronectin-binding protein gene prtF2 in invasive group A streptococci in tropical Australia is associated with increased internalisation efficiency[J]. Microbes Infect. 2005, 7(3):421-426.
    61 Mohs A, Silva T, Yoshida T, et al. Mechanism of stabilization of a bacterial collagen triple helix in the absence of hydroxyproline[J]. J Biol Chem. 2007, 282(41):29757-29765.
    62 Lukomski S, Nakashima K, Abdi I, et al. Identification and characterization of the scl gene encoding a group A Streptococcus extracellular protein virulence factor with similarity to human collagen[J]. Infect Immun. 2000, 68(12):6542 -6553.
    63 Rasmussen M, Eden A, Bjorck L. SclA, a novel collagen-like surface protein of Streptococcus pyogenes[J]. Infect Immun. 2000, 68(11):6370-6377.
    64 Han R, Zwiefka A, Caswell CC, et al. Assessment of prokaryotic collagen-likesequences derived from streptococcal Scl1 and Scl2 proteins as a source of recombinant GXY polymers[J]. Appl Microbiol Biotechnol. 2006, 72(1):109-115.
    65 Han R, Caswell CC, Lukomska E, et al. Binding of the low-density lipoprotein by streptococcal collagen-like protein Scl1 of Streptococcus pyogenes[J]. Mol Microbiol. 2006, 61(2):351-367.
    66 Ferretti JJ, McShan WM, Ajdic D, et al. Complete genome sequence of an M1 strain of Streptococcus pyogenes[J]. Proc Natl Acad Sci U S A. 2001, 98(8):4658-4663.
    67 Almengor AC, McIver KS. Transcriptional activation of sclA by Mga requires a distal binding site in Streptococcus pyogenes[J]. J Bacteriol. 2004, 186(23): 7847-7857.
    68 Whatmore AM. Streptococcus pyogenes sclB encodes a putative hypervariable surface protein with a collagen-like repetitive structure[J]. Microbiology. 2001, 147(Pt 2):419-429.
    69 Rasmussen M, Bjorck L. Unique regulation of SclB - a novel collagen-like surface protein of Streptococcus pyogenes[J]. Mol Microbiol. 2001, 40(6):1427-1438.
    70 Lukomski S, Nakashima K, Abdi I, et al. Identification and characterization of a second extracellular collagen-like protein made by group A Streptococcus: control of production at the level of translation[J]. Infect Immun. 2001, 69(3):1729-1738.
    71 Humtsoe JO, Kim JK, Xu Y, et al. A streptococcal collagen-like protein interacts with the alpha2beta1 integrin and induces intracellular signaling[J]. J Biol Chem. 2005, 280(14):13848-13857.
    72 Caswell CC, Barczyk M, Keene DR, et al. Identification of the first prokaryotic collagen-sequence motif that mediates binding to human collagen receptors, integrins alpha 2beta 1 and alpha 11beta 1[J]. J Biol Chem. 2008.
    73 Caswell CC, Han R, Hovis KM, et al. The Scl1 protein of M6-type group A Streptococcus binds the human complement regulatory protein, factor H, and inhibits the alternative pathway of complement[J]. Mol Microbiol. 2008, 67(3):584-596.
    74 Pahlman LI, Marx PF, Morgelin M, et al. Thrombin-activatable fibrinolysis inhibitor binds to Streptococcus pyogenes by interacting with collagen-like proteins A and B[J]. J Biol Chem. 2007, 282(34):24873-24881.
    75 Xu Y, Keene DR, Bujnicki JM, et al. Streptococcal Scl1 and Scl2 proteins form collagen-like triple helices[J]. J Biol Chem. 2002, 277(30):27312-27318.
    76 Paterson GK, Nieminen L, Jefferies JM, et al. PclA, a pneumococcal collagen-like protein with selected strain distribution, contributes to adherence and invasion of host cells[J]. FEMS Microbiol Lett. 2008, 285(2):170-176.
    77 Thompson BM, Stewart GC. Targeting of the BclA and BclB proteins to the Bacillusanthracis spore surface[J]. Mol Microbiol. 2008, 70(2):421-434.
    78 Berg K. A New Serum Type System in Man--the Lp System[J]. Acta Pathol Microbiol Scand. 1963, 59:369-382.
    79 Dahlen G, Ericson C, Furberg C, et al. Studies on an extra pre-beta lipoprotein fraction[J]. Acta Med Scand Suppl. 1972, 531:1-29.
    80 Dahlen G, Frick MH, Berg K, et al. Further studies of Lp(a) lipoprotein/pre- beta1-lipoprotein in patients with coronary heart disease[J]. Clin Genet. 1975, 8(3):183-189.
    81 McLean JW, Tomlinson JE, Kuang WJ, et al. cDNA sequence of human apolipoprotein(a) is homologous to plasminogen[J]. Nature. 1987, 330(6144):132-137.
    82 Berglund L, Ramakrishnan R. Lipoprotein(a): an elusive cardiovascular risk factor[J]. Arterioscler Thromb Vasc Biol. 2004, 24(12):2219-2226.
    83 Xu S. Apolipoprotein(a) binds to low-density lipoprotein at two distant sites in lipoprotein(a)[J]. Biochemistry. 1998, 37(26):9284-9294.
    84 Berg K. Lp(a) lipoprotein: an overview[J]. Chem Phys Lipids. 1994, 67-68:9-16.
    85 Marcovina SM, Zhang ZH, Gaur VP, et al. Identification of 34 apolipoprotein(a) isoforms: differential expression of apolipoprotein(a) alleles between American blacks and whites[J]. Biochem Biophys Res Commun. 1993, 191(3): 1192-1196.
    86 Jenner JL, Seman LJ, Millar JS, et al. The metabolism of apolipoproteins (a) and B-100 within plasma lipoprotein (a) in human beings[J]. Metabolism. 2005, 54(3):361-369.
    87 Fless GM, Snyder ML, Furbee JW, Jr., et al. Subunit composition of lipoprotein(a) protein[J]. Biochemistry. 1994, 33(45):13492-13501.
    88 Jenner JL, Ordovas JM, Lamon-Fava S, et al. Effects of age, sex, and menopausal status on plasma lipoprotein(a) levels. The Framingham Offspring Study[J]. Circulation. 1993, 87(4):1135-1141.
    89 Kronenberg F, Steinmetz A, Kostner GM, et al. Lipoprotein(a) in health and disease[J]. Crit Rev Clin Lab Sci. 1996, 33(6):495-543.
    90 Lippi G, Guidi G. Lipoprotein(a): from ancestral benefit to modern pathogen?[J]. QJM. 2000, 93(2):75-84.
    91 Lahteenmaki K, Kuusela P, Korhonen TK. Bacterial plasminogen activators and receptors[J]. FEMS Microbiol Rev. 2001, 25(5):531-552.
    92 Loscalzo J, Weinfeld M, Fless GM, et al. Lipoprotein(a), fibrin binding, and plasminogen activation[J]. Arteriosclerosis. 1990, 10(2):240-245.
    93 Rouy D, Grailhe P, Nigon F, et al. Lipoprotein(a) impairs generation of plasminby fibrin-bound tissue-type plasminogen activator. In vitro studies in a plasma milieu[J]. Arterioscler Thromb. 1991, 11(3):629-638.
    94 Edelberg JM, Pizzo SV. Lipoprotein(a) inhibits plasminogen activation in a template-dependent manner[J]. Blood Coagul Fibrinolysis. 1991, 2(6):759-764.
    95 Edelberg JM, Gonzalez-Gronow M, Pizzo SV. Lipoprotein(a) inhibition of plasminogen activation by tissue-type plasminogen activator[J]. Thromb Res. 1990, 57(1):155-162.
    96 Bas Leerink C, Duif PF, Gimpel JA, et al. Lysine-binding heterogeneity of Lp(a): consequences for fibrin binding and inhibition of plasminogen activation[J]. Thromb Haemost. 1992, 68(2):185-188.
    97 Mao SJ, Tucci MA. Lipoprotein(a) enhances plasma clot lysis in vitro[J]. FEBS Lett. 1990, 267(1):131-134.
    98 Liu J, Harpel PC, Gurewich V. Fibrin-bound lipoprotein(a) promotes plasminogen binding but inhibits fibrin degradation by plasmin[J]. Biochemistry. 1994, 33(9):2554-2560.
    99 Sangrar W, Bajzar L, Nesheim ME, et al. Antifibrinolytic effect of recombinant apolipoprotein(a) in vitro is primarily due to attenuation of tPA-mediated Glu-plasminogen activation[J]. Biochemistry. 1995, 34(15):5151-5157.
    100 Sangrar W, Gabel BR, Boffa MB, et al. The solution phase interaction between apolipoprotein(a) and plasminogen inhibits the binding of plasminogen to a plasmin-modified fibrinogen surface[J]. Biochemistry. 1997, 36(34):10353 -10363.
    101 Hancock MA, Boffa MB, Marcovina SM, et al. Inhibition of plasminogen activation by lipoprotein(a): critical domains in apolipoprotein(a) and mechanism of inhibition on fibrin and degraded fibrin surfaces[J]. J Biol Chem. 2003, 278(26): 23260-23269.
    102 Dahlen GH. Lipoprotein(a), atherosclerosis and thrombosis[J]. Prog Lipid Res. 1991, 30(2-3):189-194.
    103 Loscalzo J. Lipoprotein(a). A unique risk factor for atherothrombotic disease[J]. Arteriosclerosis. 1990, 10(5):672-679.
    104 Kronenberg F, Utermann G. [Lipoprotein(a)--atherogenic waste product of evolution?][J]. Wien Med Wochenschr. 1994, 144(12-13):324-330.
    105 Xia J, May LF, Koschinsky ML. Characterization of the basis of lipoprotein [a] lysine-binding heterogeneity[J]. J Lipid Res. 2000, 41(10):1578-1584.
    106 Lippi G, Lo Cascio C, Ruzzenente O, et al. Simple and rapid procedure for the purification of lipoprotein(a)[J]. J Chromatogr B Biomed Appl. 1996, 682(2):225-231.
    107 Foster TJ, Hook M. Surface protein adhesins of Staphylococcus aureus[J]. Trends Microbiol. 1998, 6(12):484-488.
    108 O'Riordan K, Lee JC. Staphylococcus aureus capsular polysaccharides[J]. Clin Microbiol Rev. 2004, 17(1):218-234.
    109 Kessler CM, Nussbaum E, Tuazon CU. Disseminated intravascular coagulation associated with Staphylococcus aureus septicemia is mediated by peptidoglycan-induced platelet aggregation[J]. J Infect Dis. 1991, 164(1):101-107.
    110 de Haas CJ, Veldkamp KE, Peschel A, et al. Chemotaxis inhibitory protein of Staphylococcus aureus, a bacterial antiinflammatory agent[J]. J Exp Med. 2004, 199(5):687-695.
    111 Harraghy N, Hussain M, Haggar A, et al. The adhesive and immunomodulating properties of the multifunctional Staphylococcus aureus protein Eap[J]. Microbiology. 2003, 149(Pt 10):2701-2707.
    112 Boden MK, Flock JI. Fibrinogen-binding protein/clumping factor from Staphylococcus aureus[J]. Infect Immun. 1989, 57(8):2358-2363.
    113 McCormick JK, Yarwood JM, Schlievert PM. Toxic shock syndrome and bacterial superantigens: an update[J]. Annu Rev Microbiol. 2001, 55:77-104.
    114 Dinges MM, Orwin PM, Schlievert PM. Exotoxins of Staphylococcus aureus[J]. Clin Microbiol Rev. 2000, 13(1):16-34, table of contents.
    115 Collen D. Staphylokinase: a potent, uniquely fibrin-selective thrombolytic agent[J]. Nat Med. 1998, 4(3):279-284.
    116 Kim SH, Chun HS, Han MH, et al. A novel variant of staphylokinase gene from Staphylococcus aureus ATCC 29213[J]. Thromb Res. 1997, 87(4):387-395.
    117 Okada K, Ueshima S, Takaishi T, et al. Effects of fibrin and alpha2-antiplasmin on plasminogen activation by staphylokinase[J]. Am J Hematol. 1996, 53(3): 151-157.
    118 Molkanen T, Tyynela J, Helin J, et al. Enhanced activation of bound plasminogen on Staphylococcus aureus by staphylokinase[J]. FEBS Lett. 2002, 517(1-3):72-78.
    119 Pancholi V. Multifunctional alpha-enolase: its role in diseases[J]. Cell Mol Life Sci. 2001, 58(7):902-920.
    120 Ehinger S, Schubert WD, Bergmann S, et al. Plasmin(ogen)-binding alpha-enolase from Streptococcus pneumoniae: crystal structure and evaluation of plasmin(ogen)-binding sites[J]. J Mol Biol. 2004, 343(4):997-1005.
    121 Carneiro CR, Postol E, Nomizo R, et al. Identification of enolase as a laminin-binding protein on the surface of Staphylococcus aureus[J]. Microbes Infect.2004, 6(6):604-608.
    122 Pancholi V, Fischetti VA. alpha-enolase, a novel strong plasmin(ogen) binding protein on the surface of pathogenic streptococci[J]. J Biol Chem. 1998, 273(23):14503-14515.
    123 Agarwal S, Kulshreshtha P, Bambah Mukku D, et al. alpha-Enolase binds to human plasminogen on the surface of Bacillus anthracis[J]. Biochim Biophys Acta. 2008, 1784(7-8):986-994.
    124 Ballantyne DS, Warmington JR. Purification of native enolase from medically important Candida species[J]. Biotechnol Appl Biochem. 2000, 31 ( Pt 3):213-218.
    125 Fox D, Smulian AG. Plasminogen-binding activity of enolase in the opportunistic pathogen Pneumocystis carinii[J]. Med Mycol. 2001, 39(6):495-507.
    126 Jolodar A, Fischer P, Bergmann S, et al. Molecular cloning of an alpha-enolase from the human filarial parasite Onchocerca volvulus that binds human plasminogen[J]. Biochim Biophys Acta. 2003, 1627(2-3):111-120.
    127 Bernal D, de la Rubia JE, Carrasco-Abad AM, et al. Identification of enolase as a plasminogen-binding protein in excretory-secretory products of Fasciola hepatica[J]. FEBS Lett. 2004, 563(1-3):203-206.
    128 Vanegas G, Quinones W, Carrasco-Lopez C, et al. Enolase as a plasminogen binding protein in Leishmania mexicana[J]. Parasitol Res. 2007, 101(6):1511-1516.
    129 Yavlovich A, Rechnitzer H, Rottem S. Alpha-enolase resides on the cell surface of Mycoplasma fermentans and binds plasminogen[J]. Infect Immun. 2007, 75(12):5716-5719.
    130 Antikainen J, Kuparinen V, Lahteenmaki K, et al. Enolases from Gram-positive bacterial pathogens and commensal lactobacilli share functional similarity in virulence-associated traits[J]. FEMS Immunol Med Microbiol. 2007, 51(3):526 -534.
    131 Courtney HS, Ofek I, Penfound T, et al. Relationship between expression of the family of M proteins and lipoteichoic acid to hydrophobicity and biofilm formation in Streptococcus pyogenes[J]. PLoS ONE. 2009, 4(1):e4166.
    132 Berge A, Sjobring U. PAM, a novel plasminogen-binding protein from Streptococcus pyogenes[J]. J Biol Chem. 1993, 268(34):25417-25424.
    133 D'Costa SS, Boyle MD. Interaction of a group A Streptococcus within human plasma results in assembly of a surface plasminogen activator that contributes to occupancy of surface plasmin-binding structures[J]. Microb Pathog. 1998, 24(6):341-349.
    134 Edelberg J, Pizzo SV. Lipoprotein (a) regulates plasmin generation and inhibition[J]. Chem Phys Lipids. 1994, 67-68:363-368.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700