用户名: 密码: 验证码:
日粮ω6/ω3比例对肉鸡脂肪酸组成及肉品质的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文通过四个试验研究了日粮不同ω6/ω3多不饱和脂肪酸(polyunsaturated fatty acids, PUFA)比例(ω6/ω3)对肉鸡生产性能、屠体品质、脂肪沉积、肉品质及脂肪酸组成的影响;从脂质代谢关键基因、肉质候选基因以及脂肪酸代谢基因的mRNA表达水平上,探讨了日粮ω6/ω3对脂肪代谢的影响机制;建立了鸡原代肝实质细胞分离培养方法,研究了脂肪酸对体外肝细胞增殖的影响。
     试验一研究了日粮不同ω6/ω3比例对AA鸡生产性能、屠体品质、脂肪沉积、肉品质及脂肪酸组成的影响。结果表明:①饲喂10:1的日粮显著增加6周龄AA鸡的体重和日采食量;②随着日粮ω6/ω3比值的降低,屠宰率和净膛率显著下降;低ω6/ω3比值的日粮增加腹脂率、皮下脂肪和肌间脂肪;③日粮ω6/ω3比值从18下降到2.6时,胸、腿肌滴水损失显著下降;除日粮比值从5降到2.6时胸肌b*值下降外,胸、腿肌变化规律相似,a*值和b*值变化趋势相反:a*值下降,b*值上升;④日粮ω6/ω3的降低,ω3 PUFA中ALA、EPA和DPA显著增加;⑤肝脏中ALA含量低于胸肌,而其长链衍生物C20:3、EPA和DHA的含量则是肝脏中含量较高。本试验证明,在日粮3 %的油脂添加水平下,通过调整油脂类型来降低日粮ω6/ω3,能在一定程度改善AA鸡肉品质,并有效地增加胸肌中人体必需的ω3长链PUFA沉积,获得营养丰富的鸡肉。
     试验二研究了长期改变日粮脂肪酸组成对北京油鸡脂肪沉积、肉品质及脂肪酸组成的影响。结果表明:①饲喂ω6/ω3为5:1的日粮能提高北京油鸡体重和饲料报酬。②饲喂10:1的日粮,肌间脂带宽和胸、腿肌IMF显著(P < 0.001)高于饲喂其它比值的日粮;除腿肌IMF在13周龄最低外,其他屠体指标随着日龄的增加而极显著(P < 0.001)增加。③当日粮比值从27降至5时,胸、腿肌剪切力、b*、L*值以及胸肌滴水损失和a*值和IMP含量显著增加;随着日龄的增加,胸、腿肌pH值、a*值显著下降;13周龄时胸肌剪切力和IMP含量达到最大,滴水损失最小。④随着日粮ALA含量的增加,胸肌和肝脏中大多数ω3 PUFA(ALA、EPA和DPA)而极显著增加(P < 0.001),但DHA不受日粮的影响。⑤肝脏组织中LA和ALA的含量低于相应的胸肌;日龄对肝脏和胸肌脂肪酸组成的影响存在差异,随着日龄的增加,肝脏ALA、DPA和总的ω3 PUFA含量在13周龄时最高;而胸肌大多数的ω3 PUFA(EPA、DPA、DHA和总ω3 PUFA)、所有的ω6 PUFA随日龄增加显著减少(P < 0.001)。本试验进一步证明,降低日粮ω6/ω3能够显著增加ALA向其长链衍生物EPA和DPA的转化能力;10:1的日粮显著增加IMF含量,可能是由于该比值能够增强脂肪酸的内源合成能力;13周龄时胸肌ω6/ω3最低、IMP最高,为北京油鸡13周龄上市提供了新的依据。
     试验三利用Q-PCR技术研究日粮ω6/ω3对不同品种、日龄肉鸡肉品质和脂类代谢相关基因表达的影响。结果表明:①10和2.6的ω6/ω3比值能显著增加6周龄北京油鸡Δ6 FAD基因的表达水平;6周龄Δ6 FAD基因的表达显著高于13和22周龄。②北京油鸡A-FABP mRNA表达水平随日龄的增加而显著增加。③随着日粮ω6/ω3的降低,腹脂LPL mRNA表达显著增加;北京油鸡LPL表达水平在6周龄时最高。④日粮ω6/ω3的改变对ALDH1A1和CAPN1影响极显著,但影响趋势相反,随着日粮比值的降低,ALDH1A1显著降低,而CAPN1却显著上升。⑤10:1的日粮显著增加AA鸡和北京油鸡Apo-AⅠ基因表达,油鸡该基因的表达要显著低于AA鸡。本研究发现,幼龄动物Δ6 FAD和LPL表达较高,A-FABP水平较低;日粮ω6/ω3对LPL、ALDH1A1、Apo-AⅠ和CAPN1影响显著;不同品种间Apo-AⅠ和H-FABP表达存在差异。上述结果为研究日粮脂肪酸组成对肉质和脂肪代谢提供了依据。
     试验四研究了LA、ALA和不同LA/ALA比值对体外鸡肝实质细胞增殖的影响。结果表明:使用0.05 %的胶原酶Ⅱ进行原位二步灌流分离法,不需要大量的胶原酶,细胞分离效果好,细胞活率高。LA、ALA及不同比例的LA/ALA处理肝实质细胞72 h后,LA/ALA比值为10的处理组细胞增殖作用最强。
     综上所述,动物试验表明,在较低的油脂添加水平下,降低ω6/ω3能够有效地增加鸡肉中ω3 PUFA的含量,分子试验也证明了该结果,同时发现了幼龄动物具有较强的向长链脂肪酸转化的能力。10:1的日粮显著增加北京油鸡IMF含量和Apo-AⅠ基因表达,同时体外研究发现,10:1的LA/ALA比值对鸡肝实质细胞增殖有促进作用,此结果可能与该比值对体内脂肪代谢及整个机体内环境的稳定与正常生长密切相关。
Four experiments were conducted to study the effects of dietaryω6/ω3 on growth performance, carcass traits, fat deposition, meat quality, fatty acids composition and expression of key genes related to meat quality or lipid metabolism in chicken. Method for isolation and culture of chicken hepatocytes was established, by which effect of fatty acids on proliferation of hepatocytes was examined.
     Trail 1 was carried out to assess the effects of dietaryω6/ω3 on growth performance, carcass traits, fat deposition, meat quality and fatty acids composition of AA broiler. The results showed that birds fed 10: 1 diet incorporated significantly higher body weight (BW) and average daily feed intake (ADFI) than fed the other birds. Percentage of dressing (PD), eviscerated carcass (PEC) decreased significantly as dietaryω6/ω3 was reduced; percentage of abdominal fat (PAF), subcutaneous fat (SBF) and intermuscular fat (IF) were higher in birds fed lower ratio diets. Drip loss (DL) in both breast and thigh muscle increased significantly in birds fedω6/ω3 ratio from 18 to 2.6. Except b* value in breast muscle decreased as birds fed dietary ratio from 5 to 2.6, the tendency for breast and thigh muscle were almost similar; a* values progressively increased as the diets contained increasingω3 content, changes in b* were also significant but the pattern was almost the reverse for changes in a*. Decreasing the dietaryω6/ω3 clearly increased the contents of ALA, EPA and DPA, but not for DHA. Liver had lower ALA, higher C20: 3, EPA and DHA than breast muscle. The results clearly demonstrated that decreasing the dietaryω6/ω3 by supplementing 3 % oil, improves meat quality of AA broiler, and increases deposition of desirableω3 andω6 long chain PUFA in the edible tissues, thereby achieving nutritionally enriched meat.
     Trail 2 was conducted to study the effects of dietaryω6/ω3 on fat deposition, meat quality and fatty acids composition of Beijing-you chicken. The results showed that birds fed 5: 1 diet gained significantly higher BW and feed intake to gain ratio (F/G) than fed the other diets. For both breast and thigh muscle, birds fed the 10:1ω6/ω3 diet incorporated significantly (P < 0.05) higher intramuscular fat and IF than did birds fed the other diets; all carcass traits increased significantly (P < 0.001) from 6 to 22 wk. Shear force (SF), L* or b* value of meat color and DL in breast muscle decreased, while inosine-5’-monophosphate (IMP) and a* value increase, as the diets contained increasingω3 content, up to the 5:1ω6/ω3 (P < 0.01). Regardless of diet, a* value of meat color and pH at 1h postmortem declined (P < 0.001) between 6 and 22 wk. Chickens fed for 13 wk had the highest (P < 0.001) SF and IMP content, and lowest DL in breast muscle. Decreasing the dietaryω6/ω3 significantly increased (P < 0.001) the contents of ALA, EPA and DPA, but not DHA in both breast muscle and liver. Both LA and ALA were at lower levels in liver tissue lipid than in muscle. The most obvious difference in the effect of time on fatty acid composition between muscle and liver was that the percentage of ALA, DPA, and totalω3 PUFA were highest at 13 wk, but the percentage of mostω3 PUFA (EPA, DPA, DHA, and totalω3 PUFA) and allω6 PUFA decreased (P < 0.001) with time. This study clearly shows that decreasing the dietaryω6/ω3, without change in total dietary lipid, increases the efficiency of ALA to its long chain derivatives, with the exception of DHA. The pronounced effects of the diets on IMF could indicate that the 10:1ω6/ω3 ratio was optimal for de novo lipogenesis. The highest IMP content and lowestω6/ω3 in breast muscle at 13 wk provided proof for marketing the Beijing-you chicken.
     Trail 3 investigated effects of dietaryω6/ω3 on gene expression related to meat quality and lipid metabolism in different breeds and age by Q-PCR. Results showed that the expression ofΔ6 FAD in abdominal fat was highest in Beijng-you chickens of 6 wk fed dietary ratio of 10 and 2.6. A-FABP expression increased significantly (P < 0.001) from 6 to 22 wk. Decreasing the dietaryω6/ω3 significantly increased (P < 0.001) the expression of LPL in abdominal fat, and the highest expression level for LPL occurred at 6 wk for Beijing-you chicken. The expression of CAPN1 progressively increased as the diets contained increasingω3 content, the changes in ALDH1A1 were also significant but the pattern was almost the reverse of changes in CAPN1. Apo-AⅠgene expression in Beijing-you chicken was lower than that in AA broiler, and fed 10: 1 diet was higher than other diets. In conclusion, the expression ofΔ6 FAD and LPL was higher in younger birds, LPL, ALDH1A1, Apo-AⅠand CAPN1 expression was significantly influenced by varying dietaryω6/ω3, there were significantly different of Apo-AⅠand H-FABP expression between two breeds.
     Trail 4 examined effect of LA, ALA and different LA/ALA ratio on proliferation of chicken hepatocytes. The results showed that high purity and viability of hepatocytes could be obtained by two steps in situ circulatory perfusion method with little 0.05 % collagenaseП. MTT results showed that ratio of 10 for LA/ALA promoted proliferation of hepatocytes after culture for 72 h.
     In conclusion, this study from in vivo suggests that, the efficiency of the chicken to convert ALA to EPA and DPA can be improved by feeding a diet of lowerω6/ω3 ratio with a relatively low amount of total added fat. The following molecular test demonstrated this result further, and found the best ability of conversion to long chain fatty acids occurred in younger birds. Furthermore, the results from in vitro that the 10: 1 ratio of LA/ALA can promote the proliferation of hepatocytes, along with the highest IMF content and Apo-AⅠexpression in Beijing-you chicken fed 10: 1 diet in vivo, may be closely associated with the influence of this ratio on lipid metabolism, stability and growth of organism.
引文
1.白爱英,曹健,魏明.共轭亚油酸的生理功能及其合成、纯化研究检测方法.中国油脂, 2003, 28(7): 43~46.
    2.蔡妙颜,李冰,袁向华.膳食中的脂肪酸平衡.粮油食品科技, 2003, 11(2): 37~39.
    3.陈晓岚,黄仁彬,许名宗,欧阳驰,周少平.二十二碳六烯酸对神经细胞生长发育的影响.中国现代医学杂志, 2002, 12(22): 43~45.
    4.仇雪梅.影响生长核肉质性状的主要候选基因的研究[博士学位论文].北京:中国农业大学, 2004.
    5.邓泽元,周潇奇,黄玉华,刘东敏.中国居民20年间食物脂肪酸摄入量调查分析.食品与生物技术学报, 2008, 27(1): 7~19.
    6.范建高,曾民德,洪健,李继强,岳德凯.不饱和脂肪酸对L-02和HLF细胞增殖及合成细胞外基质的影响.华人消化杂志, 1998, 6(6): 502~504.
    7.韩剑众,桑雨周,周天琼.饲养方式和饲喂水平对肌肉肌纤维特性及肉质的影响.畜牧与兽医, 2003b, 35(12):17.
    8.韩剑众,桑雨周,周天琼.饲养方式和饲喂水平对肌肉鸡苷酸含量及肉质的影响.黑龙江畜牧兽医, 2003a, 9:10~11.
    9.韩瑞丽.β-胡萝卜素和VE对富含ω-3多不饱和脂肪酸鸡肉的保护作用和肉质的影响[硕士学位论文].泰安:山东农业大学, 2003.
    10.杭晓敏,唐涌濂,柳向龙.多不饱和脂肪酸的研究进展.生物工程进展, 2001, 21(4): 18~21.
    11.胡晓军,郭忠贤,赵毅.亚麻籽综合利用及开发前景浅析.中国麻业, 2002, 24(5): 40~41.
    12.江青艳,傅伟龙,高淑静,吴荣辉.鸡离体肝细胞几种分离方法的比较.华南农业大学学报, 2001, 22(1): 66~69.
    13.姜琳琳,刘华贵,齐德生,徐淑芳,黄翠芳.鸡肉中脂肪酸的研究进展.肉类研究, 2006, 1: 37~40.
    14.蒋汉明,张凤珍,翟静,张媛英,孙凌云,顾洪雁.ω-3多不饱和脂肪酸与人类健康.预防兽医论坛, 2005, 11(1): 65~69.
    15.李春笑,赖松家.钙蛋白酶Ⅰ(CAPN1)基因的研究进展.安徽农业科学, 2006, 34(24): 6446~6449.
    16.李惠峰.鸡脂肪代谢相关基因的表达与网络分析[博士学位论文].北京:中国农业大学, 2005.
    17.李惠侠,杨公社,曲鑫建.花生四烯酸对大叔前体脂肪细胞增殖与分化的影响.中国畜牧杂志, 2006, 42(17): 28~29.
    18.李建军.优质肉鸡风味特性研究[博士学位论文].北京:中国农业科学院研究生院, 2003.
    19.李强,史俊南,王鑫源,吴织芬,孙叶芳.前列腺素E2对鼠头骨盖钙代谢的作用.牙髓牙体牙周病学杂志, 2001, 11(3):192~193.
    20.李绍钰,张敏红. VE、C、B2对高温环境下肉鸡生长性能脂质过氧化水平的影响.河南农业科学, 2000, 1: 28~31.
    21.李文娟.鸡肉品质相关脂肪代谢功能基因的筛选机营养调控研究[博士学位论文].北京:中国农业科学院, 2008.
    22.刘则学.亚麻籽中多不饱和脂肪酸在猪不同组织中的富集规律及对猪胴体品质的影响[硕士学位论文].武汉:华中农业大学, 2006.
    23.罗桂芬,陈继兰,文杰,赵桂苹,郑麦青,孙世铎.鸡A-FABP基因多态性分析及其与脂肪性状的相关研究.遗传, 2006, 28(1): 39-42.
    24.马伏英,智光,张建红.ω6/ω3脂肪酸平衡对动脉粥样硬化的影响.中国医刊, 2005, 40(11): 49~50.
    25.梅承君,庞辉,康相涛,孙桂荣.钙蛋白酶系统研究进展.安徽农业科学, 2006, 34(22): 5774~5776.
    26.牟彦双,王宇祥,王启贵,李辉.鸡脂蛋白脂酶(LPL)基因单核苷酸多态性与体脂性状的相关研究.中国动物遗传育种研究进展.中国农业科学技术出版社, 2005, 447~450.
    27.潘爱銮,皮劲松,梁振华,申杰,杜金平. 6个品种鸡LPL基因的PCR-RFLP分析.中国家禽, 2004, 8(1): 152~154.
    28.曲海霞,杨金菊,刘莹,柳晓兰, Gian P Visentin,高建恩,胡和平,孙启鸿.鼠抗人醛脱氢酶1A1单克隆抗体的制备与鉴定.中国肝脏病杂志, 2007, 15(11): 867~868.
    29.唐仁勇.μ-Calpain、Calpastatin与猪肉嫩度的关系及其基因表达的营养调控研究[博士学位论文].雅安:四川农业大学, 2008.
    30.王爱侠,刘进国,李同树.黄羽肉鸡肌肉中脂肪酸组成的分析比较.饲料博览, 2004, 3: 1~3.
    31.王洪宝,李辉,王启贵,王宇祥.全基因组芯片分析肉鸡腹脂双向选择品系脂肪组织基因表达谱.中国畜牧兽医学会2006学术年会论文集. pp: 53-57.
    32.王洪宝,王启贵,李辉.利用基因芯片技术研究两品种鸡脂肪组织差异表达基因.生物工程学报, 2005, 21(6): 979~982.
    33.王利华,霍贵成.ω3多不饱和脂肪酸的生物学作用.东北农业大学学报, 2001, 32(1):100~104.
    34.王启贵,李辉,李宁,冷丽,王桂华,敖金霞,王宇祥. Apo-AⅠ基因多态性与鸡生长和体组成性状的相关研究.畜牧兽医学报, 2005, 36(8): 751~754.
    35.王宇祥.鸡FAS、LPL基因的SNP与生长和脂肪性状的遗传相关分析[硕士学位论文].哈尔滨:东北农业大学, 2004.
    36.王云龙,卢恕来,陈保生.载脂蛋白A-Ⅰ结构及其功能.生命的化学, 2008, 28(3): 279~282.
    37.吴静.猪营养中的脂肪酸平衡.饲料研究, 2006, 3: 39~41.
    38.夏中生,邹彩霞,卢洁,陈继新.饲喂不同油脂对黄羽肉鸡肌肉组织中脂肪酸组成的影响.畜牧与兽医, 2003, 35(7): 13~16.
    39.肖千钧,蒋隽,燕海峰,许镇尧,肖兵南,吴晓林.几个鸡种肉质特性的比较研究.湖南畜牧兽医, 2001, 6: 3~4.
    40.谢欣梅.亚麻籽在动物饲料中的应用潜力.内蒙古民族大学学报(自然科学版), 2005, 20(5): 530~532.
    41.徐廷生,雷雪芹,史学艺.斗鸡及其杂交后代肌肉脂肪酸的组成.中国家禽, 1999, 21(10): 9~10.
    42.徐勇霞,付明德.载脂蛋白AⅠ结构与功能研究进展.国外医学分子生物学分册, 2002, 24(1): 62~64.
    43.颜海燕,王林.脂肪酸结合蛋白在代谢性疾病中的作用.国际药学研究杂志, 2008, 35(6): 464~467.
    44.杨烨,冯玉兰,李忠荣,谢新东,缪伏荣,方贵友,涂化章,文杰.性别和营养水平对福建河田鸡风味前提物质含量的影响.畜牧兽医学报, 2006, 37(3): 242~249.
    45.杨烨.优质鸡肌内脂肪代谢调控及其与肉质性状关系的研究[博士学位论文].北京:中国农业科学院研究生院, 2005.
    46.叶满红.鸡脂肪酸结合蛋白基因的克隆及其与肌内脂肪含量关系的研究[博士学位论文].北京:中国农业科学院, 2003.
    47.张琦,李明春,孙颖,任勇,孙红妍.Δ6-脂肪酸脱氢酶对n-6和n-3途径中脂肪酸底物的偏好.微生物学通报, 2004, 31(6): 57~61.
    48.张瑛,刘仲熊,田鸾英,张水堂,张丙宏.早产儿长链多价不饱和脂肪酸水平及相关因素研究.中华儿科杂志, 1999, 37(2):73~75.
    49.赵桂苹,陈继兰,文杰,郑麦青,李小华.北京油鸡品种资源特征描述,中国家禽, 2005, 27(23): 49~50.
    50.赵林山,郑海洪,张淑芹,杨永良.脂肪酸与基因表达.黑龙江畜牧兽医, 2001, 9: 33~34.
    51.郑云峰.不同饲养方式对肉鸡胴体品质、脂肪代谢的影响[硕士学位论文].杨凌:西北农林科技大学, 2005.
    52.中国营养学会.中国居民膳食营养素参考摄入量.北京:中国轻工业出版社, 2000.
    53.周北凡.经济转型期的膳食营养和慢性病预防——挑战和机遇并存.营养学报, 2004, 64(4):241~243.
    54.朱庆.优质鸡肉质性状相关基因的研究与应用进展.中国家禽, 2008, 30(10): 32~35.
    55.邹彩霞,夏中生.富含n-多不饱和脂肪酸的家禽产品的研究与开发.粮食与饲料工业, 2003, 11: 25~26.
    56.邹彩霞.富含多不饱和脂肪酸和低胆固醇鸡肉的研究[硕士学位论文].南宁:广西大学, 2002.
    57.周光宏.肉品学.北京:中国农业科技出版社, 1999.
    58. Abulencia, A. et al. First measurement of the ratio of central-electron to forward-electron w partial cross sections in pp [over] collisions at (square root) s =1.96 Tev. Phys. Rev. Lett (25). 2007, 98:251801.
    59. Ahn D A, Lutz S, Sim J S. Effects of dietary alpha-linolenic acid on the fatty acid composition, storage stability and sensory characteristics of pork loin. Meat Science, 1996, 43: 291~299.
    60. Ajuyah A O, Lee K H, Hardin R T, Sim J S. Changes in the yield and in the fatty acid composition of whole carcass and selected meat portions of broiler chickens fed full-fat oil seeds. Poultry Science, 1991, 70: 2304~2314.
    61. Allen C D, Fletcher D L, Northcutt J K, Russell S M. The relationship of broiler breast color to meat quality and shelf-life. Poultry Science, 1998, 77: 361~366.
    62. Ayerza R, Coates W, Lauria M. Chia seed (salvia hispanica l.) as an omega-3 fatty acid source for broilers: Influence on fatty acid composition, cholesterol and fat content of white and dark meats, growth performance, and sensory characteristics. Poultry Science, 2002, 81: 826~837.
    63. Baéza E, Dessay C, Wacrenier N, MarchéG, Listrat A. Effects of selection for improved body weight and composition on muscle and meat characteristics in Muscovy ducks. British Poultry Science, 2002, 43: 560~568.
    64. Baéza E, Salichon MR, MarchéG, Wacrenier N, Dominguez B, Culiolo J. Effects of age and sex on the structural, chemical and technological characteristics of mule duck meat. British Poultry Science, 2000, 41: 300~307.
    65. Barroeta A C. Nutritive value of poultry meat: relationship between vitamin E and PUFA. World’s Poultry Science Journal, 2007, 63: 277~285.
    66. Beattie V E, Weatherup R N, Moss B W, Walker N. The effect of increasing carcass weight of finishing boars and gilts on joint composition and meat quality. Meat Science, 1999, 52: 205~211.
    67. Bézard J, Blond JP, Bernard A, Clouet P. The metabolism and availability of essential fatty acids in animal and human tissues. Reproduction, Nutrition, Development, 1994, 34: 539~568.
    68. Boord J B, Maeda K, Makowski L, Babaev V R, Fazio S, Linton M F, Hotamisligil G S. Adipocyte fatty acid-binding protein, aP2, alters late atherosclerotic lesion formation in severe hypercholesterolemia. Arteriosclerosis Thrombosis and Vascular Biology, 2002, 22(10): 1686~1691.
    69. Bou R, Codony R, Tres A, Baucells M D, Guardiola F. Increase of geometrical and positional fatty acid isomers in dark meat from broilers fed heated oils. Poultry Science, 2005, 84: 1942~1954.
    70. Bou R, Grimpa S, Guardiola F, Barroeta A C, Codony R. Effects of various fat sources,α-tocopheryl acetate, and ascorbic acid supplements on fatty acid composition andα-tocopherol content in raw and vaccum-packed, cooked dark chicken meat. Poultry Science, 2006, 85: 1472~1481.
    71. Bou R, Guardiola F, Tres A, Barroeta A C, Codony R. Effect of dietary fish oil,α-tocopheryl acetate, and zinc supplementation on the composition and consumer acceptability of chicken meat. Poultry Science, 2004, 83: 282~292.
    72. Bourre J M, Piciotti M, Dumond O.Δ6 desaturase in brain and liver during development and aging. Lipids, 1990, 25: 354~356.
    73. Cameron N D, Enser M, Nute G R, Whittington F M, Penman J C, Fisken A C, Perry A M, and Wood J D. Genotype with nutrition interaction on fatty acid composition of intramuscular fat and the relationship with flavour of pig meat. Meat Science, 2000, 55:187~195.
    74. Castellini C, Mugnai C, Dal Bosco A. Meat quality of three chicken genotypes reared according to the organic system. Meat Science, 2002, 60: 219~225.
    75. Chang C L, Seo T, Matsuzaki M, Worgall T S, Deckelbaum R J. n-3 fatty acids reduce arterialLDL-Cholesterol delivery and arterial lipoprotein lipase levels and lipase distribution. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29(4): 555~561.
    76. Chartrin P, Bernadet M D, Guy G, Mourot J, Hocquette J F, Rideau N, Duclos M J, Baéza E. Do age and feeding levels have comparable effects on fat deposition in breast muscle of mule ducks? Animal, 2007, 1: 113~123.
    77. Chen J L, Zhao G P, Zheng M Q, Wen J, Yang N. Estimation of genetic parameters for contents of intramuscular fat and inosine-5’-monophosphate and carcass traits in Chinese Beijing-you chickens. Poultry Science, 2008, 87: 1098~1104.
    78. Cherian G, Sim J S. Maternal dietaryα-linolenic acid (18:3 n-3) alter n-3 polyunsaturated fatty acid metabolism and live enzyme activity in hatched chicks. Poultry Science, 2001, 80: 901~905.
    79. Cho H P, Nakamura M T, Clark S D. Cloning, expression, and nutritional regulation of the mammalianΔ-6 desaturase. The Journal of Biological Chemistry, 1999, 274(1): 471~477.
    80. Cisneros F, Ellis M, McKeith F K, McGraw J, Fernando R L. Influence of slaughter weight on growth and carcass characteristics, commercial cutting and curing yields, and meat quality of barrows and gilts from two genotypes. Journal of Animal Science, 1996, 74: 2566~2576.
    81. Close W H. Nutritional manipulation of meat quality in pigs and poultry. Alltech’s 11th Annual Asia-Pacific Lecture Tour. 1997, 99~110.
    82. Corino C, Musella M, Mourot J. Influence of extruded linseed on growth, carcass composition, and meat quality of slaughtered pigs at one hundred ten and one hundred sixty kilograms of liveweight. Journal of Animal Science, 2008, 86: 1850~1860.
    83. Cortinas L, Barroeta A C, Villaverde C, Galobart J, Guardiola F, Baucells M D. Influence of the dietary polyunsaturation level on chicken meat quality: Lipid oxidation. Poultry Science, 2005, 84: 48~55.
    84. Cortinas L, Villaverde C, Galobart J, Baucells M D, Codony R, Barroeta A C. Fatty acid content in chicken thigh and breast as affected by dietary polyunsaturation level. Poultry Science, 2004, 83: 1155~1164.
    85. Crespo N, Esteve-Garcia E. Dietary fatty acid profile modifies abdominal fat deposition in broiler chickens. Poultry Science, 2001, 80: 71~78.
    86. Croall D E, De Martino G N. Calcium-activated neutral protease (calpain) system: structure, functure, and regulation. Physiological Reviews, 1991, 71(3): 813~847.
    87. Davidek J, Khan A W. Estimation of inosinic acid in chicken muscle and its formation and degradation during post-mortem aging. Journal of Food Science, 1967, 32:155-157.
    88. De Boer V C, van Schothorst E M, Dihal A A, van der Woude H, Arts I C, Rietjens I M, Hollman P C, Keijer J. Chronic quercetin exposure affects fatty acid catabolism in rat lung. Cellular and Molecular Life Sciences, 2006, 63(23): 2847~2858.
    89. Department of Health. Nutritional Aspects of Cardiovascular Disease. Report on Health and Social Subjest No. 46. London: Her Majesty’s Stationery Office, 1994.
    90. Doi M, Kondo Y, Tsutsumi K. Lipoprotein lipase activator NO-1886 (ibrolipim) accelerates themRNA expression of fatty acid oxidation-related enzymes in rat liver. Metabolism, 2003, 52(12): 1547~1550.
    91. Doolittle M H, Ben-Zeev O, Elovson J, Martin D, Kirchgessner T G. The response of lipoprotein lipase to feeding and fasting. Journal of Biological Chemistry, 1990, 265: 4570~4577.
    92. Douaire M, Le Fur N, el Khadir-Mounier C, Langlois P, Flamant F, Mallard J. Identifying genes involved in the variability of genetic fatness in the growing chicken. Poultry Science, 1992, 71(11): 1911~1920.
    93. Duclos M J, Berri C, Bihan-Duval E L. Muscle growth and meat quality. The Journal of Applied Poultry Research, 2007, 16: 107~112.
    94. Emken E A, Adlot R O, Gulley R M. Dietary linoleic acid influences desauration and acylation of deuterium-labeled linoleic and lionlenic acids in young adult males. Biochimica et Biophysica Acta, 1994, 1213: 277~188.
    95. Enser M, Richardson R I, Wood J D, Gill B P, Sheard P R. Feeding linseed to increase the n-3 PUFA of pork: fatty acid composition of muscle , adipose tissue, liver and sausages. Meat Science, 2000, 55: 201~212.
    96. Enser M. The chemistry, biochemistry and nutritional importance of animal fats. In Wiseman J (Ed.), Fat in animal nutrition. London: Butterworths. 1984, 23~51.
    97. Fanatico A C, Pillai P B, Cavitt L C, Emmert J L, Meullenet J F, Owens C M. Evaluation of Slower-Growing Broiler Genotypes Grown with and Without Outdoor Access: Sensory Attributes. Poultry Science, 2006, 85(2): 337~343.
    98. Fanatico A C, Cavitt L C, Pillai P B, Emmert J L, Owens C M. Evaluation of slower-growing broiler genotypes grown with and without outdoor access: Meat quality. Poultry Science, 2005, 84: 1785~1790.
    99. Fébel H, Mézes M, Pálfy T, Hermán A, Gundel J, Lugasi A, Balogh K, Kocsis I, Blázovics A. Effect of dietary fatty acid pattern on growth, body fat composition and antioxidant parameters in broiler. Journal of Animal Physiology and Animal Nutrition, 2008, 92: 369~376.
    100. Ferrini G, Baucells M D, Esteve-Garcia E, Barroeta A C. Dietary polyunsaturated fat reduces skin fat as well as abdominal fat in broiler chickens. Poultry Science, 2008, 87: 528~535.
    101. Fisher R M, Th?rne A, Hamsten A, Arner P. Fatty acid binding protein expression in different human adipose tissue depots in relation to rates of lipolysis and insulin concentration in obese individuals. Molecular and Cellular Biochemistry, 2002, 239(1-2): 95~100.
    102. Gentry J G, McGlone J J, Miller M F, Blanton J R, Environmental effects on pig performance, meat quality, and muscle characteristics. Journal of Animal Science, 2004, 82: 209~217.
    103. Gerbens F, Rettenberger G, Lenstra J A, Veerkamp J H, te Pas M F W. Characterization, chromosomal localization, and genetic variation of the porcine heart fatty acid-binding protein gene. Mammalian Genome, 1997, 8: 328~332.
    104. Gerelt B, Rusman H, Nishiumi T, Suzuki A. Changes in calpain and calpastatin activities of osmotically dehydrated bovine muscle during storage after treatment with calcium. Meat Science,2005, 70: 55~61.
    105. Gonzalez-Esquerra R, Leeson S. Effects of menhaden oil and flaxseed in broiler diets on sensory quality and lipid composition of poultry meat. British Poultry Science, 2000, 41: 481~488.
    106. Grau A, Guardiola F, Grimpa S, Barroeta A C, Codony R. Oxidative stability of dark chicken meat through frozen storage: Influence of dietary fat and a-tocopherol and ascorbic acid supplementation. Poultry Science, 2001, 80: 1630~1642.
    107. Grey T C, Robinson D, Jones J M, Stock S W, Thomas N L. Effect of age and sex on the composition of muscle and skin from a commercial broiler strain. British Poultry Science, 1983. 24: 219~231.
    108. Griffin H D, Butterwith S C, Goddard C. Contribution of lipoprotein lipase to differences in fatness broiler and layer-strain chicken. British Poultry Science, 1987, 28: 197~206.
    109. Haak L, Smet S D, Fremaut D, Walleghem K V, Raes K. Fatty acid profile and oxidative stability of pork as influenced by duration and time of dietary linseed or fish oil supplementation. Journal of Animal Science, 2008, 86: 1418~1425.
    110. Harada S. Classification of alcohol metabolizing enzymes and polymorphisms—specificity in Japanese. Nihon Arukoru Yakubutsu Igakkai Zasshi, 2001, 36: 85~106.
    111. Heid C A, Stevens J, Livak K J, Williams P M. Real time quantitative PCR. Genome Research, 1996, 6: 986~994.
    112. Hertzel A V, Bennaars-Eiden A, Bernlohr D A. Increased lipolysis in transgenic animals overexpressing the epithelial fatty acid binding protein in adipose cells. Journal of Liplid Research, 2002, 43(12): 2105~2111.
    113. Hocquette J F, Graulet B, Olivecrona T. Lipoprotein lipase activity and mRNA levels in bovine tissue. Comparative Biochemistry Physiology, 1998, 121(B): 201~212.
    114. Hocquette J F, Graulet B, Vermorel M, Bauchart D. Weaning affects lipoprotein lipase activity and gene expression in adipose tissues and in masseter but not in other muscles of the calf. British Journal of Nutrition, 2001, 86: 433~441.
    115. Howe P, Meyer B, Record S, Baghurst K. Dietary intake of long-chain omega-3 polyunsaturated fatty acids: Contribution of meat sources. Nutrition, 2006, 22: 47~53.
    116. Hoz L, Lopez-Bote C J, Cambero M I, D’Arrigo M, Pin C, Santos C, Ordóňez J A. Effect of dietary linseed oil andα-tacopherol on pork tenderloin (Psons major) muscle. Meat Science, 2003, 65: 1039~1044.
    117. Jensen R G. The composition of bovine milk lipids. Journal of Dairy Science, 2000, 85: 295~350.
    118. Kim S C, Adesogan A T, Badinga L, Staples C R. Effects of dietary n-6: n-3 fatty acid ratio on feed intake, digestibility, and fatty acid profiles of the ruminal contents, liver, and muscle of growing lambs. Journal of Animal Science, 2007, 85: 706~716.
    119. Kirchgessner M, Ristic M, Keruzer M, Roth F X. Inclusion of fats with high quantities of free fatty acids in broiler diets. 2. Growth as well as quality of carcass, meat and fat as affected by the stepwise substitution of saturated by unsaturated fatty acids. Arch. Geflügelk, 1993, 57: 265~274.
    120. Komprda T, Sarmanova I, Zelenka J, Bakaj P, Fialova M, Fajmonova E. Effect of sex and age on cholesterol and fatty acid content in turkey meat. Arch. Geflügelk, 2002, 66: 263~273.
    121. Koohmaraie M, Whippleq Kretchmar D H, Crouse J D, Mersmann H J. Postmortem proteolysis in longissimus from beef, lamb and pork carcasses. Animal Science, 1991, 69(2): 617~624.
    122. Kouba M, Enser M, Whittington F M, Nute G R, Wood J D. Effect of a high-linolenic acid diet on lipogenic enzyme activities, fatty acid composition, and meat quality in the growing pig. Journal of Animal Science, 2003, 81: 1967~1979.
    123. Lebret B, Guillard A S. Outdoor rearing of cull sows: effect on carcass, tissue composition and meat quality. Meat Science, 2005, 70: 247~257.
    124. Lehninger A L, Nelson D L, Cox M M. Integration and hormonal regulation of mammalian metabolism. 1993, Pages 736~787. In: Principles of Biochemistry. 2nd Ed. Worth Publishers, New York, NK.
    125. Leibowitz S F, Dourmashkin J T, Chang G Q, Hill J O, Gayles E C, Fried S K, Wang J. Acute high-fat diet paradigms link galanin to triglycerides and their transport and metabolism in muscle. Brain Research, 2004, 1008(2): 168~178.
    126. López-Ferrer S, Baucells M D, Barroeta A C, Galobart J, Grashorn M A. n-3 enrichment of chicken meat. 2. Use of precursors of long-chain polyunsaturated fatty acids: Linseed oil. Poultry Science, 2001a, 80: 753~761.
    127. López-Ferrer S, Baucells M D, Barroeta A C, Grashorn M A. n-3 enrichment of chicken meat. 1. Use of very long-chain fatty acids in chicken diets and their influence on meat quality: Fish oil. Poultry Science, 2001b, 80: 741~752.
    128. López-Ferrer S, Baucells M D, Barroeta A C, Grashorn M A. n-3 enrichment of chicken meat using fish oil: Alternative substitution with rapeseed and linseed oils. Poultry Science, 1999, 78:356-365.
    129. Morgan J B, Wheeler T L, Koohmaraie M, Savell J W, Crouse J D. Meat tenderness and the calpain proteolytic system in longissimus muscle of young bulls and steers. Animal Science, 1993, 71(6): 1471~1476.
    130. Mosmann T. Rapid colorimetric assay for cell growth and survival: Application to proliferation and crytotoxicity assays. Journal of Immunological Methods, 1983, 65(1): 55.
    131. Mottram D S. Flavour formation in meat and meat products: a review. Food Chemistry, 1998, 62: 415~424.
    132. Nakamura M T, Cho H P, Clark S D. Regulation of hepaticΔ-6 desaturase expression and its role in the polyunsaturated fatty acid inhibition of fatty acid synthase gene expression in mice. The Journal of Nutrition, 2000, 130: 4561~1565.
    133. National Health and Medical Research Council (NHMRC). Nutrient Reference Values for Australia and New Zealand, including Recommended Dietary Intakes. Commonwealth of Australia, 2006: 37.
    134. Newman R E, Bryden W L, Fleck E, Ashes J R, Buttemer W A, Storlien L H, Downing J A. Dietary n-3 and n-6 fatty acids alter avian metabolism: Metabolism and abdominal fat deposition.British Journal of Nutrition, 2002, 88: 11~18.
    135. Pappas A C, Acamovic T, Surai P F, McDevitt R M. Maternal organo-Selenium compounds and polyunsaturated fatty acids affect progeny performance and levels of Selenium and Docosahexaenoic acid in the chick tissues. Poultry Science, 2006, 85: 1610~1620.
    136. Puthpongsiriporn U, Scheideler S E. Effects of dietary ratio of linoleic to linolenic acid on performance, antibody production, and in vitro lymphocyte proliferation in two strains of leghorn pullet chicks. Poultry Science, 2005, 84: 846~857.
    137. Rymer C, Givens D I. Effect of species and genotype on the efficiency of enrichment of poultry meat with n-3 polyunsaturated fatty acids. Lipids, 2006, 41(5): 445~451.
    138. Sacada N. Active proliferation of mouse hepatocytes in primary culture under defined conditions as compared to rat hepatocytes. Japanese Journal of Cancer Research, 1998, 79: 983~987.
    139. Sanz M, Flores A, Lopez-Bote C J. Effect of fatty acid saturation in broiler diets on abdominal fat and breast muscle fatty acid composition and susceptibility to lipid oxidation. Poultry Science, 1999, 78: 378~382.
    140. Sato K, Akiba Y, Chida Y, Takahashi K. Lipoprotein hydrolysis and fat accumulation in chicken adipose tissues are reduced by chronic administration of lipoprotein lipase monoclonal antibodies. Poultry Science, 1999, 78: 1286~1291.
    141. Sato K. Akiba Y. Lipoprotein lipase mRNA expression in abdominal adipose tissue is little modified by age and nutritional state in broiler chickens. Poultry Science, 2002, 81: 846~852.
    142. Scaife J R, Moyo J, Galbraith H, Michie W, Campbell V. Effect of different dietary supplemental fats and oils on the tissue fatty acid composition and growth of female broilers. British Poultry Science, 1994, 35: 107~118.
    143. Seglen P O. Preparation of rat liver cells. Experiment Cell Research, 1972, 74: 450~455.
    144. Sellner P. Fatty acid-binding protein from embryonic chick retina resembles mammalian heart fatty acid-binding protein. Investigative Ophthalmology and Visual Science, 1994, 35(2): 443~452.
    145. Setiawan I, BabiléR, Auvergne A, Belveze S, Latil G. Croissance et composition corporelle de 2 types génétiques de canards mulards. Annales de Zootechnie, 1994, 43: 185~196.
    146. Sewell J E, Davis S K, Hargis P S. Isolation, characterization, and expression of fatty acid binding protein in the liver of Gallus domesticus. Comparative Biochemisty and Physiology-Part B, 1989, 92(3): 509~516.
    147. Simopoulos A P. Human requirement for N-3 polyunsaturated fatty acids. Poultry Science, 2000, 79: 961~970.
    148. Simopoulos A P. Omega-3 fatty acids in healthy and disease and in growth and development. American Journal of Clinical Nutrition, 1991, 54: 438~463.
    149. Simopoulos A P. Redefining dietary recommendations and food safety. World Review of Nutrition and Dietetics, 1998, 83: 219~222.
    150. Simopoulos A P. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic disease. Experimental Biology and Medicine, 2008, 233(6): 674~688.
    151. Sukhiia P S. Palmquist D L. Rapid method for determination of total fatty acid content and composition of feedstuffs and feces. Journal of Agriculture and Food Chemistry, 1988, 36(6): 1202~1206.
    152. Khan S, Minihane A M, Talmud P J, Wright J W, Murphy M C, Williams CM, Griffin B A. Dietary long-chain n-3 PUFAs increase LPL gene expression in adipose tissue of subjects with an atherogenic lipoprotein phenotype. Journal of Lipid Research, 2002, 43: 979~985.
    153. Villaverde C, Baucells M D, Cortinas L, Barroeta A C. Effect of dietary concentration and degree of polyunsaturation of dietary fat on endogenous synthesis and deposition of fatty acids in chickens. British Poultry Science, 2006, 47: 173~179.
    154. Virgili R, Degni M, Schivazappa C, Faeti V, Poletti E, Marchetto G, Pacchioli MT, Mordenti A. Effect of age at slaughter on carcass traits and meat quality of Italian heavy pigs. Journal of Animal Science, 2003, 81: 2448~2456.
    155. Warnants N, Van Oeckel M J, Boucque C V. Incorporation of dietary polyunsaturated fatty acids in pork tissue and its implications for the quality of the end products. Meat Science, 1996, 44: 125~144..
    156. Waylan A T, Dunn J D, Johnson B J, Kayser J P, Sissom E K. Effect of flax supplementation and growth promotants on lipoprotein lipase and glycogenin messenger RNA concentrations in finishing cattle. Journal of Animal Science, 2004(82): 1868~1875.
    157. Whipple G, Koohmaraie M. Calcium chloride carination effects on beef steak tenderness and calpain proteolysis activity. Meat Science, 1993, 33: 265~275.
    158. Wood J D, Richardson R I, Nute G R, Fisher A V, Campo M M, Kasapidou E, Sheard P R, Enser M. Effects of fatty acids on meat quality: a review. Meat Science, 2003, 66:21~32.
    159. Yamana K, Yanagi H, Hirano C, Kobayashi K, Tanaka M, Tomura S, Tsuchiya S, Hamaguchi H. Genetic polymorphisms and mutations of the lipoprotein lipase gene in Japanese schoolchildren with hypoalphalipopropeinemia. Journal of Atherosclerosis and Thrombosis, 1998, 4(3): 97~101.
    160. Zhang Z R, Zhu Q, Liu Y P. Correlation analysis on single nucleotide polymorphism of CAPN1 gene and meat quality and carcass traits in chicken. Agricultural Sciences in China, 2007, 6(6): 749~754.
    161. Zhao G P, Chen J L, Zheng M Q, Wen J, Zhang Y. Correlated responses to selection for increased intramuscular fat in a Chinese quality chicken line. Poultry Science, 2007, 86: 2309~2314.
    162. Zollitsch W, Knaus W, Aichinger F, Lettner F. Effects of different dietary fat sources on performance and carcass characteristics of broilers. Animal Feed Science Technology, 1997, 66: 63~73.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700