用户名: 密码: 验证码:
桑精胶囊及其拆方干预动物2型糖尿病的效应及作用机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖尿病一词描述的是一种多病因的代谢性疾病,特点是慢性高血糖,伴随因胰岛素分泌和/或作用缺陷引起的糖、脂肪和蛋白质代谢紊乱。2型糖尿病患者占糖尿病病人总数的90%左右,其发病率随着社会经济的发展和生活方式的变化呈逐年上升趋势,成为仅次于心脑血管病和肿瘤的严重威胁人类健康的第三大非传染性疾病。据国际糖尿病联盟(International Diabetes Federation,IDF)统计,20世纪90年代全球糖尿病患者约为1.00亿人,到了2007年该数字已经迅速增长到2.46亿,预计到2025年全球将有3.80亿人受到糖尿病的困扰。目前,我国已经成为仅次于印度的糖尿病第二大国,患者将近4 000万人。人口老龄化进程的加速和居民生活方式的改变使得我国的糖尿病患病率、致残率和死亡率呈现明显的上升趋势。
     2型糖尿病是一种异质性疾病,其发病中心环节是胰岛素抵抗(IR)和胰岛β细胞功能衰竭。lR是2型糖尿病的主要特征并贯穿2型糖尿病发生、发展的始终,但仅有IR不足以导致2型糖尿病。纵向研究表明,显著高血糖的发生与胰岛β细胞分泌功能下降有关,β细胞功能缺陷是2型糖尿病发病的必要条件,胰岛β细胞衰竭是其发展的结果,也是2型糖尿病病情加重的驱动力量。早期降低血糖浓度,可逆转胰岛β细胞功能减退,使胰岛素分泌恢复正常。因此,加强2型糖尿病发病机理的研究,针对其病因,寻找既能保护胰岛β细胞功能,又能改善IR的药物,是当前糖尿病治疗领域研究的热点课题。
     桑树是一种优良的药用植物。桑叶、桑椹、桑枝和桑白皮都是传统的中药材,现代药理学研究表明上述药材均具有降血糖、调血脂、抗炎、抗氧化等作用,特别是在对糖尿病及其并发症的预防和治疗方面具有药性平和、作用广泛和毒副作用小等特点。桑精胶囊系导师的经验方,由桑叶、桑椹、桑枝和桑白皮等药物组成,临床上应用其治疗2型糖尿病疗效显著。本研究旨在探讨桑精胶囊及其拆方的抗2型糖尿病的效应及作用机制。首先,本研究采用尾静脉注射小剂量STZ溶液辅以高脂高热卡饲料喂养的方法复制出具有肥胖以及葡萄糖和脂质代谢紊乱等特征,与人类2型糖尿病相类似的动物模型。在此基础上,研究了桑精胶囊及其拆方对该模型动物糖脂代谢的影响,并从抗炎、抗氧化和改善胰岛素信号转导等方面探究其可能的作用机制。
     本研究发现,桑精胶囊能有效地降低血糖、提高胰岛素敏感性和胰岛β细胞基础状态下的分泌功能、纠正血脂紊乱、改善IR。桑精胶囊的抗糖尿病效应可能与其有效地提高机体抗氧化能力,保护胰岛形态及功能,调节脂肪和骨骼肌组织中胰岛素信号转导通路中的相关蛋白含量及其活性而改善胰岛素信号转导有关。为进一步明确桑精胶囊复方中治疗2型糖尿病的主要作用药物,阐明其药物配伍的合理性,本实验对桑精胶囊进行了拆方研究,观察比较桑叶、桑椹、桑枝和桑白皮抗大鼠2型糖尿病的效应,探讨其可能的作用机制。结果表明,上述诸药都能降血糖、调血脂,其作用机制可能与平衡血清促炎细胞因子和抗炎细胞因子水平、提高抗氧化酶活性,改善炎症,从而保护胰腺组织形态和功能有关,但各味药作用机制不尽相同,各有侧重,以桑叶的作用较为明显、全面,从一个侧面说明了桑精胶囊复方配伍的合理性和科学性。
     第一部分桑精胶囊对小剂量STZ加高脂高热卡饲料诱导2型糖尿病大鼠糖脂代谢影响的研究
     【目的】
     建立小剂量STZ加高脂高热卡饲料诱导的2型糖尿病大鼠模型,观察桑精胶囊对2型糖尿病大鼠葡萄糖和脂质代谢的影响,以明确该方治疗2型糖尿病的效应。
     【方法】
     采用尾静脉注射小剂量链脲佐菌素(Streptozotocin,STZ,25mg/kg)加高脂高热卡饲料喂养的方法建立2型糖尿病大鼠模型,将成模动物随机分为模型组、二甲双胍组和桑精胶囊组,另设正常对照组。药物干预治疗8周后,各组动物进行口服糖耐量试验(Oral glucose tolerance test,OGTT)并检测各组动物体重变化、空腹血糖(Fasting bloodglucose,FBG)、空腹胰岛素(Fasting insulin,FINS)、甘油三酯(Triglyceride,TG)、总胆固醇(Total Cholesterol,TC)、高密度脂蛋白胆固醇(High Density lipoprotein cholesterol,HDL-C)、低密度脂蛋白胆固醇(Low Density Lipoprotein Cholesterol,LDL-C)、载脂蛋白AⅠ(Apolipoprotein AⅠ,ApoAⅠ)、载脂蛋白B(Apolipoprotein B,ApoB)和游离脂肪酸(Free Fatty Acid,FFA)水平。
     【结果】
     尾静脉注射小剂量STZ溶液辅以高脂高热卡饲料喂养的方法可成功复制出2型糖尿病动物模型,实验动物具有肥胖以及葡萄糖和脂质代谢紊乱等特征。桑精胶囊可显著提高实验动物胰岛素敏感性和胰岛β细胞在基础状态下的分泌功能,降低血清TC、TG、LDL-C、Apo B和FFA水平,同时提高HDL-C和ApoAⅠ水平,并显示出明显的减肥作用。
     【结论】
     桑精胶囊对2型糖尿病模型动物具有较好的减肥、降糖、调脂作用。
     第二部分桑精胶囊抗小剂量STZ加高脂高热卡饲料诱导大鼠2型糖尿病的研究
     【目的】
     建立小剂量STZ加高脂高热卡饲料诱导的2型糖尿病大鼠模型,观察桑精胶囊抗模型大鼠2型糖尿病的效应,探讨该方可能的作用机制。
     【方法】
     以尾静脉注射小剂量STZ加高脂高热卡饲料喂养的方法建立2型糖尿病大鼠模型,将成模动物随机分为模型组、二甲双胍组和桑精胶囊组,另设正常对照组。药物干预治疗8周后,检测各组犬鼠糖代谢相关指标、血清抗氧化酶活性指标、胰腺组织Bax、Bcl-2蛋白表达和靶组织中胰岛素信号转导通路关键蛋白表达。
     【结果】
     桑精胶囊可明显降低2型糖尿病模型动物的空腹血糖和胰岛素水平,降低血清丙二醛(Malonaldehyde,MDA)、一氧化氮(Nitric Oxide,NO)水平,提高超氧化物歧化酶(Superoxide Dismutase,SOD)、谷胱甘肽过氧化物酶(Glutathione Peroxidase,GSH-Px)活性;保护实验动物胰岛形态,降低胰岛组织Bax蛋白表达,增加Bcl-2蛋白表达从而保护胰岛:抑制实验动物靶组织胰岛素受体底物-1(Insulin ReceptorSubstrate-1,IRS-1)Ser307磷酸化,提高IRS-1和磷脂酰肌醇-3激酶(Phosphatidylinositol-3-kinase,PI-3K)蛋白表达,促进葡萄糖转运蛋白4(GlucoseTransporter 4,GLUT4)转位至细胞膜上,增加细胞膜GLUT4含量,改善糖尿病大鼠靶组织胰岛素信号转导,提高外周组织对葡萄糖的利用率,从而改善胰岛素抵抗。
     【结论】
     桑精胶囊对2型糖尿病模型动物具有良好的治疗效应,其作用机制可能与其保护胰岛功能、增强机体抗氧化能力以及改善胰岛素信号转导有关。
     第三部分桑精胶囊拆方抗小剂量STZ加高脂高热卡饲料诱导大鼠2型糖尿病的研究
     【目的】
     建立小剂量STZ加高脂高热卡饲料诱导的2型糖尿病大鼠模型,研究桑精胶囊拆方抗模型大鼠2型糖尿病效应的差异性及其可能的作用机制。
     【方法】
     以尾静脉注射小剂量STZ加高脂高热卡饲料喂养的方法建立2型糖尿病大鼠模型,将造模动物随机分为模型组、二甲双胍组、桑叶组、桑椹组、桑枝组和桑白皮组,另设正常对照组。药物干预治疗8周后,比较各组药物对糖尿病大鼠体重、葡萄糖和脂质代谢参数、炎症相关细胞因子、氧化应激相关指标以及胰腺组织Bax、Bcl-2蛋白表达的影响。
     【结果】
     桑叶、桑椹、桑枝和桑白皮均可明显改善实验动物葡萄糖和脂质代谢紊乱,提高实验动物胰岛素敏感性和胰岛β细胞在基础状念下的分泌功能,以桑叶降糖、降TG作用最明显,桑枝降低FFA作用突出。上述诸药均可提高2型糖尿病大鼠血清抗炎细胞因子水平、降低促炎细胞因子水平,以桑枝和桑白皮作用较为突出。在提高2型糖尿病大鼠抗氧化能力方面,桑叶和桑椹作用最佳。桑叶具有较好保护2型糖尿病大鼠胰岛形态和功能、抑制胰岛β细胞凋亡的作用。
     【结论】
     桑叶、桑椹、桑枝和桑白皮都能降血糖、调血脂,其作用机制可能与平衡实验动物血清促炎细胞因子和抗炎细胞因子水平、提高抗氧化酶活性,改善其炎症,从而保护胰腺组织形态和功能,延缓β细胞功能衰退有关。但各味药作用机制不尽相同,各有侧重,以上结果从一个侧面说明桑精胶囊复方配伍的合理性和科学性。
The term Diabetes Mellitus describes a metabolic disorder of multiple aetiologiescharacterized by chronic hyperglycemia with disturbances of carbohydrate, fat and proteinmetabolism, resulting from defects in insulin secretion, insulin action, or both. At present,the prevalence of diabetes mellitus is increasing, which is a serious disease damaginghuman being's health. Type 2 diabetes mellitus (T2DM) is the most prevalent form ofdiabetes accounting for about 90% of all diabetes cases. And its incidence rate with thesocio-economic development and lifestyle changes was an upward trend year after year,becoming second only to cardio-cerebral vascular diseases and tumors of a serious threat tohuman health, the third largest non-communicable diseases. According to the InternationalDiabetes Federation (IDF)'s statistics, there were 100 milli(?)n diabetic patients about theworld in the 20th century, however, the case number has rapidly increased to 246 million by2007, is expected 380 million diabetic people will be plagued by diabetes in the world bythe year 2025. At present, China has become second largest country of diabetes second onlyto India, patients with nearly 40 million. With the aging of population and the changes inlifestyle, our country's prevalence, disability and mortality of diabetes showed a clearupward trend.
     Type 2 diabetes is a heterogeneous disease, its development requires the presence of two fundamental defects: insulin resistance (IR) and pancreaticβ-cell failure. Insulinresistance, characterized by reduced responsiveness to the normal circulating insulin intarget tissues, is now considered as a fundamental aspect of etiology of type 2 diabetesmellitus, only IR alone is not sufficient to lead to T2DM. Longitudinal studies have shownthat significant hyperglycemia with pancreaticβ-cell function decline in the secretion,β-cell dysfunction in T2DM is a necessary condition. Pancreaticβ-cell failure is the resultof the development of T2DM as well as the driving force in T2DM condition worsened.Exploring the molecular mechanism of insulin resistance and searching for drugs thatprotectedβcells and improved insulin resistance has appeared to be a focus in globalmedical research.
     At present, many scientists focus on investigating the mechanism of traditional Chinesemedicinal herbs and its components in treating diabetes, and expect it can bring a thought indeveloping new drugs with more safe and effective for treating diabetes. Mulberry,Mulberry Leaf, Ramulus Mori and Mori Cortex are commonly used Chinese medicinalherbs. Modern pharmacological research showed that they can be used to treat type 2diabetes mellitus and have many advantages especially in diabetes and its complicationssuch as mild, broad and durable role and few side effects features and so on. SangjingCapsule is constituted of Mulberry, Mulberry Leaf, Ramulus Mori and Mori Cortex whichaccording to the clinical experience of Prof. Lu Fu-er. This research aimed to exploreantidiabetic effect of Sangjing Capsule on animals with type 2 diabetes mellitus and itspossible mechanism.
     The rats with T2DM were induced by the intravenous injection of low-dosestreptozotocin (STZ, 25mg/kg) and high sucrose-fat diet. The development of this animalmodel was similar to that of human suffered from type 2 diabetes mellitus. In this animalmodel, the low dose streptozotocin injection could damage pancreaticβ-cells slightly andlead to glucose intolerance and serum insulin reduction. On this basis, a high sucrose-fatdiet was followed to induce obesity and led to dyslipidemia, insulin resistance, which elevates serum insulin level in feedback.
     These experimental results showed that, Sangjing Capsule could decrease bloodglucose, correct impaired glucose tolerance, improve dyslipidemia, and ameliorate insulinresistance of type 2 diabetes mellitus. Furthermore, it is suggested by the present resultsthat the therapeutic effects of Sangjing Capsule on T2DM might be related to its ability toscavenge free radical, restore pancreatic islets viability and increase IRS-1, PI-3K andGLUT4 protein expression and-improve insulin signal transduction in adipose and skeletalmuscle tissues of T2DM rats.
     To investigate which herb plays the major role in Sangjing Capsule, Mulberry,Mulberry Leaf, Ramulus Mori and Mori Cortex were chosen as study objects. The resultsshowed that all of these herbs not only have hypoglycemic property, but also modulate theblood lipids. Its mechanism may be related to the balance of serum pro-inflammatorycytokines and anti-inflammatory cytokines levels and raise the activity of antioxidantenzymes, thereby protecting pancreatic tissue morphology and functions. But itsmechanism is different, each with its own characteristic. The results prove the reasonabilityof Sangjing Capsule in composition manner from this regard.
     SectionⅠAmeliorative Effect of Sang]ing Capsule on blood glucoseand lipid metabolism in T2DM rats induced by low-dose STZ andhigh sucrose-fat diet
     【OBJECTIVE】
     To investigate the effects of Sangjing Capsule on blood glucose and lipid metabolismof experimental T2DM rats.
     【METHODS】
     The rats with T2DM were induced by the intravenous injection of low-dosestreptozotocin (STZ, 25mg/kg) and high sucrose-fat diet. Then modeled diabetic animalswere divided into model, metformin and Sangjing Capsule group. Normal rats fed withcommon chow were designated as normal group. Eight weeks later, the oral glucosetolerance test (OGTT) was performed in all animals, the changes of murine body weight,fasting blood glucose (FBG), fasting insulin (FINS), Triglyceride (TG), Total Cholesterol(TC), High Density Lipoprotein Cholesterol (HDL-C), Low Density LipoproteinCholesterol(LDL-C), Apolipoprotein A I (ApoA I), Apolipoprotein B(ApoB), Free FattyAcid (FFA) were routinely determined.
     【RESULTS】
     Compared with the model group, the result of OGTT in Sangjing Capsule group wasimproved. The levels of the body weights and FBG, FINS, TG, TC, LDL-C, ApoB and FFAdecreased, while HDL-C and ApoA I protein increased obviously.
     【CONCLUSION】
     Sangjing Capsule not only has hypoglycemic property, but also modulates the plasmalipids.
     SectionⅡEffect of Sangjing Capsule on T2DM rats induced bylow-dose STZ and high sucrose-fat diet and its possible mechanism
     【OBJECTIVE】
     To investigate the antidiabetoc effect of Sangjing Capsule on the rats with T2DMinduced by low-dose STZ and high sucrose-fat diet, and to explore its possible mechanism.
     【METHODS】
     The rats with T2DM were induced by the intravenous injection of low-dose ofstreptozotocin (STZ, 25mg/kg) and high sucrose-fat diet. Then modeled diabetic animalswere divided into model, metformin and Sangjing Capsule group. Normal rats fed withcommon chow were designated as normal group. Eight weeks later, the effects of SangjingCapsule on glucose metabolic parameters, factors related to oxidative stress, anti-injuryfactors of pancreatic islets and some key proteins in insulin signal transduction pathwaywere observed.
     【RESULTS】
     Intragastric administration of Sangjing Capsule significantly decreased FBG and FINSlevels in diabetic rats. Furthermore, Sangjing Capsule treatment significantly blocked theincrease of MDA and NO levels, increased SOD and GSH-px levels in diabetic rats.Histopathological scores showed that Sangjing Capsule had restored the damage ofpancreas tissues in rats with T2DM. Decreased IRS-1, PI 3-kinase p85 and GLUT4 proteinexpression in diabetes were significantly improved by Sangjing Capsule treatment. Theincreased serine phosphorylation level of IRS-1 (pSer307) was significantlydown-regulated in adipose and skeletal muscle tissues of T2DM rats treated with SangjingCapsule.
     【CONCLUSION】
     It is suggested that Sangjing Capsule could significantly inhibit the progression ofdiabetes induced by low-dose STZ and high sucrose-fat diet, and its inhibitory effect ondiabetes might be associated with its hypoglycemic effec and its ability to scavenge freeradical, restore pancreatic islets viability and enhance insulin signaling.
     SectionⅢComparison of Effects of Sangjing Capsule's SeparatedRecipes on T2DM Rats Induced by Low-dose STZ and HighSucrose-fat Diet and its Possible Mechanism
     【OBJECTIVE】
     To investigate the antidiabetic effect of Sangjing Capsule's separated recipes on therats with T2DM induced by low-dose STZ and high sucrose-fat diet, and to explore itspossible mechanism.
     【METHODS】
     The rats with T2DM were induced by the intravenous injection of low-dose ofstreptozotocin (STZ, 25mg/kg) and high sucrose-fat diet. Then modeled diabetic animalswere divided into into model, metformin, Mulberry leaf, Mulberry, Ramulus Mori and MoriCortex group. Normal rats fed with common chow were designated as normal group. Eightweeks later, the changes of rat body weight, and the effects of Mulberry, Mulberry leaf,Ramulus Mori and Mori Cortex on glucose and lipid metabolic parameters, factors relatedto inflammation and oxidative stress and anti-injury factors of pancreatic islets wereobserved.
     【RESULTS】
     Compared with the model group, the result of OGTT in every herbs group wasimproved. The levels of the body weights and FBG, FINS, TG, TC, LDL-C, ApoB and FFAdecreased, while HDL-C and ApoA I protein increased obviously also. Furthermore,Sangjing Capsule treatment significantly blocked the increase of CRP, TNF-α, IL-1β, IL-6,ICAM-1, VCAM-1, MDA and NO levels, increased IL-4, IL-10, SOD and GSH-px levels in diabetic rats. Histopathological scores showed that Sangjing Capsule had restored thefunction of pancreas tissues in rats with T2DM.
     【CONCLUSION】
     The results showed that all of these herbs not only have hypoglycemic property, butalso modulate the blood lipids. Its mechanism may be related to the balance of serumpro-inflammatory cytokines and anti-inflammatory cytokines levels and raise the activity ofantioxidant enzymes, thereby protecting pancreatic tissue morphology and functions. Butits mechanism is different, each with its own figures.
引文
1.怡悦.桑叶提取物的蔗糖吸收抑制成分对大鼠原位小肠灌流标本的作用.国外医学·中医中药分册,1998,20(3):55
    2.金航.桑叶对二糖酶的抑制作用.国外医学·中医中药分册,1999,21(3):38
    3.贺玉琢.桑叶提取物对肥胖小鼠的降血糖作用.国外医学·中医中药分册,1999,21(4):53
    4.杨小兰,毛立新,张晓云.黑桑椹对高脂血症大鼠的降脂作用研究.食品科学,2005,26(9):509-510
    5.郭宝荣,赵泉霖,钱秋海,等.桑枝颗粒剂治疗型糖尿病40例.山东中医药大学学报,1999,23(1):46-47
    6.叶菲,申竹芳,乔凤霞,等.中药桑枝提取物对大鼠糖尿病并发症的实验治疗作用.药学学报,2002,37(2):108-112
    7.马松涛.桑白皮提取物对防治糖尿病大鼠神经病变实验研究.中药药理与临床,2006,22(3、4):117-118
    8.张远超,陆付耳.桑精胶囊改善2型糖尿病大鼠胰岛素抵抗及其分子机制的研究.中国中西医结合杂志,2005,26(基础理论研究):81-86
    9. Matthews DR, Hosker JP, Rudenski AS, et al. Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia, 1985, 28(7): 412-419
    10.李光伟,潘孝仁,Lillilja S.检测人群胰岛素敏感性的一项新指数.中华内科杂志,1993,32(10):656-660
    11. Intemational Diabetes Fedemtion. Diabetes Atlas (third edition). 2007
    12.王克安,李天麟,向红丁,等.中国糖尿病流行特点研究.中华流行病学杂志,1998,19(5):282-285
    13. Reed MJ, Meszaros K, Entes LJ, et al. A new rat model of type 2 diabetes: the fat-fed, streptozotocin-treated rat. Metabolism, 2000, 49(11): 1390-1394
    14.杨架林,李果,刘优萍,等.长期高脂饮食加小剂量链脲佐菌素建立人类普通2型糖尿病大鼠模型的研究.中国实验动物学报,2003,11(3):138-141
    15. Huang BW, Chiang MT, Yao HT, et al. The effect of high-fat and high-fructose diets on glucose tolerance and plasma lipid and leptin levels in rats. Diabetes Obes Metab, 2004, 6(2): 120
    16. Srinivasan K, Viswanad B, Asrat L, et al. Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol Res, 2005, 52(4): 313-320
    17.周迎生,高妍,李斌,等.高脂喂养联合链脲佐菌素注射的糖尿病大鼠模型特征.中国实验动物学报,2005,13(3):154-158
    18. Islam MS, Choi H. Nongenetic model of type 2 diabetes: a comparative study. Pharmacology, 2007, 79(4): 243-249
    19.宋剑南,刘东远,牛晓红,等.高脂血症与中医痰浊关系的实验研究.中国中医基础医学杂志,1995;1(1):49-51
    20. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of TNF-α: direct role in obesity-linked insulin resistance. Science, 1993,259(5091):87-91
    21. Kern PA, Ranganathan S, Li C, et al. Adipose tissue TNF and IL-6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab, 2001, 280(5): E745- E751
    22. De Cristofaro R, Rocca B, Vitacolonna E. et al. Lipid and protein oxidation contribute to a prothrombotic state in patients with type 2 diabetes mellitus. J Thromb Haemost, 2003, 1:250-256
    23. UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS34). Lancet, 1998, 352(9131): 854-865
    24.杨文英,林丽香,齐今吾,等.阿卡波糖和二甲双胍对IGT人群糖尿病的预防效果-多中心3年前瞻性观察.中华内分泌代谢杂志,2001,17(3):131-134
    25. Bergman RN. Lilly lecture 1989. Toward physiological understanding of glucose tolerance. Minimal model approach. Diabetes, 1989, 38(12): 1512-1527
    26. Kahn SE, Prigeon RL, McCulloch DK, et ah Quantification of the relationship between insilin sensitivity and β-eell function in human subjects. Diabetes, 1993, 42(11): 1663-1672
    27. Purrello F, Rabuzza AM. Metabolic factors that affect beta cell function and survival. Diabet Nutr Metab. 2000, 13(2):84-91
    28. Sa JR, Silva RC, Nasri F, et al. Non-obese adult onset diabetes with oral hypoglycemic agent failure: islet cell auto-antibodies or reversible or beta cell refractoriness? Braz J Med Biol Res, 2003, 36(10): 1301-1309
    29. Kim JK, Wi JK, Youn JH. Metabolic impaiment precedes insulin resistance in skeletal muscle during high-fat-feeding in rats. Diabetes, 1996, 45(5): 651-658
    30. McGarr JD. Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes, 2002,51(1): 7-18
    31. Kabadi MU, Kabadi UM. Effects of glimepiride on insulin secretion and sensitivity in patients with recently diagnosed type 2 diabetes mellitus. Clin Ther, 2004,26(1): 63-69
    32. Carpentier A, Mittelman SD, Bergman RN, et al. Prolonged elevation of plasma free fatty acids impairs pancreatic beta-cell function in obese nondiabetic humans but not in individuals with type 2 diabetes. Diabetes, 2000,49(3): 399-408
    33. Boden G. Free fatty acids-the link between obesity and insulin resistance. Endocr Pract, 2001, 7(1):44-51
    34. Vettor R, Lombardi AM, Fabris R, et al. Substrate competition and insulin action in animal models. International Journal of Obesity, 2000, 24(Suppl 2): S22-S24
    35. Lam TKT, Yoshii H, Haber CA, et al. Free fatty acid-induced hepatic insulin resistance: a potential role for protein kinase C-delta. Physiol Endocrinol Metab, 2002, 283(4): E682-E691
    36. Clerk LH, Rattigan S, Clark MG. Lipid infusion impairs physiologic insulin-mediated capillary recruitment and muscle glucose uptake in vivo. Diatetes, 2002, 51(4): 1138-1145
    37. Boden G, Shulman GI. Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and beta-cell dysfunction. Eur J Clin Invest, 2002, 32(Suppl 3): 14-23
    38. Arner P. Insulin resistance in type 2 diabetes: role of fatty acids. Diabetes Metab Res Rev, 2002, 18(Suppl 2): S5- S9
    39. Perriello G, Misericordia P, Volpi E, et al. Acute antihyperglycemie mechanisms of metformin in NIDDM. Evidence for suppression of lipid oxidation and hepatic glucose production. Diabetes, 1994, 43(7): 920-928
    40. Abbasi F, Carantoni M, Chen YD, et al. Further evidence for a central role of adipose tissue in the antihyperglycemic effect of metformin. Diabetes Care, 1998, 21(8): 1301-1305
    41. Patane G, Piro S, Rabuazzo AM, et al. Metformin restores insulin secretion altered by chronic exposure to free fatty acids or high glucose: a direct metformin effect on pancreatic beta-cells. Diabetes, 2000, 49(5): 735-740
    42. Buse JB, Tan MH, Prince MJ, et al. The effects of oral anti-hyperglycaemic medications on serum lipid profiles in patients with type 2 diabetes. Diabetes Obes Metab, 2004, 6(2): 133-156
    43. Reaven GM, Johnston P, Hollenbeck CB, et al. Combined metformin-sulfonylurea treatment of patients with noninsulin-dependent diabetes in fair to poor glycemic control. J Clin Endocrinol Metab, 1992, 74: 1020-1026
    44. Abbasi F, Kamath V, Rizvi AA, et al. Results of a placebo controlled study of the metabolic effects of the addition of metformin to sulfonylurea-treated patients. Evidence for a central role of adipose tissue. Diabetes Care, 1997,20(12): 1863-1869
    45. Hundal RS, Krssak M, Dufour S, et al. Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes, 2000, 49(12): 2063-2069
    1.林兰.中西医结合糖尿病学.北京:中国医药科技出版社.1999,44-45
    2. Tremblay F, Lavigne C, Jacques H, et al.Dietary cod protein restores insulin-induces activation of phosphatidylinositol 3-kinase/Akt and GLUT4 translocation to the T-tubules in skeletal muscle of high-fat-fed obese rats. Diabetes, 2003;52(1):29-37
    3. Klip A, Ramlal T, Young DA, el al. Insulin-induced translocation of glucose transporters in rat hindlimb muscles. FEBS Lett, 1987, 224(1): 224-230
    4.罗俊,孙惠玲,段纪俊,等.1975-2006年武汉市居民糖尿病死亡率分析及预测.中国慢性病预防与控制,2008,16(4):343-346
    5. 胡善联,刘国恩,许樟荣,等.我国糖尿病流行病学和疾病经济负担研究现状.中国卫生经济,2008,27(8):5-8
    6. Vessby J, Basu S, Mohsen R, et al. Oxidative stress and antioxidant status in type 1 diabetes mellitus. J Int Med, 2002,251:69-76
    7. Stadler K, Jenei V, Von Bolcshazy G, et al. Role of free radicals and reactive nitrogen species in the late complications of diabetes mellitue in rats. Orv Hetil, 2004,145(21): 1135-1140
    8. Menon V, Ram M, Dorn J, et al. Oxidative stress and glucose levels in a population-based sample. Diabet Med, 2004, 21(12): 1346- 1352
    9. Astaneie F, Afshari M, Mojtahedi A, et al. Total antioxidant capacity and levels of epidermal growth factor and nitric oxide in blood and saliva of insulin-dependent diabetic patients. Arch Med Res, 2005, 36(4): 376-381
    10. Robertson RP. Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. J Biol Chem,2004,279:42351-42354
    11. Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes, 2005, 54(6): 1615-1625
    12. Adnot S, Raffestin B, Eddahibi S. NO in lung. Respir Physiol, 1995, 101(1): 109-120
    13. Motro M, Shemesh J, Grossman E. Coronary benefits of calcium antagonist therapy for patients with hypertension. Curr Opin Cardiol, 2001, 16(6): 349-355
    14. Marchetti P, Del Guerra S, Marselli L, et al. Pancreatic islets from type 2 diabetic patients Have functional defects and increased- apoptosis that are ameliorated by metformin. J Clin Endocrinol Metab: 2004, 89(11): 5535-5541
    15. Butler AE, Janson J, Bonner-Weir S, et al. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes,2003,52(1): 102-110
    16. McGarry JD. Banting lecture 2001: Dysregulation of fatty acid metabolism in the etiology of type 2-diabetes. Diabetes; 2002, 51(1): 7-18
    17. Porras A, Zuluaga S, Valladares A, et al. Long-term treatment with insulin induces apoptosis in brown adipocytes: role of oxidative stress. Endocrinology, 2003, 144(12): 5390-5401
    18. Bottino R, Balamurugan AN, Tse H, et al. Response of human islets to isolation stress and the effect of antioxidant treatment. Diabetes, 2004, 53(10): 2559-2568
    19. Hisch T, Marzo L, Kroemer G. Role of the mitochondrial permeability transition pore in apoptosis. Biosci Rep, 1997, 17(1): 67-76
    20. Adams JA, Cory S. The Bcl-2 protein family: arbiters of cell survival. Science, 1998, 281(5381): 1322-1326
    21. Hajnoczy G, Csordas G, Das S, et al. Mitochondrial calcium signalling and cell death: approaches for assessing the role of mitochondrial Ca~(2+) uptake in apoptosis.Cell Calium,2006, 40(5-6): 553-560
    22. Kim PK, Zamora R, Petrosko P, et al. The regulatory role of nitric oxide in apoptosis. Int Immunophamacol, 2001,1(8): 1421-1441
    23. Pessin JE, Saltiel AR. Signaling pathways in insulin action: molecular targets of insulin resistance. JClin Invest, 2000,106:165-169
    24. Saltiel AR, Kahn CR. Insulin signaling and the regulation of glucose and lipid metabolism.Nature,2001,414(6865):799-806
    25. Pederson TM, Kramer DL, Rondinone CM. Serine/threonine phosphorylation of IRS-1 triggers its degradation: possible regulation by tyrosine phosphorylation. Diabetes,2001,50:24-31
    26. Aguirre V, Werner ED, Giraud J, et al. Phosphorylation of ser~(307) in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J Biol Chem. 2002,277: 1531-1537
    27. Zhande R. Mitchell JJ, Wu J, Sun XJ. Molecular mechanism of insulin-induced degradation of insulin receptor substrate 1. Mol Cell Biol, 2002, 22: 1016-1026
    28. Bjornholm M, Zierath JR. Insulin signal transduction in human skeletal muscle: identifying the defects in type Ⅱdiabetes. Biochem Soc Trans,2005,33:354-357
    29. Czech MP, Corvera S. Signaling mechanisms that regulate glucose transport. J Biol Chem, 1999,274(4): 1865-1868
    30. Kadowaki T.Insights into insulin resistance and type 2 diabetes from knockout mouse models. J Clin Invest, 2000, 106(4): 459 -465
    31. Cusi K, Maezono K, Oaman A, et al. Insulin msistance differentially affects the PI3-kinase and MAP kinase-mediated signaling in human muscle. J Clin Invest, 2000, 105(3): 311-320
    32. Vanhaesebroeck B, Leevers SJ, Ahmadi K, et al. Synthesis and function of 3-phosphorylated inositol lipids. Annu Rev Biochem, 2001, 70: 535-602
    33. Cho H, Mu J, Kim JK, et al. Insulin resistance and a diabetes mellitus-like syndrome in mice Lacking the protein kinase Akt2 (PKB-beta). Science, 2001, 292(5522): 1728-1731
    34. Bryant NJ, Govers R, James DE. Regulated transport of the glucose transporter GLUT4. Nature Review. Mol Cell Biol, 2002, 3(4): 267-277
    35. Thong FS, Dugani CB, Klip A. Turning signals on and off: GLUT4 traffic in the insulin-signaling highway. Physiology (Bethesda), 2005, 20: 271-284
    36. Takeuchi M, Itakura A, Okada M, et al. Impaired insulin-regulated membrane aminopeptidase translocation to the plasma membrane in adipocytes of Otsuka Long Evans Tokushima Fatty rats. Nagoya J Med Sci, 2006, 68: 155-163
    1. Senn JJ, Kloven PJ, Nowak IA, et al. Suppressor of cytokine signaling-3 (SOCS-3), a potential mediator of interleukin-6-dependent insulin resistance in hepatocytes. J Biol Chem, 2003, 278(16): 13740-13746
    2. Spranger J, Kroke A, Mohlig M, et al. Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-base European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes, 2003, 52(3): 812-817
    3. Hotamisligir GS. Inflammatory pathways and insulin action. Int J Obes Relat Metab Disord, 2003, 27(Suppl 3): S53-S55
    4. Haffner SM, Greenberg AS, Weston WM, et al. Effect of rosiglitazone treatment on nontraditional markers of cardiovascular disease in patients with type 2 diabetes mellitus. Circulation, 2002,106(6):679-684
    5. Andreas F, Ralph DA, Jr, et al. Elevated levels of acute-phase protein and plasminogen activator inhibitor-1 predict the development of type 2 diabetes: The insulin resistance atherosclerosis study. Diabetes, 2002,51(10): 1131-1137
    6. Pradhan AD, Manson JE, Rifai N, et al. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA, 2001;286(3):327-334
    7. Langenberg C, Bergstrom J, Sshnidt-Nave C, et al. Cardiovascular death and the metabolic syndrome: role of adiposity-signaling hormones and inflammatory markers. Diabetes Care, 2006 ,29(6): 1363-1369
    8. Sheng WH, Chiang BL, Chang SC, et al .Clinical manifestations and inflammatory cytokine responses in patients with severe acure respiratory syndrome. J Formos Med Assoc, 2005, 104(10):715-7232
    9. Wolf AM, Wolf D, Rumpold H, et al. The kinase inhibitor imatimb mesylate inhibits TNF-{alpha} production in vitro and prevents TNF-dependent acute hepatic inflammation. Proc Natl Acad Sci USA , 2005,102(38):13622-13627
    10. Church LD, Cook GP, McDermott MF. Primer: inflammasomes and interleukin 1 beta in inflammatory disorders. Nat Clin Pract Rheumatol, 2008, 4(1): 34-42
    11. Philip AK, Subramanian R, Chunling L, et al. Adipose tissue tumor necrosis factor and interleukin-6,expression in obesity and insulin resistance. Am J Physiol Endocrinol Metab, 2001, 280(5): E745-E751
    12. Van de Casteele M, Kefas BA, Ling Z, et al. Specific expression Bax-omega in pancreatic beta-cells is down-regulated by cytokines before the onset of apoptosis. Endocrinology,2002,143:320-326
    13. Senn JJ, Klover PJ, Nowak IA, et al. Imerleukin-6 induces cellular insulin resistance in hepatocytes. Diabetes, 2002, 51(12): 3391-3399
    14. Haas MJ, Horani M, Mreyoud A. Pression of apolipoprotein A Ⅰ gene expression in HepG2 cells TNF alpha and IL-1 beta. Biochim Biophys Acta,2003,1623:120-128 15. Petersen KF, Shulman GI. Etiology of insulin resistance. Am J Med, 2006, 119(5 Suppl 1): S10-S16
    16. Fernandez-Real JM. Genetic predispositions to low-grade inflammationand type 2 diabetes. Diabetes Teehnol Ther, 2006, 8(1): 55-66
    17. Moller DE. Potential role of TNF-alpha in the pathogenesis of insulin resistance and type 2 diabetes. Trends Endocrinol Metab.2000,11(6): 212-217
    18. Tremblay F, Lavigne C, Jacques H, et al. Defective insulin-induced GLUT4 translocation in skeletal muscle of high fat-fed rats is associated with alterations in both AKT/protein kinase B and a typical protein kinase C activities. Diabetes, 2001, 50(8): 1901-1910
    19. Senn JJ, Klover PJ, Nowak IA, et al. Suppressor of cytokine signaling-3 ( SOCS-3), a potential mediator of interleukin-6-dependent insulin resistance in hepatocytes. J Biol Chem,2003, 278(16):13740-13746
    20. Kitagawa K, Matsumoto M, Sasaki T, et al. Involvement of ICAM-1 in the progression of atherosclerosis in APOE-knockout mice. Atherosclerosis, 2002, 160(2): 305-310
    21. Hak AE, Pols HA. Stehouwer CDA, et al. Markers of inflammation and cellular adhesion molecules in relation to insulin resistence in nondiabetic elderly: the Rotterdam study. J Clin Endocrinol Metab 2001,.86(9): 4398-4405
    22. Bl(?)her M, linger R, Richter V; et al. Relation between glycaemic control, hyperinsulinaemia and plasma concentrations of soluble adhesion molecules in patients with impaired glucose tolerance or type 2 diabetes. Diabetologia, 2002, 45(2): 210-216
    23. James BM, Frank BH, Nader R, et al. Biomarkers of Endothelial Dysfunction and Risk of Type 2 Diabetes.Mellitus: JAMA, 2004; 291:1978-1986
    24. McSorley PT, Young IS, McEneny J, et al. Susceptibility of low-density lipoprotein to oxidation and circulating cell adhesion molecules in young healthy adult offspring of parents with type 2 diabetes. Metabolism, 2004, 53(6): 755-759
    25. Leinonen ES, Hiukka A, Hurt-Camejo E, et al. Low-grade inflammation, endothelial activation and carotid intima-media thickness in type 2 diabetes. J Intern Med, 2004, 256(2): 119-127
    26. Altannaveh TS, Roubalova K, Kucera Pet al. Effect of high glucose concentrationson expression of ELAM-1, VCAM-1 and ICAM-1 in HUVEC with and without cytokine activation. Physiol Res, 2004, 53(1): 77-82
    27. Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest, 2006, 116(7): 1793-1801
    28. Mi QS, Ly D, Zucker P, et al. Interleukin-4 but not interleukin-10 protects against spontaneous and recurrent type 1 diabetes by activated CD1d-restricted invariant natural killer T-cells. Diabetes,2004,53(5): 1303-1310
    29. Smith DA, Irving SD, Sheldon J, et al. Serum levels of the anti-inflammatory cytokine interleukin-10 are decreased in patients with unstable angina. Circulation, 2001, 104(7): 746-749
    30. van Exel E ,Gussekloo J ,de Craen A J, et al .Low production capacity of interleukin-10 associates with the metabolic syndrome and type 2 diabetes: the Leiden 85- Plus Study. Diabetes, 2002, 51(4 ): 1088-1092
    1. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature, 2001, 414:813-820,
    2. Schmidt MI, Duncan BB, Scharrct AR, et al. Markers of inflammation and prediction of diabetes: mellitus in adults (Atherosclerosis Risk in Communities study): acohortstudy. Lancet, 1999, 353(9156): 1649-1652
    3. Barzilay JI, Abraham L, Heckbert SR, et al. The relation of markers of inflammation to the development of glucose disorders in the elderly: the Cardiovascular Health Study. Diabetes, 2001, 50(10): 2384-2389
    4. Duncan BB, Schmidt MI, Pankow JS, et al. Low-grade systemic inflammation and the development of type 2 diabetes. Diabetes, 2003, 52(7): 1799-1805
    5. Wolford JK, Gruber JD, Qssowski VM, et al. A C-reactive protein promoter polymorphism is associated with type 2 diabetes mellitus in pima Indians. Mol Genet Metab, 2003, 78(2): 136-144
    6. Yuan M, Konstantopoulos N, Lee J, et al. Reversal of obesity and diet-induced insulin resistance with salicylates or targeted disruption of IKKbeta. Science, 2001, 293(5535): 1673-1677
    7. Hundal RS, Petersen KF, Mayerson AB, et al. Mechanism by which high-dose aspirin improves glucose metabolism in type 2 diabetes. J Clin Invest, 2002, 109(10): 1321-1326
    8. Rui I, Yuan M, Frantz D, et al. SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS-1 and IRS-2. J Biol Chem, 2002, 277(44): 42394-42398
    9. Spranger J, Kroke A, Mohlig M, et al. Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-base European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes, 2003, 52(3): 812-817
    10. Senn JJ, Klover PJ, Nowak IA, et al. Suppressor of cytokine signaling-3 (SOCS-3), a
    ??potential mediator of interleukin-6-dependent insulin resistance in hepatocytes. J Biol Chem, 2003, 278(16): 13740-13746
    11. Hotamisligil GS. Inflammatory pathways and insulin action. Int J Obes Relat Metab Disord, 2003, 27(Suppl 3): S53-S55
    12. Hirosumi J, Tuncman G, Chang L, et al. A central role for JNK in obesity and insulin resistance. Nature, 2002, 420: 333-336
    13. Omoigui S. The interleukin-6 inflammation pathway from cholesterol to aging-role of statins, bisphosphonates and plant polyphenols in aging and age-related diseases. Immun Ageing, 2007, 4: 1
    14. Steer SA, Scarim AL. Chambers KT, et al. Interleukin-1 stimulates beta-cell necrosis and release of the immunological adjuvant HMGB1. PLos Med, 2006,3(2): e17
    15. Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes, 2005, 54(6): 1615-1625
    16. Hounsom L, Corder R, Patel L, et al. Oxidative stress participates in the breakdown of neuronal phenotype in experimental diabetic neuropathy. Diabetologia, 2001, 44(4): 42-428
    17. Yoshikawa H, Tajiri Y. Sako Y, et al. Effects of free fatty acids on beta-cell functions: a possible involvement of peroxisome proliferator-activated receptors alpha or pancreatic/duodenal homeobox. Mtabolism, 2001, 50(5): 613-618
    18. Hideaki K, Yoshihisa N, Dan K, et al. Role of oxidative stress, endoplasmic reticulum stress, and c-Jun N-terminal kinase in pancreatic 尾-cell dysfunction and insulin resistance. The Int J of Biochem and Cell B, 2005, 37(8): 1595-1608
    19. Legrand DA, Scheen AJ. Aspirin for primary prevention of cardiovascular diseases in diabetic patients: focus on gender diference and insulin resistance. Rev Med Liege, 2006, 61(10): 682-690
    20. Yozai K, Shikata K, Sasaki M, et al. Methotrexate prevents renal injury in experimental diabetic rats via anti-inflammatory actions. J Am Soc Nephrol 2005; 16(11): 3326-3338
    21. Tone A, Shikata K. Sasaki M, et al. Erythromycin ameliorates renal injury in via anti-inflammatory effects in experimental diabetic rats. Diabetologia 2005; 48(11): 2402-2411
    22. Sang-Youb Han, Gyeong-A So, Yi-Hwa Jee, et al. Effect of retinoic acid in experimental diabetic nephropathy. Immunology and Cell Biology 2004; 82(6): 568-572
    23. Bursell SE, Clermont AC, Aiello LP, et al. High-dose vitamin E supplementation normalizes retinal blood flow and creatinine clearance in patients with type 1 diabetes. Diabetes Care, 1999,22(8): 1245-1251
    24. Devaraj S, Jialal I. Alpha tocopherol supplementation decreases serum C-reactive protein and monocyte interleukin-6 levels in nomal volunteers and type 2 diabetic patients Free Radic Biol Med,2000, 29:790-792
    25.毛晓明,刘志民,蒋克春,等.维生素E与维生素C联合治疗对糖耐量受损患者氧化低密度脂蛋白及C反应蛋白的作用.中华糖尿病杂志,2005,13(5):368-369
    26. Ametov AS, BarinovA, Dyck PJ, et al. The sensory symptoms of diabetic polyneuropath are impoved with alpha-lipoi cacid: the SYDNEY trial. Diabetes Care, 2003, 26(3): 770-776
    27. Ziegler D, Nowak H, Kempler P, et al. Treatment of symptomatic diabetic polyneuropathy with the antioxidant alpha-lipoic acid: a meta-analysis. Diabet Med, 2004, 21(2): 114-121
    28. Aljada A, Ghanim H, Saadeh R, et al. Insulin inhibite NFkappaB and MCP-1 expression in human aortic endothelial cells. J Clin Endocrind Metab, 2001, 86(1): 450-453
    29. Dandona P, Sljada A, Mohanty P, et al. Insulin inhibits intranuclear nuclear factor κ B stimulates IKB in mononuclear cells in obese subiects: evidence for an anti-inflammation effect? J Clin Endocmol Metab, 2001, 86:3257-3265
    30. Jeschke MG, Einsoanier R, Klein D, et al. Insulin attenuates the systemic inflammatory response to thermal trauma. Mol Med, 2002, 8(8): 443-450
    31. Murphy GJ, Holder JC. PPAR-γ agonists: therapeutic role in diabets, inflammation and cancer. Trends in Pharmacol Sci, 2000, 21 (12): 469-474
    32. Dobrian AD, Davies MJ, Schriver SD, et al. Oxidative stress in a rat model of obesity-induced hypertension. Hypertension, 2001, 37(2 Part 2): 554-560
    33. Marx N, Kehrle B, Kohlhammer K, et al. PPAR activator as antiinflammatory meditors in human Tlymphocytes: implications for atherosclerosis and transplantation-asscociated arteriosclerosis. Cir Res, 2002, 90(6): 703-710
    34. Hauner H. The mode of action of thiazolidinediones. Diabetes Metab Res Rev, 2002, 18(Suppl 2): S10-S15
    35. Bagi Z, Koller A, Kaley G. PPARgamma activation, by reducing oxidative stress, increases NO bioavailability in coronary arterioles of mice with Type 2 diabetes. Am J Physiol Heart Circ Physiol, 2004, 286(2): H742-H748
    36. Chugh SN, Dhawan R, Kishore K, et al. Glibenclamide vs gliclazide in reducing oxidative stress in patients of noninsulin dependent diabetes mellitus-a double blind randomized study. J Assoc Physicians India, 2001, 49(8): 803-807
    37. UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS34). Lancet, 1998, 352(9131): 854-865
    38. Weitz SG. Statins as anti-inflanunatory agents. Trends Pharmacol Sci, 2002, 23: 482-486
    39.高从容,邹大进,梅小斌,等.2型糖尿病患者血清高敏感C反应蛋白水平与大血管病变的关系及辛伐他汀的干预作用.上海医学,2004,27(1):60-61
    40. Takayama T, Wada A, Tsutamoto T, et al. Contibution of vascular NAD(P)H oxidase to endothelial dysfunction in heart failure and the therapeutic efects of HMG-CoA reductase inhibitor. Circ J, 2004, 68(11): 1067-1075
    41. Freeman DJ, Norrin J, Sattar N, et al. Pravasatation and the development of diabetes mellitus, evidence for a protective treatment effect in the west of Scotland coronary prevention stufy. Circulation, 2001, 103:357-362
    42. Berry C, Anderson N, Kirk A, et al. Renin angiotensin system inhibition is associated with reduced free radical concentrations in arteries of patients with coronary heart disease. Heart, 2001, 86(2): 217-220
    1. Andallu B, Suryakantham V, Lakshmi B, et al. Effect of mulberry (Morus india L.) therapy on plasma and erythrocyte membrane lipids inpatients with type 2 diabetes. Clinic Chimica Acta, 2001.314(1-2): 47-53
    2. Andallu B, Varadacharyulu NCH. Antioxidant role of mulberry (Morus indica L. cv. Anantha) leaves in streptozotocin-diabetic rats. Clin Chim Acta, 2003, 338(1-2): 3-10
    3. Asano N Tomioka E, Kizu H, et al. Sugers with nitrogen in the ring isolatedfrom the leaves of Morus bombycis. Carbohydr Res, 1994, 253:235-245
    4. Asano N, Oseki K, Tomioka E, et al. N-containing sugers from Morus albaand their glycosidase inhibitory activities. Carbohydr Res, 1994, 259(2): 243-255
    5. Taniguchi S, Asano N, Tomino F, et al. Potentiation of glucose-induced insulinsecretion by fagomine, a pseudo-sugar isolated from mulberry leaves. Horm Metab Res, 1998, 30(11): 679-683
    6.俞灵莺,李向荣,方晓.桑叶总黄酮对糖尿病大鼠小肠双糖酶的抑制作用.中华内分泌代谢杂志,2002,18(4):313-315
    7.原爱红,马骏,蒋晓峰,等.桑叶中糖苷酶抑制活性组分的筛选及体外活性研究.同济大学学报(医学版),2005,26(4):8-11
    8.郭宝荣,赵泉霖,钱秋海,等.桑枝颗粒剂治疗Ⅱ型糖尿病40例.山东中医药大学学报,1999,23(1):46-47
    9. Fei Y, Zhufang S, Fengxia Q, et al. Experimental treatment of complications in alloxan diabetic rats with α-glucosidase inhibitor from the chinese medicine herb Ramulus Mori. Acta Pharmaceutica Sinica, 2002, 37(2): 108-112
    10.汪宁,朱荃,周义维,等.桑枝、桑白皮体外降糖作用研究.中药药理与临床,2005,21(6):35-36
    11.汪宁,朱荃,周义维,等.桑白皮等中药提取物对胰岛素促进离体肝脏葡萄糖消耗的影响.时珍国医国药,2006,17(4):513-514
    12.马松涛.桑白皮提取物对防治糖尿病大鼠神经病变实验研究.中药药理与临床,2006,22(3、4):117-118
    13.杨小兰,毛立新,张晓云.黑桑椹对高脂血症大鼠的降脂作用研究.食品科学,2005,26(9):509-510
    14.土井佳代.桑叶对铜离子致LDL氧化的抑制作用.国外医学·中医中药分册,1999,21(4):54
    15. Doi K, Kojima T, Fujimoto Y. Mulberry leaf extract inhibits the oxidative modification of rabbit ang human low density lipoprotein. Biol Pharam Bull, 2000, 23(9): 1066-1071
    16.高岭,凌学静,刘俊权.桑叶茶对高脂血症大鼠脂代谢的影响及其抗氧化作用.宁夏医学院学报,2000,22(2):93-94
    17.吴娱明,邹宇晓,廖森泰,等.桑枝提取物对实验高血脂症小鼠的降血脂作用初步研究.蚕业科学,2005,31(3):348-350
    18.陈福君,林一星,许春泉,等.桑的药理研究(Ⅱ)-桑叶、桑枝、桑白皮抗炎药理作用的初步比较研究.沈阳药科大学学报,1995,12(3):222
    19.王蓉,卢笑丛,王有为.桑枝提取物及抗炎作用研究.武汉植物学研究,2002,20(6):467-469
    20.黎琼红,张国刚,董淑华.桑属植物化学成分及药理活性研究展.沈阳药科大学学报,2003,20(5):386
    21.冯冰虹,赵宇红,黄建华.桑白皮的有效成分筛选及其药理学究.中药材,2004,27(3):204
    22. Cheon BS, Kim YH, Son KS, et al. Effects of prenylated flavonoids and biflavonoids on lipopolysaccharide-induced nitric oxide production from the mouse macrophage cell line RAW264.7. Planta Med, 2000, 66(7): 596-600
    23. Chi YS, Jong HG, Son KH, et al. Effects of naturally occurring prenylated flavonoids on enzymes metabolizing arachidonic acid: cyclooxygenases and lipoxygenases. Biochem Pharmacol, 2001, 62(9): 1185-1191
    24. Chung KO, Kim BY, Lee MH, et al. In-vitro and in-vivo anti-flammatory effect of oxyresveratrol from Morus alba L. J Pharm Pharmacol, 2003, 55(12): 1695-1700
    25. Ohsugi M, Wenzhe F, Hase k, et al. Active-oxygen scavenging activity of traditional nourishing-tonic herbal medicines and active constituents of Rhodiola sacra. J Ethnopharmacology, 1999, 67(1): 111-119
    26.唐法娣,王砚,卞如濂.桑叶延年益寿的药理学研究.中草药,2000,31(9):685-688
    27.李卫东,刘先华,周安.桑叶提取液对糖尿病大鼠血糖及脂质过氧化作用的影响.广东药学院学报,2005,21(1):42-43
    28.杨小兰,杜青平,高应.黑桑椹对大鼠红细胞膜脂质过氧化作用的影响.营养学报,2002,24(4):248-230
    29.杨小兰.毛立新,张晓云.黑桑椹的营养成分和抗氧化作用的研究.食品科学.2006.27(2):248-250
    30. Ko HH, Wang JJ, Lin HC, et al. Chemistry and biological activities of constituents from Morus australis. Biochem Bioph Acta, 1999, 1428(2-3): 293-299
    31. Fukai T, Satoh K, Nomura T, et al. Antinephritis and radicscal scavenging activity of prenylflavonoids. Fitoterapia, 2003, (7-8): 720-724
    32.张晓云.杨小兰.桑椹果汁延缓衰老作用的研究.中华预防医学杂志,1998,32(6):395
    33.杨晓宇,马岩松,车美蓉.桑椹资源的开发利用.食品科技,1999,4:25-26
    34.邬灏,卢笑丛,王有为.桑枝多糖分离纯化及其免疫作用的初步研究.武汉植物学研究,2005,23(1):81-84
    35. Kim HM, Han SB, Lee KH, et al. Immunomodulating activity of a polysaccharide isolated from Mori Cortex Radicis. Arch Pharm Res, 2000, 23(3): 240-242
    36.游元元.万德光,杨文宇,等.四种桑类药材对小鼠免疫功能的影响.中药药理与临床.2008,24(3):83-84
    37.彭延古.葛金文,付灿云,等.桑叶提取液对凝血机制的影响.湖南中医学院学报,2002,22(4):21-23
    38. Ko HH, Yu SN, Ko FN, et al. Bioactive constituents of Morus australis and Broussonetia papyrifera. J Nat Prod, 1997, 60(10): 1008-1011
    39.冯冰虹,苏浩冲,杨俊杰.桑白皮非丙酮提取物的药效学研究.中药材,2005,28(4):322-326
    40. Kim.SY, Gao JJ, Kang, hk. Two flavonoids from the leaves of Mours alba induce differentiation of the human promyelocytic leukemia (HL-60) cell line. Biol Pharm Bull, 2000, 23(4): 451-455
    41.冯冰虹,苏浩冲,杨俊杰.桑白皮丙酮提取物对呼吸系统的药理作用.广东药学院学报,2005,1(21):47-49
    42.李崧,闵阳,刘泉海.桑白皮醇提物对白三烯拮抗活性的研究(2).沈阳药科大学学报,2004,21(2):137
    43.徐宝林,张文娟,孙静芸.桑白皮提取物平喘、利尿作用的研究.中成药,2005,9(25):758-760

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700