用户名: 密码: 验证码:
复合多糖抗辐射和抗肿瘤作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,恶性肿瘤已经成为严重危害人类健康、导致人类死亡的第一大恶疾。恶性肿瘤的治疗目前仍以手术治疗、放疗、化疗为主要方法。然而放射治疗和化学治疗存在着特异性较差,且能够对机体免疫功能造成损伤的弊端。因此研制毒性低、疗效好的抗癌活性成分且可保护和提高肿瘤患者免疫功能,尤其是提高患者的细胞免疫功能,进而减轻放、化疗的毒副作用的制剂,对于预防肿瘤的发生,提高肿瘤的治疗效果具有重要意义。大量的研究表明,多糖具有增强免疫功能、抗肿瘤作用,不同来源的植物多糖其发挥作用的机制不同,为此我们提出这样的假设,把不同的多糖按一定的比例配制成混合制剂,进入机体后将通过不同的途径提高机体的抗肿瘤和抗辐射作用,并探讨其作用机制,为肿瘤患者的临床治疗提供重要的实验依据。本课题从以下三个部分展开研究:
     第一部分复合多糖的抗肿瘤活性及作用机制探讨。
     采用MTT法分别检测人参多糖、松茸多糖和香菇多糖三种多糖对B16和H22肿瘤细胞的生长抑制作用,结果显示三种多糖对肿瘤细胞的生长抑制作用不显著;采用体外淋巴细胞增殖实验检测三种多糖对免疫细胞的影响,结果表明香菇多糖和松茸多糖能够促进淋巴细胞增殖,CTL实验进一步证实三种多糖能够通过增强淋巴细胞的增殖能力进而抑制肿瘤细胞的生长。每种多糖选择三个有效作用剂量通过正交试验找到复合多糖最佳的配比方案。
     分别建立B16和H22荷瘤小鼠模型,给予不同剂量治疗,观察复合多糖的抗肿瘤作用及其对化疗药物抗肿瘤作用的影响。测定各组荷瘤小鼠肿瘤的重量、体积,脾淋巴细胞CD4+和CD8+亚群数,自然杀伤细胞(NK)和细胞毒性T淋巴细胞(CTL)活性以及肿瘤坏死因子-α (TNF-α)、白介素-2(IL-2)、白介素-4(IL-4)和干扰素-γ (IFN-γ)等细胞因子水平。结果显示,与模型组、复合多糖单独治疗组、化疗药物单独治疗组比较,复合多糖联合化疗药物治疗组荷瘤小鼠肿瘤重量和体积显著降低;与化疗药物单独治疗组比较,复合多糖治疗组和复合多糖联合化疗药物治疗组血清中TNF-α、IL-2和IFN-γ水平显著升高、IL-4水平显著降低,脾淋巴细胞CD4+和CD8+亚群数显著升高,NK和CTL细胞活性显著升高;结果表明复合多糖与化疗药物联用使用的抗肿瘤效果显著优于复合多糖或化疗药物的单独使用。复合多糖增强化疗药物抑制肿瘤细胞生长的作用机制为多糖能够增强NK和CTL细胞活性,刺激肿瘤细胞死亡相关细胞因子(TNF-α、IL-2和IFN-γ等)的分泌,维持机体淋巴细胞CD4+和CD8+亚群数。
     第二部分复合多糖的体内抗辐射实验研究
     建立γ射线小鼠辐射损伤模型,观察复合多糖对小鼠辐射损伤的影响。将实验动物随机分成5组,即空白对照组、辐射对照组、复合多糖低剂量组、复合多糖中剂量组和复合多糖高剂量组,照射前预防性连续给药14天,然后除空白对照组外其余组均接受4.0Gy的γ射线全身均匀照射一次,于照射后第1、3、7天取材,检测各组小鼠的脾指数、胸腺指数、脾淋巴细胞增殖能力、外周血白细胞数、骨髓DNA含量、骨髓有核细胞数、骨髓嗜多染红细胞微核数、血清中MDA含量、SOD活性、CAT活性和GSH-Px活性等指标。结果显示,与辐射对照组相比,复合多糖组小鼠的脾指数、胸腺指数、脾淋巴细胞增殖能力、外周血白细胞数、骨髓DNA含量、骨髓有核细胞数、以及血清中SOD活性、CAT活性和GSH-Px活性均显著升高,骨髓嗜多染红细胞微核数和MDA含量显著下降。结果表明,复合多糖可以从增强机体免疫功能、保护造血系统和调节氧化-还原平衡系统三方面来拮抗辐射对机体的损伤。
     第三部分复合多糖的毒性实验研究
     采用最大耐受量实验和骨髓嗜多染红细胞微核实验检测复合多糖的毒性。最大耐受量试验可知实验组小鼠给予30g/kg·BW复合多糖后,观察期14天内小鼠无死亡,状态良好,未见异常症状;观察期结束后对小鼠进行解剖,肉眼观察小鼠的肝脏、肾脏、心脏、脾脏、肺脏的主要器官未见异常改变;与对照组相比,未发现病变和异常。通过实验测得小鼠经口灌胃给予复合多糖最大给药剂量大于30g/kg·BW。小鼠骨髓嗜多染红细胞微核实验表明,与阴性对照组相比,复合多糖实验组小鼠骨髓细胞嗜多染红细胞微核率无显著变化,复合多糖不会对机体染色体产生损伤。
     综上所述,本课题成功的研制出由松茸多糖、香菇多糖和人参多糖组成的复合多糖,它可以通过增强NK和CTL细胞活性,刺激肿瘤细胞死亡相关细胞因子的分泌以及维持机体淋巴细胞CD4+和CD8+亚群数等途径增强化疗药物抑制肿瘤细胞生长的作用;还可以从增强机体免疫功能、保护造血系统和调节氧化-还原平衡系统三方面来拮抗辐射对机体的损伤。
Cancer is the first cause of death among the adult population. The strategiesemployed in clinical practice are to remove the tumor through operation which isfollowed by chemotherapy. The disadvantages of chemotherapy are that theirspecificity is not satisfying and lymphocytes which play pivotal role in fightingtumors are destroyed. Moreover, immunosuppression is detected in patients withcancers. Therefore, how to improve immune response of cancer patients is critical incancer treatment. Substantial studies report that polysaccharides haveimmunomodulatory or antitumor activities. Reports show that polysaccharides fromdifferent herbs have different activities. Thus, we hypothesize that combination ofpolysaccharides from different herbs will produce better efficacy in inhibiting tumorcell growth and antagonize radiation damage.
     Part Ⅰ The anti-tumor effects of the mixture of three polysaccharide
     MTT assay results show that PLE, PTM and PG can produce no significanteffects on the growth of B16and H22cells, which suggest that PLE, PTM and PG donot have the capacities to kill tumor cells, and PLE and PTM can produce effects onthe growth lymphocytes. CTL activity was determined by lactate dehydrogenase(LDH) release assay. The results showed that PLE, PTM and PG were able toincrease the activities of CTL. The dosage proportions of mixture of threepolysaccharides were optimized by orthogonal test.
     Mice were injected with H22or B16cell and then treated by chemotherapydrugs (5-fluorouracil or cyclophosphamide), mixture of polysaccharides (PM), orchemotherapy drugs+PM. The tumor weight, tumor volume, the subgroups of CD4+and CD8+in spleen, the natural killer (NK) cell and cytotoxic T lymphocyte (CTL)activities of splenocytes and the levels of Tumor Necrosis Factor-α (TNF-α),Interleukin-2(IL-2), Interleukin-4(IL-4), and Interferon-γ (IFN-γ) were determined. Compared with mice from model, chemotherapy drugs, PM groups, the mice treatedwith chemotherapy drugs+PM showed: significantly smaller of tumor weight andvolume. Compared with mice from chemotherapy drugs, the mice treated with PMand chemotherapy drugs+PM showed:(1) significantly increased NK and CTLactivities of splenocytes;(2) significantly increased subgroups of CD4+and CD8+inspleen (3) signficantly higher levels of TNF-α, IL-2, and IFN-γ in serum;(4)significantly lower levels of IL-4in serum; Combination of polysaccharides fromlentinus edodes, tricholoma matsutake and ginseng can help chemotherapy drugsproduce more effective inhibition of H22and B16cell growth. One of themechanisms by which PM strengthened the efficacy of chemotherapy drugs ininhibiting H22and B16cells growth was that PM can increase the activities of NKand CTL. Another mechanism through which PM helped inhibit cancer cell growth isthat they can stimulate the secretion of cytokines related to tumor cell death. Theother mechanism that PM enhanced chemotherapy drugs inhibiting H22and B16cells growth was that PM can increase the percentage of subgroups of CD4+andCD8+.
     Part Ⅱ The anti-radiation effects of the mixture of three polysaccharide
     Establish γ-ray radiation damage models of mice and observe the anti-radiationeffects of PM. The mice were divided randomly into five groups: Normal controlgroup (NC), Irradiation control group (IC), Low-dose PM group (PML),Medium-dose PM group (PMM), High-dose PM group (PMH). PM was administeredto the mice for14days. After the14days, the mice in all groups were irradiated with4Gy γ-ray except NC group. The spleen index, thymus index, the prolife reaction ofsplenocytes to ConA, white blood cell count, the content of bone marrow DNA, the number ofnucleated bone marrow cells, the micronucleus rate of bonemarrow polychromatic erythrocyte,MDA content, SOD activity, CAT activity and GSH-Px activity were determined in1st,3rd,7thday after radiation. Compared with mice from IC group, the mice treatedwith PM showed:(1) significantly increased spleen index, thymus index and the prolifereaction of splenocytes to ConA;(2) significantly increased white blood cell count, thecontent of bone marrow DNA and the number of nucleated bone marrow cells;(3) significantly decreased the micronucleus rate of bone marrow polychromaticerythrocyte;(4) significantly increased SOD activity, CAT and GSH-Px activities inserum;(5) signficantly decreased MDA content in serum. PM had strong anti-γ-rayradiation activity.
     Part Ⅲ Toxicological studies of the mixture of three polysaccharide
     The toxicity of PM was determined by maximum tolerance experiment and bonemarrow micronucleus test. The maximum tolerance test results showed: maximumtolerance dose (MTD)>30g/kg·BW. Micronucleus test in mice showed that therewere no significant differences between the PM group and the negative group. PMwas non-toxic and did not induce the micronuclear rates.
     In conclusion, combination of polysaccharides from PLE, PTM and PG werenon-toxic and can help produce a better efficacy of tumor inhibition together withchemotherapy drugs. PM can antagonize the adverse effects, such as the low functionalimmune status, oxidative and hematopoietic system damage, caused by γ-ray radiation.
引文
[1]丁莉,王海黎.恶性肿瘤的中医药治疗[J].中国现代药物应用,2010,4(20):152-154.
    [2] HUNDAL R, SHAFFER EA. Gallbladder cancer: epidemiology and outcome.Clin Epidemiol [J].2014,7(6):99-109.
    [3] THURNHER M, GRUENBACHER G, NUSSBAUMER O. Regulation ofmevalonate metabolism in cancer and immune cells [J]. Biochim Biophys Acta,2013,1831(6):1009-1015.
    [4] TANG L, HAN X. The urokinase plasminogen activator system in breast cancerinvasion and metastasis [J]. Biomed Pharmacother,2013,67(2):179-182.
    [5] ZENG YW, YANG JZ, PU XY, et al. Strategies of functional Food for CancerPrevention in Human Beings [J]. Asian Pac J Cancer Prev,2013,14(3):1585-1592.
    [6] OZOLS RF, HERBST RS, COLSON YL, et al. Clinical cancer advances2006:major research advances in cancer treatment, prevention, and screening-a reportfrom the American Society of Clinical Oncology [J]. J Clin Oncol,2007,25(1):146-162.
    [7] HAKULINEN T, HANSLWKA H, LOPEZ AD, et al. Global and regionalmortality paterns by cause of death in1980[J]. International Epidemiol,1986,15:226-233.
    [8] SCHOTTENFELD D, BEEBE-DIMMER JL. ADVANCES IN CANCEREPIDEMIOLOGY: Understanding Causal Mechanisms and the Evidence forImplementing Interventions [J]. Annu Rev Public Health,2005,26:37-60.
    [9] PARKIN DM, BRAY F, FERLAY J, et al. Global cancer statistics,2002[J]. CACancer J Clin,2005,55(2):74-108.
    [10] JEMAL A, MURRAY T, WARD E, et al. Cancer statistics,2005[J]. CA Cancer JClin,2005,55(1):10-30.
    [11]金贤英,全贞玉,韩春姬.1999-2008年恶性肿瘤住院患者的疾病构成分析[J].中国卫生统计,2011,28(1):107-108.
    [12]卜杰,索丽君.恶性肿瘤住院病人发病趋势分析[J].中国公共卫生管理,2013,29(6):807-808.
    [13]陆舜,陈佳艺,吴向华,等.2009年恶性肿瘤临床治疗新进展[J].肿瘤,2010,30(6):455-470.
    [14] JEONG YK, KIM MS, LEE JY, et al. Sorafenib acts synergistically incombination with radiotherapy without causing intestinal damage in colorectalcancer [J]. Tumori,2013,99(2):176-182.
    [15]张天泽,徐光炜.肿瘤学[M].天津:天津科学技术出版社,1996:261.
    [16] HISHINUMA S, OGATA Y, TOMIKAWA M, et al. Patterns of recurrence aftercurative resection of pancreatic cancer, based on autopsy findings [J]. JGastrointest Surg,2006,10:511-518.
    [17] BIRKMEYER JD, STUCKEL TA, SIEWERS AE, et al. Surgeon volume andoperative mortality in United States [J]. N Engl J Med,2003,349:2117-2127.
    [18] DEBNIAK E, JOZEFOWICZ-KORCZYNSKA M, LUKOMSKI M. Theanalysis of treatment methods in patients with parotid gland cancer [J]. PrzeglLek,2002,59(1):17-20.
    [19] PAVLIDIS TE, PAVLIDIS ET. Role of stenting in the palliation ofgastroesophageal junction cancer: A brief review [J]. World J Gastrointest Surg,2014,6(3):38-41.
    [20]孙燕.内科肿瘤学[M].北京:人民卫生出版社,2001:108.
    [21] PAPASPYROS S. Surgical Management of Malignant Pleural Mesothelioma:Impact of Surgery on Survival and Quality of Life-Relation to Chemotherapy,Radiotherapy, and Alternative Therapies [J]. ISRN Surg,2014,3:817203.
    [22]高社干,王立东.现代科学技术革命与肿瘤治疗的发展[J].医学与哲学,2006,27(4):64-65.
    [23]张金芝,郑卫红.化疗药致神经毒性的机制及临床治疗的研究进展[J].中国中西医结合杂志,2012,32(2):286-288.
    [24] ENDO T, TAKAHASHI M, MLNAMI M, et al. Effects of anticancer drugs onenzyme cativities and serotonin release from ileal tissue in ferrets [J]. BilgenAmin,1993,9:479-489.
    [25] MINAMI M, OGAWA T, ENDO T, et al. Cyclophosphamide increase5-hydroxytryptamine release from the isolated ileum of the rat [J]. Res Commun.Pathol Pharmacol,1997,97:13-24.
    [26] ENDO T, MINAMI M, HIRAFUJI M, et al. Neurochemistry andneuropharmaeology of emesis the role of serotonin [J]. Toxieology,2000,153:189-201.
    [27]李性天.口服5-羟色胺3受体拮抗药预防化疗引起的呕吐[J].中国新药与临床杂志,2002,21(11):672-675.
    [28]陈世伟,张利民.肿瘤中西医综合治疗[M].北京:人民卫生出版社,2001:1721.
    [29] FUJITA Y, ROONEY CM, HESLOP HE. Adoptive cellular immunotherapy forviral diseases [J]. Bone Marrow Transplant,2008,41(2):193-198.
    [30] AREMAN EM, LOPER K. Cellular therapy: principles, methods, andregulations [J]. Bethesda AABB,2009:203-394.
    [31] MULLER R, LENGERKE C. Patient-specific pluripotent stem cells: promisesand challenges [J]. NatRev Endocrinol,2009,5(4):195-203.
    [32] KAUFMAN DS. Toward clinical therapies using hematopoietic cells derivedfrom human pluripotent stem cells [J]. Blood,2009,114(17):3513-3523.
    [33] BORDIGNON C, CARLO-STELLA C, COLOMBO MP, et al. Cell therapy:achievements and perspectives [J]. Haematologica,1999,84(12):1110-1149.
    [34] BOLAND A. Rituximab for the treatment of relapsed orrefractory stage III or IVfollicular non-Hodgkin's lymphoma [J]. Health Technol Assess,2009,13(2):41-48.
    [35] BEREK J, TAYLOR P, MCGUIRE W, et al. Oregovomab maintenancemonoimmunotherapy does not improve outcomes in advanced ovarian cancer [J].J Clin Oncol,2009,27(3):418-425.
    [36] ZOU L, ZHOU H, PASTORE L, et al. Prolonged transgene expression mediatedby a helper dependent adenoviral vector (hdAd) in the central nervous system [J].Mol Ther,2000,2(2):105-113.
    [37] HAMPL M, TANAKA T, ALBERT PS, et al. Therapeutic effects of viralvector-mediated antiangiogenic gene transfer in malignant aseites [J]. Hum GeneTher,2001,12(14):1713-1729.
    [38] HILLMAN GG, SLOS P, WANG Y, et al. Tumor irradiation followed byintratumoral cytokine gene therapy for murine renal adenocarcinoma [J]. CancerGene Ther,2004,11(1):61-72.
    [39] XU C, GUI Q, CHEN W, et al. Small interference RNA targeting tissue factorinhibits human lung adenocarcinoma growth in vitro and in vivo [J]. J Exp ClinCancer Res,2011,30(1):63-73.
    [40]张琴,张一楚.肿瘤微转移检测的进展[J].国外医学肿瘤学分册,1996,23(4):224-227.
    [41] MOERTEL CG, CHILDS JR DS, REITEMEIER RJ, et al. Combined5-fluorouracil and supervoltage radiation therapy of locally unresectablegastrointestinal cancer [J]. Lancet,1969,2:865-867.
    [42] PIVER M S, BARLOW J J, VONGTAMA V, et al. Hydroxyurea as a radiationsensitizer in women with carcinoma of the uterine cervix [J]. Am J ObstetGynecol,1977,129(4):379-383.
    [43] HUGUET F, ANDRE T, HAMMEL P, et al. Impact of chemo radiotherapy afterdisease control with chemotherapy in locally advanced pancreaticadenocarcinoma in GERCOR phase II and III studies [J]. J Clin Oncol,2007,25:326-331.
    [44] TACHIMORI Y, KANAMORI N, UEMURA N, et al. Salvage esophagectomyafter high-dose chemoradiotherapy for esophageal squamous cell carcinoma [J].J Thorac Cardiovasc Surg,2009,137(1):49-54.
    [45] SHINCHI H, TAKAO S, NOMA H, et al. Length and quality of survival afterexternal-beam radiotherapy with concurrent continuous5-fluorouracil infusionfor locally unresectable pancreatic cancer [J]. Int J Radiat Oncol Biol Phys,2002,53:146-150.
    [46] LOEHRER PJ, POWELL ME, CARDENES HR, et al. A randomized phase IIIstudy of gemcitabine in combination with radiation therapy versus gemcitabinealone in patients with localized, unresectable pancreatic cancer: E4201[J]. J ClinOncol,2008,26:4506.
    [47] BIFULCO G, MANDATO V D, PICCOLI R, et al. Multiple bowel stenosis andperforation as long-term complications of chemoradiotherapy for advancedcervical cancer in a young woman: case report [J]. Tumori,2008,94(4):592-595.
    [48] CHAUFFERT B, MORNEX F, BONNETAIN F, et al. Phase III trial comparinginitial chemo radiotherapy (intermittent cisplatin and infusional5-FU) followedby gemcitabine vs. gemcitabine alone in patients with locally advanced nonmetastatic pancreatic cancer: A FFCD-SFRO study [J]. J Clin Oncol,2006,24:4008.
    [49]韩瑞刚,彭瑞云.电离辐射对骨髓损伤的研究进展[J].中华放射医学与防护杂志,2005,25(6):586-588.
    [50] WODARZ D, SORACE R, KOMAROVA NL. Dynamics of cellular responsesto radiation[J]. PLoS Comput Biol,2014,10(4): e1003513.
    [51] FURDUI C. Ionizing Radiation: Mechanisms and Therapeutics [J]. AntioxidRedox Signal,2014, Apr,6.[Epub ahead of print]
    [52] EL-SAGHIRE H, MICHAUX A, THIERENS H, et al. Low doses of ionizingradiation induce immune-stimulatory responses in isolated human primarymonocytes [J]. Int J Mol Med,2013,32(6):1407-1414.
    [53] SHAO L, LUO Y, ZHOU D. Hematopoietic stem cell injury induced by ionizingradiation [J]. Antioxid Redox Signal.2014,20(9):1447-1462.
    [54] CACIARI T, CAPOZZELLA A, TOMEI F, et al. Professional exposureto ionizing radiations in health workers and white blood cells [J]. Ann Ig,2012,24(6):465-474.
    [55] BRUNI JE, PERSAUD TV, HUANG W, et al. Postnatal development of the ratCNS following in utero exposure to a low dose of ionizing radiation [J]. ExpToxicol Pathol,1993,45(4):223-231.
    [56] PATEL DD, BANSAL DD, MISHRA S, et al. A semiquinone glucosidederivative provides protection to male reproductive system of the mice againstgamma radiation toxicity [J]. Environ Toxicol,2014,29(5):558-567.
    [57]周启升,刘训理,段祖安.植物多糖的研究与开发应用进展[J].蚕业科学,2010,36(3):465-469.
    [58]唐小江,祝寿芬.国内外对高等植物多糖的研究概况[J].山西医科大学学报,1998,29(1):94-95.
    [59]魏传晚,曾和平,王晓娟等.多糖及其研究进展简述.广东化工,2004,(1):36-40.
    [60] WHISTLER RL, BUSHWAY AA, SINGH PP. Noncytotoxic, antitumorpolysaccharides [J]. Adv Carbohydr Chem Biochem,1976,32:235-275.
    [61] PAULSEN BS, BARSETT H. Bioactive pectic polysaccharides [J]. Advances inPolymer Science,2005,186:69-101.
    [62] WANG J, GONG XG. Advances in the studies on the antitumor activity andimmunomodulating action of polysaccharides [J]. Chinese Journal of BiocheMical Pharmaceutics,2001,22(1):52-54.
    [63] HUYAN T, LI Q, YANG H, et al. Protective effect of polysaccharides onsimulated microgravity-induced functional inhibition of human NK cells [J].Carbohydr Polym,2014,30(101):819-827.
    [64]李芹,王睿.多糖抗肿瘤作用研究新进展[J].中国药物应用与监测,2005,2:58-61.
    [65] RAVEENDRAN PK, RODRIGUEZA S, RAMACHANDRAN R, et al. ImmuneStimulating Properties of a Novel Polysaccharide from the Medicinal PlantTinospora cordifolia [J]. Int. J. Immunopharmacol,2004,4:1645-1659.
    [66] MAKARENKOVA ID, SEMENOVA IB, AKHMATOVA NK, et al. Effect ofsulfated polysaccharides from brown algae on proliferative and cytotoxicactivity of mice splenocytes [J]. Zh Mikrobiol Epidemiol Immunobiol,2012,(6):68-75.
    [67] CHEN CM, CHENG JL, CHANG WT, et al. Polysaccharides of Ganodermalucidum Alter Cell Immunophenotypic Expression and Enhance CD56+NK-cellCytotoxicity in Cord Blood [J]. Bioorg Med Chem,2004,12:5603-5609.
    [68]刘媛,耿越.灵芝多糖抗肿瘤的细胞机制及作用通路研究[J].食品与药品,2008,10(7):48-51.
    [69] JING Y, HUANG L, LV W, et al. Structural Characterization of aNovel Polysaccharide from Pulp Tissues of Litchi chinensis and ItsImmunomodulatory Activity [J]. J Agric Food Chem,2014,16.[Epub ahead ofprint]
    [70] SUNILA ES, HAMSA TP, KUTTAN G. Effect of Thuja occidentalis andits polysaccharide on cell-mediated immune responses and cytokine levels ofmetastatic tumor-bearing animals [J]. Pharm Biol,2011,49(10):1065-1073.
    [71] YANG B, XIAO B, SUN T. Antitumor and immunomodulatory activity ofAstragalus membranaceus polysaccharides in H22tumor-bearing mice [J]. Int JBiol Macromol,2013,62:287-290.
    [72] HAN Q, LING Z J, HE P M, et al. Immunomodulatory and antitumor activity ofpolysaccharide isolated from tea plant flower [J]. Progr Biochem Biophys,2010,37(6):646-653.
    [73] FAN Y, WANG W, SONG W, et al. Partial characterization and anti-tumoractivity of an acidic polysaccharide from Gracilaria lemaneiformis [J].Carbohydrate Polymers,2012,88(4):1313-1318.
    [74] KIM YO, HAN SB, LEE HW, et al. Immuno-stimulating effect of theendo-polysaccharide produced by submerged culture of Inonotus obliquus [J].Life Sci,2005,77(19):2438-2456.
    [75]康白,李广宙,张磊.香菇多糖对肿瘤浸润淋巴细胞体外扩增及抗瘤活性的影响[J].中国医刊,2000,35(5):46.
    [76] PARK SK, KIM GY, LIM JY, et al. Acidic polysaccharides isolated fromPhellinus linteus induce phenotypic and functional maturation of murinedendritic cells [J]. Biochem Biophys Res Commun,2003,312(2):449-458.
    [77]何彦丽,苏俊芳.中药多糖抗肿瘤免疫药理研究的新思路—对树突状细胞的影响[J].中国中西医结合杂志,2003,23(1):73.
    [78]李汾,弥曼,袁秉祥.中药多糖的非免疫抗肿瘤作用机制[J].现代肿瘤医学,2006,14(6):748-750.
    [79]杨红苏,秦旭平,张娜,等.两种真菌多糖对HL-60细胞酪氨酸蛋白磷酸化作用的影响[J].中国药学杂志,2000,35(5):303.
    [80] XIE YZ, LI SZ, YEE A, et al. Ganoderma lucidum inhibits tumour cellproliferation and induces tumour cell death [J]. Enzyme Microb Technol,2006,40(1):177-185.
    [81] FULLERTON SA, SAMADI AA, TORTORELIS DG, et al. Induction ofapoptosis in human prostatic cancer cells with beta-glucan Maitake mushroompolysaccharide [J]. Mol Urol,2000,4(1):7-13.
    [82] LI XL, ZHOU AG, LI XM. Inhibition of Lycium barbarum polysaccharides andGanoderma lucidum polysaccharides against oxidative injury induced bygamma-irradiation in rat liver mitochondria [J]. Carbohyd Polym,2007,69(1):172-178.
    [83]王玉.树舌多糖对HepA小鼠骨髓细胞染色体SCE的影响[J].中国优生与遗传杂志,2002,10(3):42.
    [84] SOGAWA K, YAMADA T, SUMIDA T. et al. Induction of apoptosis andinhibition of DNA topoisomerase-I in K562cells by a marine microalgalpolysaccharide [J]. Life Sciences,2000,66(16):227-231.
    [85]刘伟国,徐恒卫,吴素芹.红毛五加多糖的药理作用研究进展[J].山东中医药大学学报,2004,28(1):71.
    [86]魏小龙,茹祥斌,刘福君,等.低分子量地黄多糖对p53基因表达产物的影响[J].中国药理学报,1997,18(5):471-474.
    [87] KOYANGI S, TANIGAWA N, NAKAGAWA H, et al. Oversulfation of fucoidanenhances its anti-angangiogenic and antitumor activities [J]. Biochemicalpharmacology,2003,65:173.
    [88]刘耀,石英,刘职瑞,等.黄芪多糖与黄芪甲苷配伍对辐射损伤模型小鼠的保护作用[J].中国药房,2014,25(3):211-214.
    [89] INATSUKA C, YANG Y, GAD E, et al. Gamma delta T cells are activated bypolysaccharide K (PSK) and contribute to the anti-tumor effect of PSK [J].Cancer Immunol Immunother,2013,62(8):1335-1345.
    [90] DENG C, FU HT, TENG LP, et al. Anti-tumor activity of the regeneratedtriple-helical polysaccharide from Dictyophora indusiata [J]. Int J BiolMacromol,2013,61:453-458.
    [91] LI HS, SUN MN, XU J, et al. Immunological response in H22transplanted miceundergoing Aconitum coreanum polysaccharide treatment [J]. Int J BiolMacromol,2013,55:295-300.
    [92] YANG Z, XU J, FU Q, et al. Antitumor activity of a polysaccharide fromPleurotus eryngii on mice bearing renal cancer [J]. Carbohydr Polym,2013,95(2):615-620.
    [93] SHEN H, TANG G, ZENG G, et al. Purification and characterization of anantitumor polysaccharide from Portulaca oleracea L [J]. Carbohydr Polym,2013,93(2):395-400.
    [94]洪艳,刘煜敏,王红玲,等.当归多糖对辐射损伤小鼠红细胞免疫粘附功能和IL-2的影响[J].中华放射医学与防护杂志,2001,21(4):305-306.
    [95] LIU LN, GUO ZW, ZHANG Y, et al. Polysaccharide extracted from Rheumtanguticum prevents irradiation-induced immune damage in mice [J]. Asian PacJ Cancer Prev,2012,13(4):1401-1405.
    [96] YANG M, JIANG Q L, XIAO B, et al. Astragalus polysaccharide hashematopoietic and thrombopoietic activities in an irradiation mouse model [J].blood,2013,122(21):4216.
    [97]梁明至,冉新泽,郭朝华,等.钝顶螺旋藻对辐射所致小鼠造血功能抑制的对抗影响[J].重庆医学,2003,32(3):293-295.
    [98] ZHAO L, WANG Y, SHEN HL, et al. Structural characterization andradioprotection of bone marrow hematopoiesis of two novelpolysaccharides from the root of Angelica sinensis(Oliv.) Diels [J]. Fitoterapia,2012,83(8):1712-1720.
    [99] ZHAO B, ZHANG J, YAO J, et al. Selenylation modification can enhanceantioxidant activity of Potentilla anserina L. polysaccharide [J]. Int J BiolMacromol,2013,58:320-328.
    [100] LI B, LIU S, XING R, et al. Degradation of sulfated polysaccharides fromEnteromorpha prolifera and their antioxidant activities [J]. CarbohydrPolym,2013,92(2):1991-1996.
    [101] JIANG G, WEN L, CHEN F, et al. Structural characteristics and antioxidantactivities of polysaccharides from longan seed [J]. Carbohydr Polym,2013,30,92(1):758-764.
    [102] ABU R, JIANG Z, UENO M, et al. In vitro antioxidant activities ofsulfated polysaccharide ascophyllan isolated from Ascophyllum nodosum [J].Int J Biol Macromol,2013,59:305-312.
    [103]葛明珠,张勇,任少林.南沙参多糖的辐射防护作用[J].中华放射医学与防护杂志,1996,16:123-125.
    [104] SUI Z, LI L, LIU B, et al. Optimum conditions for RadixRehmanniae polysaccharides by RSM and its antioxidant and immunityactivity in UVB mice [J]. Carbohydr Polym,2013,92(1):283-288.
    [105] SASTRY G, HARIA S, SUDEEPTA A, et al. Isolation of a previouslyunidentified polysaccharide (MAR-10) from hyssop officinalis that exhibitsstrong activity agaist human immunodeficiency virus type [J]. BiochemBiophy Res Commun,1995,210:145-151.
    [106]郑敏,梅贤臣,鲍翠玉,等.大蒜多糖体外抗柯萨奇病毒B3作用[J].中国现代应用药学杂志,2005,22(1):4-6.
    [107] YANG T, JIA M, ZHOU S, et al. Antivirus and immune enhancement activitiesof sulfated polysaccharide from Angelica sinensis [J]. Int J BiolMacromol,2012,50(3):768-772.
    [108] YANG T, JIA M, YUE Z, et al. Synergistic antivirus effect of combinedadministration of Combivir with Angelica polysaccharide sulfate [J]. Int J BiolMacromol,2013,53:122-126.
    [109] CHIU YH, CHAN YL, Li TL, et al. Inhibition of Japanese encephalitis virusinfection by the sulfated polysaccharide extracts from Ulva lactuca [J]. MarBiotechnol (NY),2012,14(4):468-478.
    [110] MALAGOLI BG, CARDOZO FT, GOMES JH, et al. Chemicalcharacterization and antiherpes activity of sulfated polysaccharides fromLithothamnion muelleri [J]. Int J Biol Macromol,2014,6(66C):332-337.
    [111] CHEN Y, XIONG W, ZENG L, et al. Bush Sophora Root polysaccharide andits sulfate can scavenge free radicals resulted from duckvirus hepatitis [J]. Int JBiol Macromol,2014,25(66C):186-193.
    [112] CHEN Y, XIONG W, ZENG L, et al. Comparison of Bush SophoraRoot polysaccharide and its sulfate's anti-duck hepatitis A virusactivity andmechanism [J]. Carbohydr Polym,2014,15(102):333-340.
    [113]刘月冉,耿越.植物多糖降血糖作用机制研究[J].食品与药品,2012,14(1):64-67.
    [114]张艳荣,刘婷婷,王大为.玉米活性多糖减肥降脂作用的研究[J].食品科学,2006,27(5):227-230.
    [115] XUE S X, CHEN X M, LU J X, et al. Protective effect of sulfated Achyranthesbidentata polysaccharides on streptozotocin-induced oxidative stress in rats [J].Carbohydr Polym,2009,75(3):415-419.
    [116] JIANG S, Du PG, AN LP, et al. Anti-diabetic Effect of Coptis ChinensisPolysaccharide in High-Fat Diet with STZ-Induced Diabetic Mice [J]. Int JBiol Macromol,2013,55:118-22.
    [117] KODAMA, E, SHIGETA, S, SUZUKI, T, et al. Application of a gastric cancer cellline (MKN-28) for anti-adenovirus screening using the MTT method [J]. AntiviralRes,1996,31:159-164.
    [118] VANI J, NAYAK R, SHAILA M S. A CD8+T cell clone specific for antigenalso recognizes peptidomimics present in anti-idiotypic antibody: Implicationsfor T cell memory [J]. Cellular Immunology,2007,246:17-25.
    [119] YANG H, HIGGINS B, KOLINSKY K. RG7204(PLX4032), a SelectiveBRAFV600E Inhibitor, Displays Potent Antitumor Activity in PreclinicalMelanoma Models [J]. Cancer Res,2010,70:5518-5527.
    [120] LEE J, NA K, YUN J, et al. In Vitro Bifidogenic Effect of NondigestibleOligosaccharides Isolated from Red Ginseng Marc [J]. Journal ofMicrobiology and Biotechnology,2001,11:858-862.
    [121] ZHANG CC, ZHAO HX, JIANG MJ, et al. Effects of polysaccharides isolatedfrom Panax japonicus on immunosuppression mice [J]. Zhong Yao Cai,2011,34(1):91-94
    [122] KWAK Y, SHIN H, SONG Y, et al. Isolation of immunomodulatory antitumoractive polysaccharide (RGAP) from red ginseng by-product and itsphysico-chemical properties [J]. J Koren Soc Food Sci Nutr,2003,32:752-757.
    [123] ZHENG R, JIE S, HANCHUAN D, et al. Characterization andimmunomodulating activities of polysaccharide from Lentinus edodes [J]. IntImmunopharmacol,2005,5:811-820.
    [124] LEE Y S, CHUNG I N S, LEE I R, et al., Activation of multiple effectorpathways of immune system by the antineoplastic immunostimulator acidicpolysaccharide ginsan isolated from Panax ginseng [J]. Anticancer Research.1997,17(1A):323-331.
    [125] SHI Y, LIU C H, ROBERTS A I, et al. Granulocyte-macrophagecolony-stimulating factor (GM-CSF) and T-cell responses: what we do anddon't know [J]. Cell Res,2006,16(2):126-133.
    [126] ZHANG W, CHEN Z, LI F, et al. Tumour necrosis factor-α (TNF-α)trans-gene-expressing dendritic cells (DCs) undergo augmented cellularmaturation and induce more robust T-cell activation and anti-tumour immunitythan DCs generated in recombinant TNF-α [J]. Immunology,2003,108(2):177-188.
    [127] KOSS M, PFEIFFER GR, WANG Y, et al. Ezrin/radixin/moesin proteins arephosphorylated by TNF-α and modulate permeability increases in humanpulmonary microvasular endothelial cells [J]. J Immunol,2006,176(2):1218-1227.
    [128] WEN M, XU W, REN L, et al. Effector cells derived from naive T cells used intumor immunotherapy of mice bearing B16melanoma [J]. Chin Med J(Engl),2014,127(7):1328-1333.
    [129] Kiyota T, Takahashi Y, Watcharanurak K, et al. Enhancement of AnticancerEffect of Interferon-γ Gene Transfer against Interferon-γ-Resistant Tumor byDepletion of Tumor-Associated Macrophages [J]. Mol Pharm,2014,7.[Epubahead of print]
    [130] CHOI KT. otanical characteristics, pharmacological effects and medicinalcomponents of Korean Panax ginseng C A Meyer [J]. Acta Pharmacol Sin,2008,29(9):1109-1118.
    [131] KIM Y, PARK K, SHIN H, et al. Anticancer activities of red ginseng acidicpolysaccharide by activation of macrophages and natural killer cells [J].Journal-Pharmaceutical society of Korea,2002,46:113-119.
    [132] HANG SD, YIN YX, WEI Q. Immunopotentiation on murine spleenlymphocytes induced by polysaccharide fraction of Panax ginseng viaupregulating calcineurin activity [J]. APMIS,2010,118(4):88-96.
    [133] YUN YS, LEE YS, JO SK, et al. Inhibition of autochthonous tumor by ethanolinsoluble fraction from Panax ginseng as an immunomodulator [J]. PlantaMedica,1993,59:521-524.
    [134] KIM K H, LEE Y S, JUNG I S, et al. Acidic polysaccharide from Panaxginseng, ginsan, induces Th1cell and macrophage cytokines and generatesLAK cells in synergy with rIL-2[J]. Planta Medica,1998,64(2):110-115.
    [135] MORADALI M F, MOSTAFAVI H, GHODS S, et al. Immunomodulating andanticancer agents in the realm of macromycetes fungi (macrofungi)[J]. IntImmunopharmacol,2007,7:701-724.
    [136] KWAK Y, SHIN H, SONG Y, et al. Effect of Oral Administration of Redginseng acidic polysaccharide (RGAP) on the Tumor Growth Inhibition [J]. J.Ginseng Re,2005,29:176-181.
    [137] AHN J, SONG J, YUN Y, et al. Protection of Staphylococcus aureus-infectedseptic mice by suppression of earlyacute infammation and enhancedantimicrobial activity by ginsan [J]. FEMS Immunol Med Microbiol,2006,46:187-197.
    [138] SHIN H, KIM Y S, KWAK Y, et al. A further study on the inhibition of tumorgrowth and metastasis by red ginseng acidic polysaccharide (RGAP)[J].Natural product sciences,2004,10(6):284-288.
    [139] KIM M H, BYON Y Y, KO E J, et al. Immunomodulatory activity of ginsan, apolysaccharide of panax giseng, on dendritic cells [J]. Koraen J PhysiolPharmacol,2009,13(3):169-173.
    [140] WANG Z, MENG J, XIA Y, et al. Maturation of murine bone marrow dendriticcells induced by acidic Ginseng polysaccharides [J]. Int J BiolMacromol,2013,53:93-100.
    [141] SHIM JY, HAN Y, AHN JY, et al. Chemoprotective and adju-vant effects ofimmunimodulator ginsan in cyclophosphamide-treated normal and tumorbearing mice [J]. Int Immu-nopathol Pharmacol,2007,20(3):487-497.
    [142] CHENG H, LI S, FAN Y, et al. Comparative studies of the antiproliferativeeffects of ginseng polysaccharides on HT-29human colon cancer cells [J].Med Oncol,2011,28(1):175-181.
    [143] CHOIS H S, KIM K H, SOHN E, et al.Red ginseng acidicpolysaccharide(RGAP) in combination with IFN-gamma results in enhancedmacrophage function through activation of the NF-kappa B pathway [J].Biosci Biotechnol Biochem,2008,72(7):1817-1825.
    [144]包素珍,陈震.人参多糖抑癌与P53基因的关系[J].吉林中医药,2000,(3):62.
    [145] PARK H J, HAN E S, PARK D K. The ethyl acetate extract of PGP (Phellinuslinteus grown on Panax ginseng) suppresses B16F10melanoma cellproliferation through inducing cellular differentiation and apoptosis [J]. JEthnopharmacol,2010,132(1):115-121.
    [146] YUN Y S, LEE Y S, JO S K, et al. Inhibition of autochthonous tumor byethanol insoluble fraction from Panax ginseng as an immunomodulator [J].Planta Medica,1993,59:521-524.
    [147] LIM D S, BAE K G, JUNG I S, et al. Anti-Septicaemic Effect ofPolysaccharide from Panax ginseng by Macrophage Activation [J]. Journal ofInfection,2002,45:32-38.
    [148] NI W, ZHANG X, WANG B, et al. Antitumor activities and immunomodulatoryeffects of ginseng neutral polysaccharides in combination with5-fluorouracil[J]. J Med Food,2010,13(2):270-277.
    [149]倪维华.人参多糖免疫活性及抗肿瘤作用[D].吉林:东北师范大学,2010.
    [150] KIM YS, KANG KS, KIM SI. Study on antitumor and immunomodulatingactivities of polysaccharide fractions from Panax ginseng: Comparison ofeffects of neutral and acidic polysaccharide fraction [J]. Arch PharmRes,1990,13:330-337.
    [151] CHIHARA G, MAEDA Y, HAMURO J, et al. Inhibition of mouse Sarcoma180by polysaccharides from Lentinus edodes (Berk) Sing [J]. Nature,1969,222:687-688.
    [152] MARIA M, NEKTARIOS A, ZACHAROULA G Z, et al. Antioxidant andcytotoxic activity of the wild edible mushroom Gomphus clavatus [J]. J. Med.Food,2012,15,216-221.
    [153] JEFF I B, YUAN X, SUN L, et al. Purification and in vitro anti-proliferativeeffect of novel neutral polysaccharides from Lentinus edodes [J]. Int. J. Biol.Macromol,2013,52,99-106.
    [154] JEFF I B, LI S, PENG X, et al. Purification, structural elucidation andantitumor activity of a novel mannogalactoglucan from the fruiting bodies ofLentinus edodes [J]. Fitoterapia,2013,84:338-346.
    [155] YOU R, WANG K, LIU J, et al. A comparison study between differentmolecular weight polysaccharides derived from Lentinus edodes and theirantioxidant activities in vivo [J]. Pharm. Biol,2011,49,1298-1305.
    [156] XU X, YAN H, TANG J, et al. Polysaccharides in Lentinus edodes: isolation,structure, immunomodulating activity and future prospective [J]. Crit RevFood Sci Nutr,2014,54(4):474-487.
    [157] JAGADISH L K, SHENBHAGARAMAN R, VENKATAKRISHNAN V, et al.Studies on the phytochemical, antioxidant and antimicrobial properties of threeindigenous Pleurotus species [J]. J. Mol. Biol. Biotechnol,2008,1:20-29.
    [158] MORADALI M F, MOSTAFAVI H, GHODS S. Immunomodulating andanticancer agents in the realm of macromycetes fungi (macrofungi)[J].International Immunopharmacology,2007,7(6):701-724.
    [159] UEDA Y, NAITO K, WAMOTO A, et a1. Two case reports of completeregression of livermetastases from colorectal cancer after locoregionalimmuno chemotherapy [J]. Gan ToKagaku Ryoho,2004,31(11):1671.
    [160] LEE H H, LEE J S, CHO J Y, et al, Structural characteristics ofimmunostimulating polysaccharides from lentinus edodes [J]. J MicrobiolBiotechnol,2009,19(5):455-461.
    [161] REN L, PERERA C, HEMAR Y. Antitumor activity of mushroompolysaccharides: a review [J]. Food Funct,2012,3(11):1118-1130.
    [162] YU Z, MING G, KAIPING W, et al. Structure, chain conformation andantitumor activity of a novel polysaccharide from Lentinus edodes [J].Fitoterapia,2010,81(8):1163-1170.
    [163] HOU Y, DING X, HOU W, et al. Anti-microorganism, anti-tumor, and immuneactivities of a novel polysaccharide isolated from Tricholomamatsutake [J].Pharmacogn Mag,2013,9(35):244-249.
    [164] KIM J Y, BYEON S E, LEE Y G, et al. Immunostimulatory activities ofpolysaccharides from liquid culture of pine-mushroom Tricholoma matsutake[J]. J Microbiol Biotechnol,2008,18(1):95-103.
    [165] BYEON SE, LEE J, LEE E, et al. Functional activation of macrophages,monocytes and splenic lymphocytes by polysaccharide fraction fromTricholoma matsutake [J]. Arch Pharm Res,2009,32(11):1565-1572.
    [166] YIN X, YOU Q, JIANG Z. Immunomodulatory activities of different solventextracts from Tricholoma matsutake (S. Ito et S. Imai) singer (higherbasidiomycetes) on normal mice [J]. Int J Med Mushrooms,2012,14(6):549-556.
    [167]张治业,松茸多糖对不同肿瘤细胞系的体外抗肿瘤作用[J].山东医药,2011,51(13):70-71.
    [168] YOU L, GAO Q, FENG M, et al. Structural characterization of polysaccharidesfrom Tricholoma matsutake and their antioxidant and antitumour activities [J].Food Chem,2013,138(4):2242-2249.
    [169]刘刚,王辉,张洪,等.松茸多糖体外抗肿瘤活性研究.中华中医药学[J],2013,31(2):267-270
    [170] OOI VE, LIU F. Immunomodulation and anti-cancer activity ofpolysaccharide-protein complexes [J]. Curr Med Chem,2000,7(7):715-729.
    [171] CAI Z, LI W, WANG H, et al. Anti-tumor and immunomodulating activities ofa polysaccharide from the root of Sanguisorba officinalis L [J]. Int J BiolMacromol,2012,51(4):484-488.
    [172] ZHAO H, LI Y, WANG Y, et al. Antitumor and immunostimulatory activity of apolysaccharide–protein complex from Scolopendra subspinipes mutilans L.Koch in tumor-bearing mice [J]. Food Chem Toxicol,2012,50(8):2648-2655.
    [173]季屹红,倪美鑫,蔡晶等.补康灵对辐射损伤小鼠造血功能的影响[J].中国实验方剂学杂志,2012,18(7):184-186.
    [174] OHKAWA H, OHISHI N, YAGI K. Assay for lipid peroxides in animaltissues by thiobarbituric acid reaction [J]. Anal.Biochem,1979,95(2):351-358.
    [175] PARK E, HWANG I, SONG JY, et al. Acidic polysaccharideof Panax ginseng as a defense against small intestinal damage by whole-bodygamma irradiation of mice [J]. Acta Histochem,2011,113(1):19-23.
    [176] SHI J, CHENG C, ZHAO H, et al. In vivo anti-radiation activities of the Ulvapertusa polysaccharides and polysaccharide-iron(III) complex [J]. Int J BiolMacromol,2013,60:341-346.
    [177] NAM JS, TERABE M, KANG MJ, et al. Transforming growth factor betasubverts the immune system into directly promoting tumor growth throughinterleukin-17[J]. Cancer Res,2008,68(10):3915-3923.
    [178] RADHAKRISHNAN R, GEORGE S K, KUMAR S, et al. Maintenance ofImmunological Homeostasis by Indukantha Ghritha in Patients with RecurrentUpper Respiratory Tract Infections-A Pilot Study [J]. Phytother Res,2014,20.
    [Epub ahead of print]
    [179] MABBOTT NA, KOBAYASHI A, SEHGAL A, et al. Aging and themucosal immune system in the intestine [J]. Biogerontology,2014,5.[Epubahead of print]
    [180]王法权,郑卫东,马春玲等.合欢皮对小鼠免疫功能的调节作用[J].临沂医专学报,2000,22(3):201-202.
    [181]吕晓东,杨胜,齐春会,等.山茱萸免疫活性部位的免疫抑制作用[J].中国天然药物,2004,2(1):50-54.
    [182] CUI YF, DING YQ, XU H, et al. Relationship between apoptosis of mousethymic lymphocytes and expressions of bax, bcl-2and bcl-XL after (γ-ray)radiation with lethal dose [J]. Journal of Cellular and Molecular Immunology,2004,20(6):750-753
    [183] ZHAO ZH, HUANG Y, LIU XF, et al. Different doses of X-ray irradiationeffects on rat spleen lymphocytes [J]. ShandongMedical Journal,2008,48(34):43-44.
    [184] CUI YF, YANG H, WU SX, et al. Molecular Mechanism of Damage and Repairof Mouse Thymus Lymphocytes Induced by Radiation [J]. Chinese MedicalJournal,2002,115(7):1070-1073.
    [185]贺许良,卢先州,陈枚等.免疫器官辐射损伤与防护的研究进展[J].现代生物医学进展,2014,14(5):996-1000.
    [186] CHENG PC, HUANG CC, CHIANG PF, et al. Radioprotective effects ofAntrodia cinnamomea are enhanced on immune cells and inhibited on cancercells [J]. Int J Radiat Biol,2014,8.[Epub ahead of print]
    [187]刘建欣,郑昌学主编.现代免疫学-免疫的细胞和分子基础[M].清华学出版社,2000,第一版.
    [188]梁莉,李新芳.苦豆子总碱对辐射损伤小鼠的防治作用研究[J].中药药理与临床,2001,17(6):18-19.
    [189] SANZARI JK, ROMERO-WEAVER A, Krigsfeld GS, et al. Ground-basedmicrogravity and proton radiation exposure alters leukocyte activity [J]. JRadiat Res,2014,1(55Suppl): i94.
    [190] WANG K, LIU C, DI CJ, et al. Kojic acid protects C57BL/6mice fromgamma-irradiation induced damage [J]. Asian Pac J Cancer Prev,2014,15(1):291-297.
    [191]王德文编.军事病理学研究进展[M].北京:军事医学科学出版社, l999,49-54.
    [192] LI Q, SUN H, XIAO F, et al. Protection against radiation-inducedhematopoietic damage in bone marrow by hepatocyte growth factor genetransfer [J]. Int J Radiat Biol,2014,90(1):36-44.
    [193] SHARMA NK. Modulation of radiation-induced and mitomycinC-induced chromosome damage by apigenin in human lymphocytes in vitro[J]. J Radiat Res,2013,54(5):789-797.
    [194] OZAR M, OZAR E, KOYLU S, et al. Role of radiation-induced chromosomeaberrations in predicting brain cancer risk for glioblastoma multiforme patients[J]. J Neurosurg Sci,2014,58(1):1-8.
    [195]曹佳,林真,余争平编著.微核实验原理方法及其方法在人群监测和毒性评价中的应用[M].北京:军事医学科学出版社,2000,1-11.
    [196]胡博路,孟洁,胡迎芬.30种中草药清除自由基的研究[J].青岛大学学报,2000,13(2):38-40.
    [197] JONES GM, VALE JA. Mechanisms of toxicity, clinical features, andmanagement of diquat poisoning: a review [J]. Toxicol Clin Toxicol,2000,38(2):123-128.
    [198] MARIA ALEJANDRA MUSSI, NORA B, CALCATERRA. Paraquat-inducedoxidative stress response during amphibian early embryonic development [J].Comparative Biochemistry and Physiology Part C,2010,151:240-247.
    [199] MORGAN JL, RITCHIE LE, CRUCIAN BE, et al. Increased dietary ironand radiation in rats promote oxidative stress, induce localized and systemicimmune system responses, and alter colon mucosal environment [J]. FASEB J,2014,28(3):1486-1498.
    [200] STEIN TP. Space flight and Oxidative stress [J]. Nutr,2002,18(10):867-871.
    [201] CHERYL F, LISA MS, TIM DO. Extracellular superoxide dismutase in biologyand medicine [J]. Free Rad Biol Med,2003,35(3):236-256.
    [202]武毅,于晓风,曲绍春等.仙人掌粗多糖的抗衰老作用研究[J].人参研究,2000,12(4):23-25.
    [203] ROSSI L. Increased susceptibility of copperdeficient neuroblastoma cells tooxidative stress-mediated apoptosis [J]. Free Radic Biol Med,2001,30(10):1177-1187.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700