用户名: 密码: 验证码:
机械噪声源辨识与特征提取的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机械噪声蕴含着机器设备状态的重要信息,可被用来进行机器状态监测与故障诊断,在进行噪声故障诊断过程中,准确的找出机器噪声产生的根源是非常关键的。声源辨识技术利用测量面的信息采用特定的变换算法,可以重建出声场中任意场点的声压、声速与声强等声学参量,进行声源辨识与定位及声场的预测。本文详细地分析了国内外声源辨识技术研究的历史和现状,对其中的近场声全息(NAH)与Helmholtz方程最小二乘(HELS)法、波叠加法进行深入的研究的基础上,充分结合HELS与波叠加法这两种方法的优点,提出一种新的声源辨识方法—混合叠加法,该方法的基本思想是:基于Helmholtz方程最小二乘法用相对少量的测点数据获得包围源的最小球面上或之外的任意一假想球面上的声压数据,然后将这些数据作为输入,计算出辐射体内混合内域虚源强的强度值,通过解离散波叠加的方程,重建出在重建面上离散点的声压、声速等值。为了避免傅里叶变换的平面近场声全息在有限传声器阵列上离散带来窗效应和声场重建过程中引起卷绕误差,采用统计最优平面近场声全息技术,并提出了基于统计最优平面近场声全息(SONAH)的噪声源分离技术,从混合噪声信号中分离出各个噪声源信号的时域波形及频域特征,进行故障信号特征分离提取。具体研究内容如下:
     首先探讨了声场重构技术的研究意义,回顾和分析了声源辨识方法的发展历史和研究现状,详细讨论了现有声源辨识技术的实现方法和各自所具有的优缺点,明确了需要解决的问题,确立了本论文的研究内容。
     对振动结构机械噪声的声场进行了数学描述,推导了平面近场声全息技术的基本公式,讨论了平面全息的空间波数域的滤波函数。通过数值仿真验证了该算法在一定条件下可以对声源比较精确地辨识,但也显示了在声场重建计算过程中的窗效应和卷绕误差。
     提出采用混合波叠加法作为声场重建算法,建立了用混合波叠加法进行声场全息重建和预测的数学模型。该方法既继承了波叠加方法适于任意形状声源分析的优点,又继承了HELS方法的稳健性优点。不仅避免了奇异值和解非唯一性问题,同时克服了测量传声器数目多及测量工作和重建计算都相当耗时等问题。用数值仿真分析讨论了虚源点的数目、位置及分布形状对重构结果精度的影响。通过数值算例和实验验证该算法对声源辨识的精确性。
     提出了基于Tichhonov正则化的统计优化近场声全息声源辨识技术,有效地抑制传声器测量误差对声场的影响影响,给出了正则化系数的选取方法。通过仿真算例验证了SONAH能有效地解决NAH技术在计算过程带来窗效应和卷绕误差以较少的传声器有效地、精确地辨识出噪声源。提出了SONAH应用噪声源的信号特征提取的基本原理:运用SONAH重建振动体的声压场,得到声场中比较重要的振动噪声源的个数,并且把每个信号源的方位计算出来,重建传声器与噪声源系统的混合矩阵,从而逆向求解,得到各个噪声源信号的时域波形及频域特征,进行故障信号特征分离提取。
     在半消声室,基于Tichohonov正则化的统计优化近场声全息对单个音箱声源、两个音箱声源及电动机声源进行声场重建试验,得到空间场的声压、声速与声强等声学参量;用B&K标准声强探头测得的声强与重建声强进行了比较;并且从一个音箱和电动机混合信号从分离出源信号;验证了该方法的声场重建和预测技术的精确性和可行性、及其在噪声源特征提取的适用性。
As the result of vibration emission in air, machine sound signal carries affluent information about the working condition of machine and it can be used to make mechanical fault diagnosis. The fundamental problems for sound diagnosis are to estimate the number of mechanical noise sources and localize them. Sound source identification is a technique that applies the partial information of the acoustic holography to reconstruct the acoustic parameters including sound pressure, velocity and sound intensity at every point in 3-D sound field. In this paper, the research history and applicaiton of sound source identification are studied detailedly in overseas and home. After the investigations and research about implement procedures, characters and existing problems of three sound source identificaiton technologies: Near-field Acoustic Holography (NAH), Helmholtz Equation Least Square (HELS) and Superposition Wave, a combined wave superposition method is developed to overcome time consuming and high cost for sound source identification. It allows for reconstruction of acoustic field radiated from an arbitrary object with few relatively few measurements, and the efficiency of reconstruction can be significantly enhanced. The first step in the combined wave superposition method is to establish the Helmholzt equation least squares formulation based on a finite number of acoustic pressure measurements taken on or beyond a hypothetical spherical surface that enclose the object under consideration. Next enough field acoustic pressures are generated using the Helmholtz equation least squares formulations and taken as the input to calculate the source strength. The acoustic pressures, velocities and sound intensities at the discretized nodes on the reconstructed surface are determined by solving the matrix equation based on the wave superposition. In order to avoid spatial Fourier transform-related truncation error and windowing effects based on NAH, the statistically optimal NAH (SONAH) method is introduced which performs the plane-to-plane calculations directly in the spatial domain. The SONAH algorithm is described and some numerical simulations are presented. In addition, a new technology based on SONAH method is also develop for the seperation of machinery’s acoustic signal.After the estimation of sound source numbers and positions, each source’s spectum is obtained from the mixed signal. The main content of this paper can be summarized as follows:
     1. Firstly, the research significance of sound source identification is discussed. The research history is reviewed and the research application of is also investigated. The advantage and disadvantage of every sound source identification methods are analyzed and compared detaily,and the concrete research points are decided, then the research content of this paper are defined.
     2. The basic theory of sound radiation from vibrating structure is introduced, and the near-filed acoustical holography (NAH) algorithm is deduced. Some filters are also introduced and discussed for sound reconstruction accuracy. Two pulsing spheres with the same phase are investigated to reconstruct sound field on the reconstruction plane. The results show that the use of spatial FFT and multiplication with a transfer function in the spatial frequency domain is computationally very efficient, but it causes“wrap-round errors”and windowing effects in the calculations.
     3. A new sound field reconstruction method of combined wave superposition is proposed for the first time. It not only can avoid singularity present in the integral equations and the non-uniqueness of the solution at critical wave numbers,but also reconstruct of acoustic field radiated from an arbitrary object with few relatively few measurements. It is disscussed about the non-singularity solution problems by using mono-layer potential form for Dirichlet inner region problem and using double potential form for Neumann inner region problem at the Eigen-frequency.By applying pulsing spherical source as the example, the influences of number of virtual source, virtual source location and distribution shape of virtual source on the accurateness of reconstruction result are analyzed, and the instability of the combined wave superposition is investigated.
     4. In order to avoid spatial Fourier transform-related truncation effects, the measurement aperture (i.e., the hologram surface) must typically extend well beyond the sources, a statistically optimal NAH (SONAH) method is introduced which performs the plane-to-plane calculations directly in the spatial domain. In oder to avoid the estimation errors of the sound sources number and sources positon, a new feature extraction method based on SONAH is developed to get the separated sources from the mixed signal. Firstly, the sound preasure field is reconstructed based on SONAH and the number and position of sound sources are estimted efficiently.Then, the tranfer matrix between microphones and sound sources is established. Finally, by inverse solution, the waveform in time domain and the exatrcted featureg in the frequency domain are obtained, which can be used as a machine diagnostic tool.
     5. In a semi-anechoic chamber, the sound sources are set up as one high fidelity loudspeaker, two loudspeakers and the motor. The location, the sound pressure and the properties in frequency domain of the sound sources can be found through this method precisely. The experimental results demonstrate that the SONAH is very effective in the low-to-mid regime, and can potentially become a powerful noise diagnostic tool.
引文
1. 陈进. 机械设备振动监测与故障诊断. 上海:上海交通大学出版社, 1999.
    2. R. H. Lyon. Machinery noise and diagnostics, Boston: Butterworths, 1987.
    3. G. B.Parrent. On the propagation of mutual coherence. J.Opt. Soc.Am., 1959, 49
    4. A.F.M.Hussein. Introduction to acoustical holography. J.Acoust.Soc.Am.,1967,42(4): 1478-1479
    5. D.C. Greece. Use of acoustic holography for the imaging of sources of radiated acoustic intensity. J.Acoust.Soc.Am., 1969,46(1): 44-45
    6. S.Ueha. Mapping of noise-like sound sources with acoustical holography. Applied Optics. 1975,14(7): 1478-1479
    7. S. Ueha. Imaging of acoustic radiation soureces with acoustical holograph. Holography. Applied Optics. 1976,23(2): 107-114
    8. J.D.Maynard, E.G.Williams, Y.Lee. Nearfield acoustic holography: I. Theory of generalized holography and the development of NAH. J.Acoust.Soc.Am.,1985, 78(4):1395-1413
    9. W.A.veronesi, J.D.Maynard. Nearfield acoustic holography (NAH) II. Holographic reconstruction algorithms and computer implementation. J. Acoust. Soc. Am., 1987, 81(5): 1307 -1322
    10. E.G.Williams.Sound sourcere constructions using a microphone array. J. Acoust. Soc. Am., 1980, 68(1): 340-344
    11. E.G.Williams, H.D. Dardy. Nearfied acoustical holography using an under water acoumated scanner. J.Acoust.Soc.Am., 1985,78:789-798
    12. E.G.Williams, H.D. Dardy. Generalized nearfied acoustical holography for cylindrical geometry: Theory and experiment. J.Acoust.Soc.Am., 1987,81(2): 399-407
    13. J.C.Lee. Spherical acoustical holography of low-frequency noise soureces. Applied Acoustics. 1996, 48 (4): 85-95
    14. B.M.Salin and V.I.Turchin. Holographic reconstruction of wave fields with an arbitrary time dependence. Sov. Phys. Acoust., 1992,38(1): 77-79
    15. P.Schacht. Improvement of field projection for sound source reconstruction. Acoustica. 1993, 79: 259-265
    16. H.S.Kson and Y.H.Kim. Moving frame technique for planar acoustic holography. J. Acoust. Soc. Am., 1998, 103(4): 1734-1741
    17. S.H.Park and Y.H.Kim. An improved moving frame acoustic holography for coherent bandlimited noise. J.Acoust.Soc.Am.,1998,104(6):3179-3189
    18. H.Fleischer and U.Axelrad. Restoring an acoustic source from pressure data using Wiener filtering. Acoustica, 1986,60: 172-175
    19. J.Hald. Reduction of spatial windowing effects in acoustical holography. Inter-Noise 94.Yokohama (Japan). August, 1994:1887-1890
    20. Zhang Dejun,et. A new method for low frequency NAH-Nearfield Acoustic Holography. 14th ICA. (Beijing, China). 1992
    21. H.S.Kson and Y.H.Kim. Minimizaion of bias error due to windows in planar acoustic holography using a minimum error window. J.Acoust.Soc.Am.,1995,97(5):2657-2663
    22. K.U.Nam and Y.H.Kim. Errors due to sensor and position mismatch in planar acoustic holography. J.Acoust.Soc.Am.,1995,106(4):1655-1665
    23. G.P. Carroll. Feasibility of implementing near-field acoustic holography at large scale. J. Acoust. Soc.Am.,1996,100(4):2654-2664
    24. G.P. Carroll.The effect of sensor placement error on cylindrical near-field acoustic holography at large scale. J.Acoust.Soc.Am.,1999,105(4):2269-2276
    25. G.P. Carroll. Numerical investigation of error mechanisms in near-field acoustic holography. J.Acoust.Soc.Am.,1995,97(5):3348-3357
    26. R.Reibold. Sound source reconstruction using Fourier Optics. Acoustica, 1987,63:60-64
    27. 蒋伟康等.声近场综合试验解析技术及其在车外噪声分析中的应用. 机械工程学报, 1998,34(5):76-84
    28. 张德俊等. 64×64 声全息方阵系统性能评价及水下近距离实验验证. 第三届全国声学会议报告.1982
    29. 何祚庸,王文芝. 声全息测量基阵德设计与研制. 哈尔滨工程大学学报, 2002, 23(2):59-65
    30. Curona L.J., Leith E.N.etc. On the application of coherence optical processing techniques to synthetic aperture radar. PIEEE. 1996,54:1026-1033
    31. E.G.Williams. Imaging the soureces on a cylindrical shell from far-field pressure measured on a semicircle. J.Acoust.Soc.Am.,1996,99(4):2022-2032
    32. A.N.Norris. Far-field acoustic holography onto cylindrical surfaee using pressure measured on semicircles. J.Acoust. Soc.Am., 1997,102(4): 2098-2107
    33. 杨殿阁,郑四发等.用于声源识别的声全息重建方法的研究.声学学报, 2001,26(3):156-160
    34. W.A.veronesi, J.D.Maynard. Digital holographic reconstruction of sources with arbitrarily shaped surfaces. J.Acoust.Soc.Am., 1989,85(2),588-598
    35. M.R.Bai, Application of BEM (boundary element method)-based acoustic holography to radiation analysis of sound sources with arbitrarily shaped geometries. J.Acoust. Soc. Am., 1992, 92(1):533-549
    36. A. Sarkissian. Reconstruction of the surface acoustic field on radiating structures. J. Acoust. Soc. Am., 1992, 92(2): 825-830
    37. 商徳江. 水声全息的任意变换方法及源定位研究. 哈尔滨工程大学硕士论文, 1994
    38. 暴雪梅. 宽带的以边界元为基础的非共形全息声场变换方法研究. 哈尔滨工程大学硕士论文, 1995
    39. Yuanan HE, Zuoyong HE. Field reconstruction by acoustic holography technique based on BEM. Boundary Elements XVIII, Editors: C.A.Brebbia,et. Computational Mechanics.1996: 33-42
    40. G.T.Kim and B.H.Lee. 3-D sound source reconstruction and field reprediction using the Helmholtz intergral equation. J. Sound&Vib. 1990,136(2): 245-261
    41. H.A.Schenck Improved integral formulation for acoustic radiation problems. J.Acoust.Soc.Am., 1968,43,44-51
    42. A.J. Burton, G. F. Miller. The application of integral equation methods to the numerical solutions of some exterior boundary value problem. Proc Roy Londa,1971:323-332
    43. 王有成. 工程中的边界元方法. 北京:中国水利水电出版社,1995
    44. 张胜勇 , 陈心昭 . 体积元边界点法及其在声辐射计算中的应用 . 振动工程学报 , 1998,11(4):395-400
    45. Y.C.Chao. An implicit least-square method for the inverse problem of acoustic radiation. J.Acoust.Soc.Am., 1987, 81(5):1288-1292
    46. Z.Wang, S.F.Wu, Helmholtz Equation Least Squares (HELS) method for reconstructing the acoustic pressure field. J.Acoust.Soc.Am., 1997,102:2020-2032,
    47. S.F.Wu. On reconstruction of acoustic pressure fields using the Helmholtz equation least squares method. J.Acoust.Soc.Am., 2000,107(5):2511-2522
    48. S.F.Wu, N.Rayess,X.Zhao.Visualization of acoustic radiation from a vibrating bowling ball. J.Acoust.Soc.Am., 2001,109(6):2771-2779
    49. R.C.Wittman. Probe-corrected spherical near-field scanning theory in acoutics. IEEE.Transactions on instrumentation and measurement.1992, 98(2): 17-21
    50. T.B.Hansen. Spherical expansion of time-domain acoustic fields: Application to near-field scanning. J.Acoust.Soc.Am., 1995,98(2), 1204-1215
    51. P.R.Stepanishen and H.W.Chen. Acoustic time-dependent loading on elastic shell of revolution using the internal source density a singular decomposition method. J.Acoust.Soc.Am., 1996, 99(4):1913-923
    52. P.R.Stepanishen. A feneralize internal source density method for the forward and backward projection of harmonic pressure field from complex bodies. J.Acoust.Soc.Am., 1997, 101(6): 3270-3277
    53. M.Villet, G. Chaverial and J. Roland. An acoustical holography technique for plane structures radiating in enclosed spaces. J.Acoust.Soc.Am., 1992, 91(1)187-195
    54. S.F.Wu and J.Y.YU. Reconstruction interior acoustic pressure fields via Helmholtz equation Least-squares method. J.Acoust.Soc.Am., 1998, 104(4): 2054-2060
    55. S.Tatiana, S.F.Wu. The Helmholtz equation least-squares method and Rayleigh hypothesis innear-field acoustical holography. J Acoust Soc Am., 2004,115 (4):1632-1640
    56. P. M.Morse, K. U.Ingard. Theory Acoustics. Princeton University Press, Princeton, NJ, 1986: 332~366.
    57. S. F. Wu, Nassif Rayess, Xiang Zhao. Visualization of acoustic radiation from a vibrating bowling ball. J. Acoust. Soc. Am., 2001, 109(6): 2771~2779.
    58. S.F.Wu, X.Zhao. Combined Helmholtz equation-least squares method for reconstructing acoustic radiation from arbitrarily shaped objects. J.Acoust.Soc.Am., 2002,112(1):179-188
    59. G.J. Burgess and E.A.Mahajerin. A comparison of the boundary element and superposition methods. Computers&Structures,1984,19(5-6): 697-705
    60. G.H.Koopmann, L. Song and J.B.Fahnline. A method for computing acoustic fields based on the principle of wave superposition. J.Acoust.Soc.Am., 1989,86 (6): 2433-2438
    61. G.W. Benthien and H.A.Schenck. Nonexistence and non-uniqueness problems associated with integral equation methods in acoustics. Computers&Structures, 1997,65(3): 295-305
    62. R.A.Jeans and I.C.Mathews. The wave superposition method as a robust technique for computing acoustic fields. J.Acoust.Soc.Am. 1992,92 (2): 1156-1166
    63. D.T.Wilton, R.A.Jeans and I.C.Mathews. A clarification of nonexistence problems with superposition methods. J.Acoust.Soc.Am. 1993,94 (3): 1676-1680
    64. 向宇, 黄玉盈. 基于复数矢径的波叠加法解声辐射问题. 固体力学学报, 2004,25(1):35-41
    65. P.T Soderman and S.C. Noble. A Directional Microphone Array for Acoustic Studies of Wind Tunnel Models. AIAA paper 74-640, AIAA Aerodynamic Testing Conference, 8th , Bethesda , Md, 1974,July 8-10
    66. J. Billingsley, R. Kinns. The Acoustic Telescope. Journal of Sound and Vibration, 1976, 48(4): 458-510
    67. B.Kinns. Binaural source location. Journal of Sound and Vibration, 1976,44(2): 275-528
    68. T.F. Brooks, M.A .Marcolini and D.S..Pope. A Directional Array Approach for the Measurement of Rotor Noise Source Distributions with Controlled Spatial Resolution. Journal of Sound and Vibration, 1987, 112(1): 192-197
    69. M. Mosher. Phased Array for Aeroacoustics Testing: Theoretical Development. AIAA paper 96-1713. 2nd AIAA/CEAS Aeroacoustics Conference, State College, Pa. 1996
    70. M.E.Watts, M.Mosher and M.J.Barnes. The Microphone Array Phased Processing System (MAPPS). AIAA paper 96-1714. 2nd AIAA/CEAS Aeroacoustics Conference, State College, Pa. 1996
    71. J.F. Piet and G.Elias. Airframe Noise Source Localization Using a Microphone Array. AIAA paper 97-1643. 3rd AIAA/CEAS Aeroacoustics Conference, Atlanta, Georgia. 1997
    72. U. Michel, B. Barsikow, J. HeLbig, et. Fly-over Noise Measurements on Landing Aircraft with a Microphone Array. AIAA paper 98-2336. 4th AIAA/CEAS Aeroacoustics Conference,Toulouse, France. 1998
    73. J.Herault, C.Jutten. Space or time adaptive signal processing by neural network models. Neural Network for Computing: In Proceedings of AIP Conference, New York: American Institute for Physics, 1986,207-211.
    74. C.Jutten, J.Herault. Blind separation of sources, parts I: an adaptive algorithm based on neuromimetic architecture. Signal Processing, 1991, 24(1):1-10.
    75. P.Comon. Independent component analysis, a new concept. Signal Processing, 1994, 36:287-314.
    76. C. Simon, R. Loubaton, and C. Jutten. Separation of a class of convolutive mixtures: a contrast function approach. Signal Processing, 2001, 81:883-887.
    77. C. Platt, F. Faggin. Networks for the separation of sources that are superimposed and delayed. Advances in Neural Information Processing Systems, 1991, 730-737.
    78. G.Gelle, M.Colas, C. Serviere. Blind source separation: A tool for rotating machine monitoring by vibrations analysis. Journal of Sound and Vibration, 2002, 248(5): 865-885.
    79. G. Gelle, M. Colas, G.Delaunay. Blind source separation applied to rotating machines monitoring by acoustical and vibrations analysis. Mechanical system and signal processing, 2000, 14(3): 427-442.
    80. M .J. Roan, J .G. Erling, L. H. Sibul. A new, non-linear, adaptive, blind source separation approach to gear tooth failure detection and analysis. Mechanical System and Signal Processing, 2002, 16(5): 719-740.
    81. Wu J B, Chen J, Zhong Z M, Zhong P. Application of Blind Source Separation Method in Mechanical Sound Signal Analysis. Proceedings of the ASME International Mechanical Engineering Congress and Exposition (IMECE2002), Volume 2, November 17-22, 2002, New Orleans, Louisiana, USA, pp. IMECE 2002-39225.
    82. 吴军彪 , 陈进 , 伍星 . 基 于盲 源 分 离 技 术的故 障特征信号分离方法 . 机械强 度 , 2002,24(4):485-488.
    83. A.J.Burton, G.F.Milter. The application of integral equation methods of the numberical solution of some exterior boundary value problems. Proc. R. Soc. London Ser.A. 1971,323:201-210
    84. D.S. Burnett. A three-dimensional acoustic infinite element based on a prolate sphereoidal multipole expansion. J.Acoust.Soc.Am. 1994,96 (5): 2798-2816
    85. Jacqueline, A.Bettess and P. Bettess. A new mapped infinite wave element for general wave diffraction problems and its validation on the ellipse diffraction problem. Compute Methods Appl. Mech. Engrg. 1998,164:17-48
    86. N. Khalili, M. Yazdchi, S. Valliappan. Wave propagation analysis of two-phase saturated porous media using coupled finite-infinite element method. Soil Dynamics and Earthquake Engineering, 1999,18:533-553
    87. K.Gerdes, F. Ihlenburg. On the solution effect in FE solutions of the 3D-Helmholtz equation. Comput. Methods Appl.Mech.Engrg., 1999,170:155-172
    88. A. Safjian, M. Newman. The ill-conditioning of infinite element stiffness matrices. Computers and Mathimatics with Application, 2001,41:1263-1291
    89. R. J. Astley, G. J. Macaulay. Mapped wave envelope for acoustical radiation and scattering. Journal of sound and vibration, 1994, 170(1): 97-118
    90. E.G.Williams. Regularization methods for near-field acoustical holography. J. Acoust. Soc. Am. 2001 Oct,110(4):1976-88.
    91. Nitadirtk. An experimental underwater acoustic imaging system using multi-beam scanning. Acoustical Imaging, 1978,8:249-266
    92. Zhang Dejun, Cheng Jianzheng, Wei Jihong. Simulating research of Chinese Chime stones using nearfield acoustical holography. 第四届国际声与振动会议.
    93. L.S. Jerry. A tutiac on underwater acoustic imaging. Acoustical Imaging,1979,9:599-630.
    94. 张徳俊等.近场声全息对振动体及其辐射场的成像. 物理学进展, 1996,16(34):613-623
    95. 张徳俊等. 振动体及其辐射场的近场声全息试验研究. 声学学报, 1992,17(6):436-445
    96. 何祚庸. 声学逆问题-声全息变换技术及源特性判别. 物理学进展,1996,16(34):600-612
    97. 程建政等. 编磐振动特性的声全息研究. 声学学报, 2000,25(1):87-92
    98. T. Loyau, J. P. Claude. Broadband acoustic holography reconstruction from acoustic intensity measurements I: principle of the method. J.Acoust. Soc. Am, 1988, 84(5):1744-1750
    99. J.A. Mann, J. P. Claude. Locating noise sources on an industrial air compressor using broadband acoustical holography from intensity measurements(BAHIM). Noise Control Engineering Journal. 1992,39(1):3-12
    100. A .Sarkissian. Near-field acoustical holography for axisym-metric geometries. J.Acoust. Soc. Am, 1990, 88(2):961-966
    101. A. F. Metherell, S. Spinak. Acoustical holography of none instant wavefronts detected at a single point in space. Appl.Phy. Lett. ,1968,13:22-28
    102. B. P. Hildebr, K .A. Haines. Holography by Scanning. J. Opt.Soc. Am. 1969,59(1):1-8
    103. L.J.Cutrona, E.N.Leith, etc. On the application of coherent optical processing technique to synthetic aperture radar. PIEEE,1996,54:1026-1033
    104. S. C. Kang, J.G. In. The use of partially measured source data in near-field acoustical holography based on the BEM. J. Acoust. Soc. Am., 2000 ,107(5):2472-9.
    105. A. Zhang, N.Vlshoupoulod, etc. A computational acoustic field reconstruction process based on an indirect boundary element formulation. J. Acoust. Soc. Am., 2000 ,108(1):2167-78.
    106. N. Kerrouche, C.N. McLeod, W.R. Lionheart. Time series of EIT chest images using singular value decomposition and Fourier transform. Physiol Meas. 2001 Feb; 22(1):147-57.
    107. D.G. Beetner, R.M. Arthur. Direct inference of the spectra of pericardial potentials using the boundary-element method.Ann Biomed Eng. 1999 Jul-Aug;27(4):498-507.
    108. B. M. Horacek, J. C. Clements. The inverse problem of electrocardiography: a solution in terms of single- and double-layer sources of the epicardial surface. Math Biosci. 1997,144(2):119-54.
    109. S. Fiori. Singular value decomposition learning on double Stiefel manifold. Int J Neural Syst. 2003 ,13(3):155-70.
    110. J.Hald.Time domain acoustical holography and its applications. Sound and Vibration,2001,16-25
    111. R.Steiner, J. Hald. Near-field acoustical holography without the errors and its limitations caused by the use of spatial DFT. International Journal of Acoustics and Vibration, 2001, 6(2):83-89
    112. J.Hald. Planar near-field acoustical holography with arrays smaller than the sound source. Proceedings of ICA 2001
    113. J.Hald. Patch near-field holography using a new statistically optimal method. 32nd International congress and exposition on noise control engineering, Korea, 2003
    114. Cho Yong Thung, Hald J. Souce visualization by using statistically optimized near- field acoustical holography in cylindrical coordinates. J. Acoust. Soc. Am., 2005 Oct.,118(5):2355-2364.
    115. J.Hadamard. Lectures on the Cauchy problems in linear partial differential equations. Yale University Press, New Haven.1923
    116. A.N. Tikhonov. On solving incorrectly posed problems and the regularization method. Soviet Math,1963,4:1035-1038
    117. P.C. Hansen and D. P O'Leary. The use of the L-curve in the regularization of discrete ill-posed problems. SIAM J. Sci. Comput., 1993, 14:1487-1503
    118. A.N.Tikhonov, V.Y.Arsenin. Solutions of ill-posed problems. John Wiley and Sons, New York,1977
    119. V. A. Morozov. On regulation of ill-posed problems an selection of regulation parameter, J. Comp. Math,1966 6(1):170-175
    120. V. A. Morozov. The error principle in the solution of operational equations by the regularization method. USSR Comput Math Math Phys, 1968, 8: 63~87
    121. H.W.Engl. Discrepancy principles for Tikhonov regulation of ill-posed problems leading to optimal convergence rates. J. Optim. Theory Appl., 1987,52:209-215
    122. G.H.Golub, M.Heath. Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics,1979,21:215-223
    123. M.Hanke, P.C.Hansen. Regulation methods for large-scale problems, Surv. Math. Ind.,1993,3:253-315
    124. 吴军彪. 噪声信号盲分离及声学故障特征提取方法研究. 上海交通大学博士学位论文, 2003.
    125. 钟振茂. 噪基于盲源分离的声学故障特征提取方法研究. 上海交通大学博士学位论文, 2005.
    126. P. C. Hansen. Regularization Tools: A Matlab package for analysis and solution of discrete ill-posed problems. Numerical Algorithms, 1994, 6: 1-35
    127. D. Calvetti, S. Morigi, L Reichef et a1. Tikhonov regularization and the L-curve for large discrete ill-posed problems. J. Comput. Appl. Math., 2000, 123:423-446
    128. S.F.Wu, H.C.Lu, Baijwa. Reconstruction of transient acoustic radiation from a sphere. J. Acoust. Soc. Am., 2005,117(41):2065-2077
    129. S.Tatiana, S.F.Wu. On the choice of expansion functions in the Helmholtz equation least-squares method. J. Acoust. Soc. Am., 2005,41 (4):701-710
    130. X. Zhao, S.F.Wu. Reconstruction of vibroacoustic fields in half-space by using hybrid near-field acoustical holography. J. Acoust. Soc. Am., 2005,117(2):555-565
    131. M.S. Moondra, S.F.Wu. Visualization of vehicle interior sound field using Nearfield Acoustical Holography based on the Helmholtz-Equation Least-Squares (HELS) method. Noise Control Engineering Journal, 2005,53(4):145-154
    132. 雷宣扬, 陈进, 张桂, 陈少林. 基于 Helmholtz 方程最小二乘法的声场重构.上海交通大学学报, 2006,40(1):129-133
    133. 李卫兵, 陈剑, 于飞, 陈心昭. 统计最优平面近场声全息对振动体的定位研究. 农业机械学报, 2005,36(10):101-104
    134. 李卫兵, 陈剑, 于飞, 陈心昭. 统计最优柱面近场声全息. 机械工程学报, 2005,41(4):123-127
    135. Fin Jacohsen and Yang Liu. Near field acoustic holography with particle velocity transducers. J. Acoust. Soc. Am., 2005,118 (5):3139-3144
    136. M.Y. Lee and J.S. Bolton. Patch near field acoustical holography in cylindrical geometry. J. Acoust. Soc. Am., 2005,118 (6):3721-3732
    137. H.S. Kwon. Multi-reference scan-based near field acoustical holography. Key Engineering Materials, 2006,323:1249-1252
    138. J.H. Thomas and J.C. Pascal. Wavelet preprocessing for lessening truncation effects in near field acoustical holography. J Acoust, Soc, Am., 2005,118 (2):851-860
    139. K. Saijyou and C.Okawara. Regularization method for measurement of structural intensity using near field acoustical holography. J Acoust. Soc. Am., 2005,117 (41):2039-2045
    140. S.Angie. Method of superposition applied to patch near field acoustical holography. J Acoust Soc Am., 2005,118 (2):671-678
    141. W.F.Druyvesteyn and R.Raangs. Acoustic holography with incoherent sources. Acta Acustica united with Acustica, 2005,91(5):932-935
    142. I.Y. Jeon and J. G. Ih. On the holographic reconstruction of vibroacoustic fields using equivalent sources and inverse boundary element method. J Acoust. Soc. Am., 2005,118 (6):3473-3482
    143. M.Lee and J.S. Bolton. Scan-based near-field acoustical holography and partial field decomposition in the presence of noise and source level variation. J Acoust. Soc. Am., 2006,119 (1):382-393

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700