用户名: 密码: 验证码:
煤层气压裂井试井及井网优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过对煤层气藏解吸、扩散、运移机理的深入研究,结合储藏中垂直裂缝井开采渗流运移规律,建立了煤层气藏数学模型。使用CBM-sim软件模拟分析了不同因素对井网开发井间干扰的影响,取得的主要成果如下:
     (1)在对煤层气藏储集、赋存运移机理研究的基础上,结合有限导流垂直裂缝井的渗流理论,并考虑双线性流动规律,本文建立了煤层气藏有限导流垂直裂缝井双线性流动数学模型。对模型进行Laplace变换,并进行Stehfest数值反演求解,绘制试井图版,着重分析了无量纲井底压力对各个参数的敏感性。
     (2)基于三线性流动规律,结合煤层气储集运移机理、有限导流垂直裂缝井的渗流理论,本文建立了煤层气藏有限导流垂直裂缝三线性流动数学模型,对模型施行Stehfest数值反演,绘制试井图版,着重分析了无量纲井底压力及压力导数对各个参数的敏感性。
     (3)使用CBM-sim软件模拟分析了井网开发井间干扰的控制因素,主要分析了6个不同因素对产气量的影响。这些因素包括井间距、孔隙度、渗透率、含气饱和度、压裂裂缝穿透比和工作制度。
Based on the desorption, diffusion and seepage migration mechanisms of coalbed methane, two mathematics models were built in coalbed methane reservoir, considering the seepage migration law of vertically fractured well in reservoir. Besides, the effects of the different factors on inter-well interference were simulated and analyzed in the well network development, using the CBM-sim software. The major results of this paper were as follows:
     (1) Based on bilinear the above mechanisms of coalbed methane, finite conductivity and flow law, a bilinear flow mathematical model for finite conductivity vertically fractured well in coalbed methane reservoir was built. After the model was transformed by the Laplace transform, it was solved with the Stehfest numerical inversion method. Type curves were plotted. The effects of the various parameters on the dimensionless wellbore pressure were studied.
     (2)Based on trilinear flow law and the mechanisms of the above model, a trilinear flow mathematical model for finite conductivity vertically fractured well was built. The model was was solved with the Stehfest numerical inversion method. Typical well test curves were plotted by using these numerical results. The effects of the various parameters on the dimensionless wellbore pressure and pressure derivative were analyzed.
     (3) The effects of the control factors on inter-well interference were simulated and analyzed in the well network development by using the CBM-sim software. The impact of the six different factors on gas production was analyzed. These factors include well spacing, porosity, permeability, gas saturation, fracture penetration ratio and the work system.
引文
[1]Cinco-Ley.H, Samaniego-V.Effect of Wellbore Storage and Damage on the Transient Pressure Behavior of Vertically Fractured Wells.SPE 6752,1977.
    [2]Cinco-Ley.H., Samaniego-V, Dominguz N. Transient Pressure Behavior for a Well with a Finite-Conductivity Vertical Fracture.SPEJ Aug 1978,253-264.
    [3]Benjamin J.Barker, Henry J.Ramey. Transient Flow to Finite Conductivity Vertical Fractures. SPE 7489,1978.
    [4]Cinco-Ley, Samaniego-V.Transient Pressure Analysis for Fractured Wells. SPE 7490, 1978.
    [5]Cinco-Ley, Fernando Samaniego-V. Transient Pressure Analysis:Finite Conductivity Fracture Case versus Damaged Fracture Case. SPE 10179, Oct.1981.
    [6]Cinco-Ley, Fenrando Samaniego-V. Transient Pressure Analysis for Fractured Wells.JPT Sept,1981.
    [7]Sheng-Tai Lee, John R.Brockenbrough:A New Approximate Analytic Solution for Finite-Conductivity Vertical Fractures.SPE12013, SPEFE Feb 1986,75-88.
    [8]D.W.Wong, A.G Harrington, H.Cinco-Ley.Application of the Pressure Derivative Function in the pressure-Transient Testing of Fractured Wells, SPE13056, SPEFE Oct 1986,470-480.
    [9]H.Cinco-Ley, H.Z.Meng. Pressure Transient Analysis of Wells with Finite Conductivity Vertical Fractures in Double Porosity Reservoirs.SPE18172,1988.
    [10]Azari, WO.Wooden, L.E.Coble. Complete Set of Laplace Transforms for Finite-Conductivity vertical Fractures under Bilinear and Trilinear Flows.SPE 20556,1990.
    [11]M Azari, W.O.Wooden.Further investigation on the Analytic Solution for Finite-Conductivity Vertical Fracture.SPE 21402,1991.
    [12]刘慈群,杨玠.考虑井筒储存和表皮效应时垂直裂缝井的压力动态.试采技术,1990,11(2):1-6.
    [13]刘曰武,刘慈群.双孔介质油藏中有限导流垂直裂缝井三线性流动模型.试采技术,1992,13(1):1-80.
    [14]刘曰武,刘慈群.部分压开有限导流垂直裂缝井的试井分析新方法.油气井测试, 1997,6(2):13-16.
    [15]F.C.Schwerer,A.M.Pavone.Effect of pressure-dependent permeability on well test analyses and long-term production of methane from coal seams. SPE12895,1984,13-15.
    [16]A.H.Jones and D.D.Bush eatl.Performance forecasting and economic evaluation of a deeply buried coalbed methane reservoir in the San Juan Basin.SPE14450,1985,22-25.
    [17]R.A.Koenig, P.B.Stubbs. Interference testing of a coalbed methane reservoir. SPE15225, 1986,18-21.
    [18]W.Sung, T.Ertekin. The development, testing and application of a comprehensive coal searn degasification model.SPE 15247,1986.
    [19]Ertekin T, Sung W. Pressure transient analysis of coal seams in the presence of multi-mechanistic flow and sorption phenomena [J].SPE19102,1989,7-9.
    [20]Anbarci K, Ertekin T. A comprehensive study of pressure transient analysis with sorption phenomena for single phase gas flow in coalSeams [J].SPE20568.
    [21]杨秀春,叶建平.煤层气开发井网部署与优化方法.中国煤气.2008,5(1):13-17.
    [22]刘曰武,刘慈群.垂直裂缝井的试井分析方法.第五次国际石油工程会议论文集,SPE30005.1995,11208-11216.
    [23]蔡明金,贾永禄等.双重介质有限导流垂直裂缝井压力动态分析.新疆石油地质.2009,30(6):738-741.
    [24]李爱芬,刘照伟,杨勇.双重介质中有限导流垂直裂缝井试井模型求解的新方法[J].水动力学研究与进展(A辑).2006,21(2):217-222.
    [25]姜瑞忠,蒋廷学,汪永利.水力压裂技术的近期发展及展望.石油钻采工艺.2004,26(4):52-57.
    [26]陈德民,杨龙等.有限导流垂直裂缝井稳态渗流解析解及产能分析.特种油气藏.2006,13(4):62-64.
    [27]王海涛,张烈辉.有限导流垂直裂缝产能及影响因素研究.西南石油大学学报(自然科学版),2009,31(3):78-82.
    [28]王晓冬,刘慈群.封闭地层有限导流垂直裂缝井压力分析.油气井测试.2005,14(1):5-8.
    [29]Mica, Platinum.Langmuir I, The Adsorption of Gases on Plane Surfaces of Glass[J]. Journal of American Chemical Society.1918,40,1361.
    [30]Ertekin T, King G..R. Development of coal gas production simulators and mathematical models for well test strategies.Topical report under GRI contract number 5081-321-0457, July,1983.
    [31]孙茂远,黄盛初等.煤层气开发利用手册.北京:煤炭工业出版社,1998.
    [32]Gray I. Reservoir engineering in coal seams:Part 1-The physical process of gas storage and movement in coal seams. SPE Reservoir Engineering, Feb.1987,28-34.
    [33]Gray I. Reservoir engineering in coal seams:Part 2-Observations of gas movement in coal seams. SPE Reservoir Engineering, Feb.1987,28-34.
    [34]Edward D.T., Fred N.K. Diffusion of methane through coal. Fuel, Oct.1973,52:274-280.
    [35]张力,何学秋等.煤吸附特性的研究[J].太原理工大学学报,2001,32(4):449-451.
    [36]Smith D.M.,Williams F.L.Diffusional Effects in the Recovery of Methane from Coalbeds. SPEJ (Oct.1984).
    [37]Ancell KL, Lambert S. Analysis of the coalbed degasification on process at a seventeen well pattern in the Warrior basin of Alabama. SPE 8971.
    [38]Young G B. C., McElhiney J. E, Paul GW. An analysis of Fruitland coalbed methane production, Cedar Hill field, Northern San Juan basin.SPE22913.
    [39]Kolesar J.E., Ertekin T, Obut S.T. The unsteady stature of sorption and diffusion phenomena in the micropore structure of coal:Part 1-Theory and mathematical formulation [J].SPE Form Eval,1990.
    [40]同登科,陈钦雷.关于Laplace数值反演Stehfest方法的一点注记[J].石油学报,2001,22(6):91-92.
    [41]陈伟,段永刚,谢军.煤层气有限导流压裂井的压力动态分析.西南石油大学学报.2000,22(1):47-50.
    [42]张先敏,同登科.考虑井筒储集和表皮系数的煤层气三孔双渗模型.特种油气藏.2008,15(2):47-49.
    [43]查文舒,李道伦,卢德唐,孔宪辉.井间干扰条件下PEBI网格划分研究.石油学报.2008,29(5):742-746.
    [44]万玉金,曹雯.煤层气单井产量影响因素分析.天然气工业.2005,25(1):124-126.
    [45]陈振宏,王一兵,杨焦生,王宪花,陈艳鹏,赵庆波.影响煤层气井产量的关键因素分析一以沁水盆地南部樊庄区块为例.石油学报.2009,30(3):408-412.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700