用户名: 密码: 验证码:
注二氧化碳提高煤层气采收率理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤层气是煤矿安全生产的主要危害,是造成温室效应与臭氧层破坏的主要气体,同时煤层气作为一种新型的洁净能源,可以改善我国以煤炭为主的不合理的能源结构。因此,从安全、环保和能源的角度看,煤层气的开采具有重要意义。
     本文针对我国煤层气藏低渗透、低饱和、低压力的特点和煤层气采收率低的现状,采用注入二氧化碳驱替的技术来提高煤层气的采收率。本文首先介绍了煤体孔裂隙结构特征、煤层气的赋存状态和运移产出机理以及煤层气的吸附解吸特征。然后在此基础上进行了甲烷、二氧化碳气体的渗透率测试试验,通过试验得出:煤体渗透率受体积应力及渗透压力的双重影响,渗透压一定时,随体积应力增大渗透率减小,主要由煤体的变形作用引起;体积应力一定时,随渗透压增大渗透率的变化不是单调的而是存在一个临界点,渗透压小于这一临界压力值时渗透率减小,渗透压大于这一临界压力值时,渗透率呈现逐渐增大的趋势,主要是由气体的吸附作用引起;并且二氧化碳的渗透率是甲烷渗透率的10倍以上。最后进行不同压力下甲烷和二氧化碳气体的吸附、甲烷解吸和注二氧化碳驱替甲烷等试验,实验结果显示,甲烷和二氧化碳吸附、解吸曲线基本相同,体积应力一定时渗透压增大吸附量也相应增大,相同压力下二氧化碳的吸附量远远大于甲烷的吸附量,渗透压分别为6MPa和7.5MPa时,煤层气解吸率分别为36.9%和37.2%,两种情况下甲烷的解吸率变化不大,由此可知煤体解吸量和渗透压力的大小几乎无关,而是与煤体本身含气量的多少有关;驱替压力6MPa时,注气开采率、瓦斯解吸率、注气开采增产率和置换比分别为71%、36.9%、34.1%和6.7,驱替压力7.5MPa时,相应的注气开采率、瓦斯解吸率、注气开采增产率和置换比分别为73%、37.2%、35.8%和6.1,驱替压力在一定程度上能够提高驱替效率,采用注二氧化碳气体驱替的技术可以使煤层气的产量提高大约35%,同时也使二氧化碳气体永久埋存于煤层中,减少了二氧化碳气体对环境的污染和瓦斯爆炸事故的发生。
Methane is the main harm of the safety and production of coal mine, which was the main gas causing greenhouse-effect and damaging the ozone layer. Meanwhile, coal-bed methane can change the coal-dominant unreasonable energy structure.of the our country as a new type of clean energy. Therefore, the exploitation of coal-bed methane is important from the aspect of safety, environmental protection and energy.
     The characteristics of the CBM of our country are low permeability,low saturation, low pressure and low recovery rate of CBM. According to the these characteristics, the thesis focuses on the improving the mining rate through the technology, which use carbon dioxide to replace CBM. Firstly,the characteristics of coal hole fracturing structure, occurrence state of the CBM, mechanism of migration and outputting, and adsorptive and desorptive features of CBM are studied. Then, the author does a research about the permeability of the methane and carbon dioxide. Through the experiment it can be concluded that permeability of coal are affected by volume stress and osmotic pressure. When the osmotic pressure is quantitative, the volume stress increases and the osmotic pressure reduces, which are caused by the deformation of the coal. When the volume stress pressure is quantitative, permeability changes as the increase of osmotic pressure, which is not drab but has a critical point. When the osmotic pressure is below the critical point, permeability reduces. When the osmotic pressure is above the critical point, permeability increases. All of these are caused by the value of the gas absorption. Meanwhile,the permeability of carbon dioxide is ten times more than methane. Finally, the author does experiments about the absorption of carbon dioxide, desorption of methane and forcing methane out with the injection of carbon dioxide. The experiment shows that the absorption curve and desorption curve are same in some degree. When the volume stress pressure is quantitative, the absorption capacity increases according to the increase of osmotic pressure. Under the same pressure, the absorption capacity of carbon dioxide is much more than methane. Their osmotic pressures are6MPa and7.5MPa, and their CBA desorption rate are36.9%and37.2%. From the experiment, it is clear that the desorption rate of coal has no relation with osmotic pressure, but related closely to the air containing of itself. When the forcing pressures are6MPa and7.5MPa, the mining gas injection rates are71%and73%, the CBA desorption rates are36.9%and37.2%, the increasing rates of mining gas injection are34.1%and35.8%, and the replacement ratios are6.7and6.1. The forcing pressure can improve the forcing rate in some degree. So it is clear that the production of coalbed methane can increased by35%by this technology. Meanwhile it can also bury the carbon dioxide in the coal-bed forever, reduce the environmental pollution caused by carbon dioxide, and reduce the gas explosion accidents.
引文
[1]周世宁,林柏泉.煤层瓦斯赋存与流动理论[M].北京:煤炭工业出版社,1999.
    [2]梁冰,孙可明.低渗透煤层气开采理论及其应用[M].北京:科学出版社,2006.
    [3]李作臣.沈阳油田压裂项目实施技术经济评价[D].大连:大连理工大学,2005.
    [4]胡光龙,杨思敬.煤层气开发技术和前景.煤矿安全,2003,34(增刊):64-67.
    [5]于洪,陆庭侃.高压水射流割缝提高瓦斯抽放效率的研究.煤炭科学技术,2009,37(3):44-46.
    [6]冯增朝,赵阳升,杨栋等.割缝与钻孔排放煤层气的大煤样试验研究.天然气工业,2005,25(3):127-129.
    [7]KOLAK J, BURRUSS R.Geochemical investigation of the potential for mobilizing non-methane hydrocarbon during carbon dioxide storage in deep coal beds[J].Energy and Fuels,2006,20(2):566-574.
    [8]GOETZ V, PUPIER O, GUILLOT A. Carbon dioxide-methane mixture adsorption on activated carbon[J]. Adsorption,2006,12(1):55-63.
    [9]ARI. Enhanced coalbed methane recovery with CO2 sequestration [A]. In:Prepared for International Energy Agency Greenhouse Gas Research and Development Programme(PH3/3)[C].Arlington:Advanced Recourses International,1998.8-8.
    [10]Harpalani S and Pariti U M. Study of coal sorption isotherm using a mu[ticomponent gas mixture[A].1993 International Coalbed Methane Symposium[C].
    [11]Greaves K H, Owen L B, MeLenman J D et al. Multi—component gas adsorption desorption behavoir of coal [A]. Proceedings of the 1993 International Coalbed Methane Symposium[C].
    [12]Yukuo Katayama. Study of Coalbed Methane in Japan. Proceedings of United Nations international conference on coalbed methane development and utilization.1995.
    [13]唐书恒,马彩霞,叶建平等.注C02提高煤层甲烷采收率的试验模拟[J].中国矿业大学学报,2006,35(5):607-611.
    [14]JESSEN K,TANG G,KOVSCEK A.Laboratory and simulation investigation of enhanced coalbed methane recovery by gas injection[J].Transport in Porous Media,2008,73(2):141-159.
    [15]李向东,冯启言,刘波等.注入C02驱替煤层甲烷的试验研究[J].洁净煤技 术,2009,16(2):101-102.
    [16]Shigeru Saito, Masami Yamaguchi and Hiroshi Nambo. Methane gas power generation and C02 sequestration at closed coal mines.
    [17]Stevens Scott H. Schoeling Lanny, Pekot Larry. C02 injection for enhanced coalbed methane recovery:project screening and design. Proceedings of the 1993 International Coalbed Methane Symposium.
    [18]DAMEN K, FAAIJ A, VAN F, et al. Identification of early opportunity for CO2 sequestration-worldwide screening for CO2-EOR and C02-ECBM projects[J]. Energy,2005,30(10):1931-1952.
    [19]Wolf K—H A A, Hijman R, BarzandjiO Het al. Laborary experiments and simulations on the environmentally friendly improvement of coalbed methane production by carbon dioxide injection. Proceedings of the 1993 International Coalbed Methane Symposium.
    [20]THEODORE T,HIREN P,FAYYAZ N,et al. Overview of laboratory and modeling studies of carbon dioxide sequestration in coal beds[J].Industrial and Engineering Chemistry Research,2004,43(12):2887-2901.
    [21]梁卫国,吴迪,赵阳升.CO2驱替煤层CH4试验研究[J].岩石力学与工程学报,2010,29(4):665-673.
    [22]吴世跃,赵文.自然降压开采和注气开采煤层气的效果评价[J].中国矿业,2004,13(10):76-79.
    [23]吴迪.二氧化碳驱替煤层瓦斯研究现状与发展[J].山西煤炭,2008,28(3):10-13.
    [24]张素新,肖红艳.煤储层中微孔隙和微裂隙的扫描电镜研究[J].电子显微学报,2000,19(4):531-532.
    [25]张慧.煤孔隙的成因类型及其研究.煤炭学报,2001,26(1):40-44.
    [26]徐昌学.煤焦油瓷漆研究[D].成都:西南石油学院,2002.
    [27]马正恒.焦坪矿区4<’-2>号煤层瓦斯赋存规律研究[D].西安:西安科技大学,2010.
    [28]李晓泉.含瓦斯煤力学特性及煤与瓦斯延期突出机理研究[D].重庆:重庆大学,2010.
    [29]方爱民,侯泉林,琚宜文等.不同层次构造活动对煤层气成藏的控制作用[J].中国煤田地质,2005,17(4):15-20.
    [30]李小明,彭格林,席先武.淮南煤田构造热演化特征与煤层气资源的初步研究[J].矿 物学报,2002,22(1):85-90.
    [31]王生全.论韩城矿区煤层气的构造控制[J].煤田地质与勘探,2002,30(1):21-24.
    [32]王怀勐,朱炎铭.煤层气赋存的两大地质控制因素[J].煤炭学报,2011,36(7):1129-1134.
    [33]张建博,王红岩.中国煤层气地质[M].北京:地质出版社,2000:15-30.
    [34]Sang S X, Qin Y, Fan B H, et al. Geology of Coalbed Meth-ane in t he Continental Basin:A Case of J ungaar and Turpan-Hami Basins [M]. Xuzhou:China University of Mining and Technology Press,2001 (in Chinese).
    [35]孙可明.低渗透煤层气开采与注气增产流固耦合理论及应用[D].辽宁:辽宁工程技术大学,2003.
    [36]商永涛.煤层气渗流机理及产能评价研究[D].武汉:中国石油大学,2008.
    [37]李前贵.煤层甲烷解吸-扩散-渗流过程的影响因素分析[J].煤田地质与勘探,2003,31(4):26-29.
    [38]赵勇.煤吸附/解吸瓦斯的低频振动特性试验研究[D].西安:西安科技大学,2011.
    [39]林瑞泰.多孔介质传热传质引论[M].北京:科学出版社,1995:152-156.
    [40]时钧.化学工程手册[M].北京:化学工业出版社,1996:11-20.
    [41]聂百胜,张力,马文芳.煤层甲烷在煤孔隙中扩散的微观机理[J].煤田地质与勘探,2000,28(6):20-22.
    [42]孔祥言.高等渗流力学[M].合肥:中国科技大学出版社.1999:45-49.
    [43]胡国艺,刘顺生,李景明等.沁水盆地晋城地区煤层气成因[J].石油与天然气地质,2001,22(4):319-321.
    [44]马东明.煤层气吸附解吸机理研究[D].西安:西安科技大学,2008.
    [45]傅雪海.多相介质煤岩体物性的物理模拟与数值模拟[D].徐州:中国矿业大学2001.
    [46]S.Brunauer,P.H.Emmet and E.Teller, J.Am.Chem.Soc.,60,309(1938).
    [47]Polanyi M.Z. Electrochem.1920,26:370.
    [48]J.J.Collins and C.C.Chow, Nature(London)393,409(1998).
    [49]柴立满,姜晓华,罗文静.温室气体(C02)煤层封存的可行性分析[J].内蒙古石油化工,2008,34(10):11-13.
    [50]严继民,张启元.吸附与凝聚:固体的表面与孔[M].北京:科学出版社,1979:24-55.
    [51]白书培.临界温度附近CO2在多孔固体上吸附行为的研究[D].天津:天津大学,2002.
    [52]S.Ozawa, S.Kusumi, Y.Ogino, Physical Adsorption of Gases at High Pressure Ⅳ An Improvement of the Dubinin-Astakhov Adsorption Equation, J.of Colloidand interface Science,1976,56 (1):83-91.
    [53]R.K.Agarwal, J.A.Schwarz, Analysis of High Pressure Adsorption of Gases on Activated Carbon by Potential Theory, Carbon,1988,26 (2):873-887.
    [54]O.Kadlec, The History and Present State of Dubinin's Theory of Adsorption of Vapous and Gases on Microporous Solids, Adsorption Science and Technology,2001,19 (1):1-28.
    [55]钱凯,赵庆波,汪泽成等.煤层甲烷气勘探开发理论与实验测试技术[M].北京:石油上业出版社,1996.
    [56]Moffat D H, Weale K E. Sorption by coal of methane at high pressure[J].Fuel,34, 1955:417-428.
    [57]段利江.晋城地区郑庄区块煤层气解吸分馏特征研究[D].北京:中国地质大学,2007.
    [58]周亚平,周理.超临界氢在活性炭上的吸附等温线研究[J].物理化学学报,1997,13(2):119-127.
    [59]赵阳升.矿山岩石流体力学[M].北京:煤炭工业出版社,1994:263-265.
    [60]李世平,李玉寿,吴振业.岩石全应力应变过程对应的渗透率-应变方程[J].岩土工程学报,1995,17(2):13-19.
    [61]陈祖安,伍向阳,孙德明等.砂岩渗透率随静压力变化的关系研究[J].岩石力学与工程学报,1995,14(2):155-159.
    [62]周维恒.高等岩石力学[M].北京:水利电力出版社,1990:98-99.
    [63]孙培德.Sun模型及其应用:煤层气越流固气耦合模型及可视化模拟[M].杭州:浙江大学出版社,2002.
    [64]李志强,鲜学福,隆晴明.不同温度应力条件下煤体渗透率实验研究[J].中国矿业大学学报,2009,38(4):523-527.
    [65]卢平,沈兆武,方恩才等.岩样应力应变全程中的渗透性表征与试验研究[J].中国科学技术大学学报,2002,32(6):678-684.
    [66]苑莲菊.工程渗流力学及应用[M].北京:中国建材工业出版社,2001.
    [67]冯增朝.低渗透煤层瓦斯强化抽采理论及应用[M].北京:科学出版社,2008,73-74.
    [68]王恩元,何学秋,刘贞堂等.煤体瓦斯渗透性的电场响应研究[J].中国矿业大学学
    报,2004,33(1):62-65.[69]赵阳升,胡耀青,杨栋等.三维应力下吸附作用对煤岩体气体渗流规律影响的试验研究[J].岩石力学与工程学报,1999,18(6):651-653.
    [70]周世宁,林柏泉.煤矿瓦斯动力灾害防治理论及控制技术[M].北京:科学出版社,2007.
    [71]孙培德,凌志仪.三轴应力作用下煤渗透率变化规律试验[J].重庆大学学报:自然科学版,2000,23(S):28-31.
    [72]JESSEN K, TANG G, KOVSCEK A. Laboratory and simulation investigation of enhanced coalbed methane recovery by gas injection[J].Transport in Porous Media,2008,73(2):141-159.
    [73]吴建光,叶建平,唐书恒.注入C02提高煤层气产能的可行性研究[J].高校地质学报,2004,10(3):463-467.
    [74]夏德宏,张世强.注C02开采煤层气的增产机理及效果研究[J].江西能源,2008,1:7-10.
    [75]Xiaojun Cui, R.Marc Bustin, Gregory Dipple. Selective transport of CO2, CH4, and N2 in coals:insights from modeling of experimental gas adsorption data [J]. Fuel,2004(83):293-303.
    [76]王勇刚,文志刚,陈玲.特低渗透油藏水驱油效率影响因素研究[J].石油天然气学报,2009,31(4):284-288.
    [77]郭平,苑志旺,易敏等.低渗透压油藏真实岩心薄片微观水驱试验研究[J].石油天然气学报,2009,31(4):100-105.
    [78]张力,何学秋,王恩元等.煤吸附特性的研究[J].太原理工大学学报,2001,32(4):449-451.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700