用户名: 密码: 验证码:
rBTI的内化及诱导Hep G2细胞自噬的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白酶抑制剂广泛分布于自然界中,以不同形式存在于植物,动物及微生物体内,是一类可以作用于蛋白酶,并对酶有特异性抑制作用的小分子物质或蛋白质。它们按一定比例与酶结合形成可逆的蛋白质复合物,在血液凝固,补体级联反应,细胞凋亡的调控以及激素加工处理等过程中发挥重要的作用。荞麦胰蛋白酶抑制剂(Buckwheat Trypsin Inhibitor, BTI)是由69个氨基酸组成的分子量为7.9kD的耐热小分子蛋白,属于Potato I型蛋白酶抑制剂家族。本课题组的前期研究表明,重组的荞麦胰蛋白酶抑制剂(recombinant Buckwheat Trypsin Inhibitor, rBTI),对HepG2, EC9706, K562, HL60等肿瘤细胞株都有明显的抑制生长并诱导其凋亡的作用,而对正常肝细胞HL7702没有影响;rBTI可以诱导促凋亡基因表达上调,抗凋亡基因表达下降,可以使EC9706细胞周期阻滞于Go/G1期,但是具体的分子机制还不清楚。
     本研究选用pExSec I表达载体,构建了含有BTI基因的表达质粒pExSecI-BTI,经原核表达和纯化,获得了无融合标签的rBTI,分析了rBTI内化进入HepG2细胞的机制,探讨了其诱导Hep G2细胞自噬的分子机制,以及与细胞表面的可能受体uPA的相互作用。主要结果如下:
     1.构建了原核表达载体pExSec Ⅰ-BTI,并对其表达条件进行了优化,当诱导剂IPTG的浓度为0.5mmol/L,诱导时间为3.5h时,rBTI的表达量最高。根据rBTI执稳定性好的特点,对rBTI的纯化条件进行了优化(80℃热处理20min),经ResourceTMQ离子交换层析一步纯化即可获得纯度大于95%的rBTI。这一纯化步骤应用于rBTI的大规模制备亦十分有效。
     2.将rBTI用FITC标记,综合运用多种内吞抑制剂及方法,如NH4CI, MDC,K+,蔗糖溶液等,以及RNA干扰,M期阻滞等技术和激光共聚焦显微镜研究了rBTI进入Hep G2细胞的方式。提出rBTI以细胞膜上尿激酶型纤溶酶原激活子(uPA)为受体,通过网格蛋白依赖性的内吞作用进入细胞,呈现浓度和能量依赖性,其中细胞膜电位在内吞过程中起着重要作用。
     3.采用透射电子显微镜,MDC染色,流式细胞术等技术研究了rBTI诱导的HepG2细胞自噬。rBTI作用Hep G2细胞后,透射电子显微镜观察到细胞内部出现自噬体以及自噬溶酶体结构,细胞发生了自噬,细胞的自噬活性与rBTI的浓度呈正相关。通过MDC染色以及pCMV-GFP-LC3转染实验,进一步确定了rBTI可以诱导细胞产生自噬,当rBTI诱导4h后,Hep G2细胞即发生明显的自噬现象。应用激光共聚焦显微镜观察了rBTI作用前后胞内细胞器的变化。在rBTI作用12h后,Hep G2细胞内质网和溶酶体发生较大的变化,线粒体膜的通透性发生改变,但是细胞核的变化不明显。通过自噬抑制剂3-MA的联合使用以及细胞恢复实验等方法,明确了rBTI诱导的细胞死亡主要是自噬性程序性细胞死亡。
     4.构建了pEGFP-N1-BTI单色荧光载体及pDsRed1-N1-EGFP-BTI双色荧光载体,观察了rBTI在Hep G2细胞内的定位,确定了rBTI主要定位于胞质中的自噬体及自噬溶酶体。据此我们提出假说:作为外源物的rBTI被细胞内的自噬相关分子选择性识别,进入自噬溶酶体被降解,过度的自噬诱发细胞失去固有的稳态,进而走向死亡。即rBTI介导的细胞死亡是一种底物特异性的死亡机制。通过RT-PCR的方法,对rBTI作用后三个自噬相关分子(mTOR, Beclinl和PI3K Ⅲ)进行了RNA水平的分析,结合3-MA抑制剂实验,初步确定rBTI诱导的细胞自噬主要受Beclin1复合物的调控。
     5.通过荧光光谱法、凝胶电泳法等,进一步确定了rBTI与uPA之间存在相互作用。在体外条件下,rBTI可作为uPA的底物,被uPA水解为两个片段。采用RT-PCR的方法,对rBTI作用后,uPA以及uPA下游两个分子(MMP-2和MMP-9)进行了检测,并通过明胶酶谱和细胞划痕实验研究了rBTI对HepG2细胞迁移的影响。结果表明,rBTI可以诱导uPA, MMP-2和MMP-9的表达,并促进Hep G2细胞迁移。
Protease inhibitors are ubiquitous in nature and are widely distributed in plants, animals and microorganisms. Their main role is to regulate the activity of proteolytic enzymes. They form reversible, stoichiometric protein-protein complexes, and play key regulatory roles in many biological processes, such as regulation of blood coagulation, the complement cascade, apoptosis, and the hormone-processing pathways. Buckwheat trypsin inhibitor (BTI) is composed of69amino acids and has a molecular weight of7.9kD, it exhibits high sequence consistency with other potato I-type inhibitors derived from different plants sources. Our previous studies have shown that rBTI exhibited high tumor suppressor activity that could induce apoptosis in certain tumor cell lines, such as EC9706, Hep G2, HeLa, K562, HL60and other solid tumor cells. Pro-apoptotic genes were up-regulated and anti-apoptotic gene expression was decreased when the tumour cells were treated with rBTI, and cell cycle arrested in G0G1phase in EC9706cells.
     In this study, pExSecI-BTI vector was constructed and expressed in E.coli BL21(DE3), and an rBTI for no fusion tag was obtained. FITC-BTI was used to determine the mechanism by which rBTI enters the cytosolic compartment. To investigate the autophagy induced by rBTI, transmission electron microscopy, RT-PCR, MDC staining and other technology has been used. The interaction between rBTI and uPA (urokinase-type plasminogen activator, uPA) was determined by gelatin zymography, fluorescence spectrometry and pull-down assay. The main results of this study are as follows:
     1. The recombinant expression plasmid pExSec Ⅰ-BTI was constructed and the vector was expressed in E.coli BL21(DE3). Prokaryotic expression conditions were optimized. When the IPTG concentration is0.5mmol/L and the induction time is3.5h, the expression of rBTI is the largest. Purification conditions were also optimized (heat treatment20min at80℃). Purified rBTI was obtained by ion exchange chromatography on ResourceTM Q.
     2. FITC-BTI could colocalized with labeled transferring and enter Hep G2cells in a concentration-and energy-dependent manner. Incubation of Hep G2cells with an isotonic/high K+buffer (KPBS) or an NH4C1solution abolished diffuse. FITC-BTI colocalized with a urokinase-type plasminogen activator (uPA) on the surface of Hep G2cells, implying that uPA was the target receptor for rBTI. We come to a conclusion from these results that both endocytosis and membrane potential are required for rBTI to enter into Hep G2cells.
     3. Transmission electron microscopy, MDC staining and flow cytometry were used to study autophagy in Hep G2cells induced by rBTI. A lot of autophagosomes and autolysosomes were observed under transmission electron microscopy. In the cytoplasm of Hep G2cells transfected with pCMV-GFP-LC3, a lot of GFP-LC3punctate structures appeared after induction by rBTI. Similar results have also been observed by MDC staining. Hep G2cell occurred autophagy when they were treated with rBTI for4hours. Further more, when cells were treated for12h, the number of endoplasmic reticulum and lysosomes were greatly reduced, membrane permeability of mitochondrial was changed, but the nucleus did not change obviously. Using the autophagy inhibitor3-MA and combining cell recovery experiments, we clear the rBTI-induced cell death is mainly autophagic programmed cell death.
     4. pEGFP-N1-BTI and pDsRed1-N1-EGFP-BTI were constructed to investigate the intracellular localization of rBTI and the results showed that rBTI mainly localized in the cytoplasm autophagosomes and autolysosomes. We put forward a hypothesis, as a xenobiotic, rBTI was recognized by related molecules of selective autophagy in the intracellular, and then was wrapped by autophagosomes and degraded by autolysosomes finally. Excessive autophagy was induced, the cells loss inherent steady state as a result, and then to die. Therefore rBTI mediated cell death is the death of a substrate specificity mechanism. Several autophagy related molecules (mTOR, Beclin1in and PI3K III) was analysis on RNA levels, the expression of Beclinl and PI3K III were reduced. Combining with3-MA inhibitor experiments, we initially identified rBTI induced Hep G2cells autophagy is mainly affected by Beclin1complexes.
     5. By fluorescence spectrometry, gel electrophoresis and other methods to further define the interaction between the rBTI with uPA. In vitro, rBTI was hydrolyzed into two fragments as a substrate of uPA. By RT-PCR method, the expression of uPA and uPA downstream molecules (MMP-2and MMP-9) were tested and studied by gelatin zymography. And cell wound healing experiments were used to investigate the effect on the Hep G2migration induced by rBTI. The results showed that expression levels of uPA and MMP-2and MMP-9were up-regulated, and rBTI coule promote cell migration.
引文
[1]Bode W, Huber R. Natural protein proteinase inhibitors and their interaction with proteinases [J]. Eur. J. Biochem.1992,204(2):433-451
    [2]Laskowski M, Qasim MA. What can the structures of enzyme-inhibitor complexes tell us about the structures of enzyme substrate complexes [J]. Biochim. Biophys. Acta.2000,1477(1-2):324-337
    [3]Schechter I, Berger A. On the size of the active site proteases. I.Papain[J]. Biochim. Biophys. Res.Commun.1967,27(2),157-162
    [4]Kunitz M. Cristallization of a trypsin inhibitor from soybean [S].Science,1945, 101 (2635):668-669
    [5]Mukhopadhyay D. The molecular evolutionary history of a winged bean chymotrypsin inhibitor and modeling of its mutations through structural analyses[J]. J Mol Evol.2000,50 (3):214-223
    [6]Ryan CA, Balls AK. An inhibitor of chymotrypsin from Solanum tuberosm and its behavior toward trypsin[J]. PNAS,1962,48:1839-1844
    [7]Svendsen IB, Boisen S, Hejgaard J. Amino acid sequence of serine protease inhibitor CI-1 from barley. Homology with barley inhibitor CI-2, potato inhibitor I, and leech eglin[J] Carlsberg Res. Comm.1982,47 (1):45-53
    [8]Svendsen IB, Hejgaard J, Chavan J. Subtilisin inhibitor from seeds of broad bean (vicia FABA); purification, amino acid sequence and specificity of inhibition[J]. Carlsberg Res. Comm.1984,49 (4):493-502
    [9]Plunkett G, Senear DF, Zuroske G, et al. Proteinase inhibitors Ⅰ and Ⅱ from leaves of wounded tomato plants:purification and properties [J]. Arch. Biochem. Biophys,1982,213(2):463-472
    [10]Kuo TM, Pearce G, Ryan CA. Isolation and characterization of proteinase inhibitor I from etiolated tobacco leaves [J]. Arch. Biochem. Biophys.1984,230 (2):504-510
    [11]Zeng FY, Qian, RQ, Wang Y. The amino acid sequence of a trypsin inhibitor from the seeds of Momordica charantia Linn [J]. Cucurbitaceae. FEBS Lett,1988, 234(1):35-38
    [12]Valdes-Rodriguez S, Segura-Nieto M, Chagolla-Lopez A, et al. Purification, characterization, and complete amino acid sequence of a trypsin inhibitor from amaranth(Amaranthus hypochondriacus) seeds [J]. Plant Physiol.,1993, 103(4):1407-1412
    [13]Belozersky MA, Dunaevsky YE, Musolyamov AX, et al. Complete amino acid sequence of the protease inhibitor from buckwheat seeds [J]. FEBS Lett,1995, 371(3):264-266
    [14]Lorenc-Kubis I, Kowalska J, Pochron B, et al. Isolation and amino acid sequence of a serine proteinase inhibitor from common flax (Linum usitatissimum) seeds [J]. Chembiochem,2001,2(1):45-51
    [15]Konarev AV, Anisimova IN, Gavrilova VA, et al. Serine proteinase inhibitors in the Compositae:distribution, polymorphism and properties [J]. Phytochemistry, 2002,59(3):279-291
    [16]Wang HY, Huang YC, Chen SF, et al. Molecular cloning, characterization and gene expression of a water deficiency and chilling induced proteinase inhibitor I gene family from sweet potato (Ipomoea batatas Lam.) leaves[J]. Plant Sci., 2003,165:191-203
    [17]Singh A, Sahi C, Grover A. Chymotrypsin protease inhibitor gene family in rice: Genomic organization and evidence for the presence of a bidirectional promoter shared between two chymotrypsin protease inhibitor genes [J]. Gene,2009,428 (1-2):9-19
    [18]van den Broek LA, Pouvreau L, Lommerse G, et al. Structural characterization of potato protease inhibitor I (Cv. Bintje) after expression in Pichiapastoris [J]. J. Agric. Food Chem.2004,52(15):4928-4934
    [19]Solomon M, Belenghi B, Delledonne M, et al. The involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants [J]. Plant Cell,1999,11(3):431-444
    [20]Rakwal R, Kumar Agrawal G, Jwa NS.Characterization of a rice (Oryza sativa L.) Bowman -Birk proteinase inhibitor:tightly light regulated induction in response to cut, jasmonic acid, ethylene and protein phosphatase 2A inhibitors [J]. Gene.2001, 263(1-2):189-198
    [21]Dunaevsky YE, Pavlukova EB, Belozersky MA. Isolation and properties of anionic protease inhibitors from buckwheat seeds [J]. Biochem. Mol. Biol. Int.,1996,40(1): 199-208
    [22]Lorito M, Broadway RM, Hayes CK, et al. Proteinase inhibitors from plants as a novel class of fungicides [J]. Mol. Plant Microbe Interact,1994,7 (4):525-527
    [23]Hilder VA, Gatehouse AMR, Sheerman SE, et al. A novel mechanism of insect resistance engineered into tobacco [J]. Nature,1987,330 (6144):160-163
    [24]Johnson R, Narvaez J, An G, et al. Expression of proteinase inhibitors Ⅰ and Ⅱ in transgenic tobacco plants:effects on natural defense against Manduca sexta larvae [J]. Proc. Natl. Acad. Sci. USA,1989,86(24):9871-9875
    [25]McManus MT, White DWR, McGregor PG. Accumulation of a chymotrypsin inhibitor in transgenic tobacco can affect the growth of insect pests[J]. Transgenic Res.,1994,3(1):50-58
    [26]Jongsma MA, Bakker PL, Peters J.et al. Adaptation of Spodoptera exigua larvae to plant proteinase inhibitors by induction of gut proteinase activity insensitive to inhibition[J]. Proc. Natl. Acad. Sci. USA,1995,92 (17):8041-8045
    [27]Yavelow J, Finlay TH, Kennedy AR, et al. Bowman-Birk soybean Protease inhibitor as an anticarcinogen[J].Cancer Research.1983,43(5 suppl):2454-2459
    [28]Kennedy AR. The Bowman-Birk inhibitor from soybean as an anticarcinogen[J] Am J Clin Nutr.1998,68:1406S-1412S
    [29]William BA, Ann R. Kennedy X. et al. Clinical Modulation of Oral Leukoplakia and Protease Activity by Bowman-Birk Inhibitor Concentrate in a Phase Ⅱa Chemoprevention Trial [J].Clinical Cancer Research.2000,6:4684-4691
    [30]Clemente A, Gee JM, Johnson IT, et al. Pea (Pisum sativum L.) protease inhibitors from the Bowman-Birk class influence the growth of human colorectal adenocarcinoma HT29 cells in vitro [J]. J. Agric. Food Chem.2005,53(23): 8979-8986
    [31]Wan XS, Hamilton TC, Ware JH, et al. Growth inhibition and cytotoxicity induced by Bowman-Birk inhibitor concentrate in cisplatin-resistant human ovarian cancer cells [J]. Nutr. Cancer.1998,31(1):8-17
    [32]Zhang L, Wan XS, Donahue JJ, et al. Effects of the Bowman-Birk inhibitor on clonogenic survival and cisplatin-or radiation-induced cytotoxicity in human breast, cervical, and head and neck cancer cells [J]. Nutr.Cancer.1999,33(2):165-173
    [33]Sandra W. Protease inhibitor in soybeans capable of preventing cancer announced [J]. Cancer weekly plus.1998,1:16
    [34]Billings PC, Morrow AR, Ryan CA, et al. Inhibition of radiation-induced transformation of C3H/10T1/2 cells by carboxypeptidase inhibitor 1 and inhibitor Ⅱ from potatoes [J]. Carcinogenesis,1989,10(4):687-691
    [35]Birk Y. Plant protease inhibitors:significance in nutrition, plant protection, cancer prevention and genetic engineering. Springer:Berlin; London,2003
    [36]Klionsky DJ, Emr SD. Autophagy as a regulated pathway of cellular degradation. Science [J].2000,290(5497):1717-1721
    [37]Crotzer VL, Blum JS. Autophagy and intracellular surveillance:Modulating MHC class Ⅱ antigen presentation with stress [J]. ProcNatl Acad Sci USA.2005,102(22): 7779-7780
    [38]Cuervo AM, Dice JF. A receptor for the selective uptake and degradation of proteins by lysosomes [J]. Science.1996,273 (5274):501-503
    [39]Andrade MA, Bork P. HEAT repeats in the Huntingtons disease protein [J]. Nat Genet,1995,11(2):115-116
    [40]Peterson RT, Peter AB, Michael JC, et al. FKBP rapamycin associated protein (FRAP) autophosphorylates at serine 2481 under translationally repressive conditions [J]. J Biol Chem,2000,275(10):7416-7423
    [41]Jacinto E, Hall MN. TOR signaling in bugs, brain and brawn [J]. Nat Rev Mol Cell Biol,2003,4(2):117-126
    [42]Hara K, Maruki Y, Long X, et al. Raptor, a binding partner of targer of rapamycin (TOR), mediat es TOR action [J]. Cell,2002,110(2):177-189
    [43]Kim DH, Sarbassov DD, Ali SM, et al. mTOR interacts with raptor to form a nutrient sensitive complex that signals to the cell growth machinery [J]. Cell,2002, 110(2):163-175
    [44]Choe G, Horvath S, Cloughesy TF, et al. Analysis of the phosphatidylinositol 3'-kinase signaling pathyway in glioblastom a patients in vivo [J]. Cancer Res,2003, 63(11):2742-2746
    [45]Neve RM, Holbro T, Hynes NE. Distinct roles for phosphoinostide 3'-kinase, mitogen activated protein kinase and P38 MAPK in mediating cell cycle progression of breast cancercells [J]. Oncogene,2002,21(29):4567-4576
    [46]Philp AJ, Campbell IG, Leet C, et al. The phosphatidylinositol 3'-kinase p85 alpha gene is an oncogene in human ovarian and colon tumors [J]. Cancer Res,2001, 61(20):7426-7429
    [47]Vignot S, Faivre S, Aguirre D. et al. mTOR targeted therapy of cancer with rapamycin derivatives [J]. Annals of Oncology,2005,16(4):525-537
    [48]Adjei AA, Hidalgo M. Intracellular signal transduction pathway proteins as targets for cancer therapy [J].J Clin Oncol,2005,23(23):5386-5403
    [49]Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival [J]. Cell,2003,115(5):577-590
    [50]Cheng SW, Fryer LG, Carling D, et al. Thr2446 is a novel mammalian target of rapamycin (mTOR) phosphorylation site regulated by nutrient status [J]. JBiol Chem, 2004,279(16):15719-15722
    [51]Jung CH, Jun CB, Ro SH, et al. ULK-Atgl3-FIP200 complexes mediate mTOR signaling to the autophagy machinery [J]. Mol Biol Cell,2009,20 (7):1992-2003
    [52]Backer J. The regulation and function of Class III PI3Ks:novel roles for Vps34[J]. Biochem J,2008,410(1):1-17
    [53]Sun Q, Fan W, Zhong Q. Regulation of Beclinl in autophagy [J]. Autophagy,2009, 5(5):713-716
    [54]Levine B, Sinha S, Kroemer G. Bcl-2 family members:dual regulators of apoptosis and autophagy [J]. Autophagy,2008,4 (5):600-606
    [55]Rubinsztein DC. Cdks regulate autophagy via Vps34 [J]. Mol Cell,2010,38(4): 483-484
    [56]Klionsky DJ, Baehrecke EH, Brumell JH, et al. A comprehensive glossary of autophagy-related molecules and processes (2nd edition) [J]. Autophagy.2011, 7(11):1273-1294
    [57]Ashford TP and Porter KR. Cytoplasmic components in hepatic cell lysosomes[J]. J Cell Biol A 962,12:198-202
    [58]Biederbick A, Kern HF, Elsasser HP. Monodansylcadaverine (MDC) is a specific in vivo marker for autophagic vacuoles [J]. Eur J of Cell Biol 1995,66(1):3-14
    [59]Munafo DB, Colombo MI. A novel assay to study autophagy:Regulation of autophagosome vacuole size by amino acid deprivation [J]. J Cell Sci.2001, 114(pt20):3619-3629
    [60]Kabeya Y, Mizushima N, Ueno T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing[J]. EMBO J. 2000,19(21):5720-5728
    [61]Kabeya Y, Mizushima N, Yamamoto A, et al. LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation [J]. J Cell Sci.2004, 117(ptl3):2805-2812
    [62]Liang XH, Kleeman LK, Jiang HH et al. Protection against fetal Sindbis virus encephalitis by Beclin, a novel Bcl-2 interacting protein [J]. J Virol.1998, 72(11):8586-8596
    [63]Liang XH, Jackson S, Seaman M et al. Induction of autophagy and inhibition of tumorigenesis by Beclin 1 [J]. Nature.1999,402(6762):672-676
    [64]Seglen PO, Gordon PB.3-Methyladenine:specific inhibitor of autophagic/ lysosomal protein degradation in isolated rat hepatocytes [J]. Proc Natl Acad Sci USA. 1982,79(6):1889-1892
    [65]Yu L, Alva A, Su H, et al. Regulation of an ATG7-Beclin 1 program of autophagic cell death by caspase-8[J]. Science.2004,304(5676):1500-1502
    [66]Gonzalez-Polo RA, Boya P, Pauleau AL, et al. The apoptosis/autophagy paradox: autophagic vacuolization before apoptotic death [J]. J Cell Sci.2005,118(14): 3091-3102
    [67]Xue L, Fletcher GC, Tolkovsky AM. Autophagy is activated by apoptotic signaling in sympathetic neurons:an alternative mechanism of death execution [J]. Mol Cell Neurosci 1999,14 (3):180-198
    [68]. Pyo JO, Jiang MH, Kwon YK et al. Essential roles of Atg5 and FADD in autophagic cell death:dissection of autophagic cell death into vacuole formation and cell death [J]. J Biol Chem.2005,280(21):20722-20729
    [69]Saeki K, Yuo A, Okuma E et al. Bcl-2 down regulation causes autophagy in a caspase-independent mannar in human leukemic HL60 cells [J]. Cell Death Differ. 2000,7(12):1263-1269
    [70]Shimizu S, Kanaseki T, Mizushima N, et al. Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagic genes[J]. Nat Cell Biol.2004,6(12):1221-1228
    [71]Mills KR, Reginato M, Debnath J, et al. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is required for induction of autophagy during lumen formation in vitro. Proc Natl Acad Sci USA.2004,101(10):3438-3443
    [72]赵钢,唐宇,王安虎,等.中国的荞麦资源及其要用价值[J].中国野生植物资源,1998,20(2):31-32
    [73]王继永,元忠,曾燕,等.抗癌新药金荞麦中微量元素的光谱测定[J].光谱学与光谱分析,2011.31(1):253-255
    [74]Belozersky MA, Dunaevsky YE, Musolyamov AX, et al. Complete amino acid sequence of the protease inhibitor from buckwheat seeds [J]. FEBS Lett,1995,371(3): 264-266
    [75]Dunaevsky YE, Pavlukova EB, Belozersky MA. Isolation and properties of anionic protease inhibitors from buckwheat seeds [J]. Biochem Mol Biol Int,1996,40(1): 199-208
    [76]田欣,李晨,李玉英,等.野生型和突变型荞麦蛋白酶抑制剂的活性比较及抗肿瘤功能分析[J].生物化学与生物物理进展.2010,37(6):654-661
    [77]李静舒,李玉英,崔晓东,等.截短型rBTI的表达纯化及其对EC9706细胞生长的抑制作用[J].中国生物化学与分子生物学报,2011,27(5):467-472
    [78]Wang L, Zhao F, Li M, et al. Conformational Changes of rBTI from Buckwheat upon Binding to Trypsin:Implications for the Role of the P89 Residue in the Potato Inhibitor I Family[J]. PLoS ONE,2011,6(6):e20950
    [1]Belozersky MA, Dunaevsky YE, Musolyamov AX, et al. Complete amino acid sequence of the protease inhibitor from buckwheat seeds[J]. FEBS Lett.,1995,371(3): 264-266
    [2]田欣,李晨,李玉英,等.野生型和突变型荞麦蛋白酶抑制剂的活性比较及抗肿瘤功能分析[J].生物化学与生物物理进展,2010,37(6):654-661
    [3]Zhang Z, Li YY, Li C, et al. Expression of a buckwheat trypsin inhibitor gene in Escherichia coli and its effect on multiple myeloma IM-9 cell proliferation[J]. Acta Biochim Biophys Sin,2007,39(9):701-707
    [4]李玉英,田欣,张政,等.基因转染诱导EC9706细胞凋亡及G1阻滞[J].中国生物化学与分子生物学报,2010,26(4):362-368
    [5]Li YY, Zhang Z, Wang ZH, et al. rBTI induces apoptosis in human solid tumor cell lines by loss in mitochondrial transmembrane potential and caspase activation[J]. Toxicol Lett,2009,189 (2):166-175
    [6]Smith C, Van Megen W, Twaalfhoven L, et al. The determination of trypsin inhibitor levels in foodstuff. Sci Food Agric,1980,31(4),341-350
    [7]董卫华,李海斌,王芳.家蝇抗菌物质的电泳分离及其条件优化[J].环境与健康杂志,2009,26(7):588-590
    [8]白承之,王转花,李玉英,等.一种苦荞抗真菌肽的纯化及抑菌活性分析[J],食品科学,2010,31(15):4-7,
    [1]van den Broek LA, Pouvreau L, Lommerse G, et al. Structural characterization of potato protease inhibitor I (Cv. Bintje) after expression in Pichiapastoris [J]. J. Agric. Food Chem.2004,52(15):4928-4934
    [2]Hilder VA, Gatehouse AMR, Sheerman SE, et al. A novel mechanism of insect resistance engineered into tobacco [J]. Nature,1987,330 (6144):160-163
    [3]Billings PC, Morrow AR, Ryan CA, et al. Inhibition of radiation-induced transformation of C3H/10T1/2 cells by carboxypeptidase inhibitor 1 and inhibitor Ⅱ from potatoes [J]. Carcinogenesis,1989,10(4):687-691.
    [4]Birk Y. Plant protease inhibitors:significance in nutrition, plant protection, cancer prevention and genetic engineering. Springer:Berlin; London,2003.
    [5]Qian ZM, Li H, Sun H, et al. Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway [J]. Pharmacol Rev.2002,54(4):561-587.
    [6]Altankov, G.; Grinnell, F.; Depletion of intracellular potassium disrupts coated pits and reversibly inhibits cell polarization during fibroblast spreading[J]. J Cell Biol. 1993,120(6):1449-1459.
    [7]Heuser, JE, Anderson, RGW. Hypertonic media inhibit receptor-mediated endocytosis by blocking clathrin-coated pit formation [J]. J. Cell Biol.1989,108(2):389-400.
    [8]Phonphok, Y.; Rosenthal, K.S. Stabilization of clathrin coated vesicles by amantadine, tromantadine and other hydrophobic amines [J]. FEBS Lett.1991, 281(1-2):188-190.
    [9]Kratz F, Beyer U, Roth T, et al. Transferrin conjugates of doxorubicin:synthesis, characterization, cellular uptake and in vitro efficacy. J Pharm Sci.1998,87(3): 338-346.
    [10]Harris L, ritsche H, Mennel R, et al.American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer[J]. J. Clin. Oncol.2007,25(33):5287-5312.
    [11]Harbeck N, Salem M, Nitz U, et al. Personalized treatment of breast cancer:present concepts and future directions in early stage disease[J]. Cancer Treat. Rev.2010, 36(8):584-594.
    [12]Schmitt M, Mengele K, Napieralski R, et al. Clinical utility of level-of-evidence-1 disease forecast cancer biomarkers uPA and its inhibitor PAI-1. Expert Rev. Mol. Diagn. 2010,10(8):1051-1067.
    [1]Baudhuin P, Beaufay H, De Duve C. Combined biochemical and morphological study of particulate fractions from rat liver. Analysis of preparations enriched in lysosdmes or in particles containing urate oxidase, D-amino acid oxidase, and catalase[J]. J Cell Biol.1965,26(1):219-243.
    [2]Klionsky DJ, Baehrecke EH, Brumell JH, et al. A comprehensive glossary of autophagy-related molecules and processes (2nd edition) [J]. Autophagy.2011, 7(11):1273-1294
    [3]Kabeya Y, Mizushima N, Ueno T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing [J]. EMBO J. 2000,19 (21):5720-5728
    [4]Biederbick A, Kern HF, Elsasser HP. Monodansylcadaverine (MDC) is a specific in vivo marker for autophagic vacuoles [J]. Eur J of Cell Biol 1995,66(1):3-14
    [5]Munafo DB, Colombo MI. A novel assay to study autophagy:Regulation of autophagosome vacuole size by amino acid deprivation [J]. J Cell Sci.2001, 114(pt20):3619-3629
    [6]Ma X, Piao S, Wang DW, et al. Measurements of tumor cell autophagy predict invasiveness, resistance to chemotherapy, and survival in melanoma [J]. Clin Cancer Res 2011,17(10):3478-3489
    [7]Rosenfeldt, M.T. Ryan K.M. The role of autophagy in tumour development and cancer therapy [J] Expert Rev. Mol.Med.2009,11:e36
    [8]Carew J.S., Nawrocki S.T., Kahue C.N., et al. Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr-Abl-mediated drug resistance [J], Blood,2007,110(1):313-322
    [9]Goussetis D.J., Altman J.K., Glaser H.J. et al. Autophagy is a critical mechanism for the induction of the antileukemic effects of arsenic trioxide [J], J. Biol. Chem.285 2010,285(39):29989-29997
    [10]Shingu T., Fujiwara K., Bogler O., et al. Inhibition of autophagy at a late stage enhances imatinib-induced cytotoxicity in human malignant glioma cells [J] Int. J. Cancer,2009,124(5):1060-1071
    [11]Paglin S., Hollister T., Delohery T., et al. A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles, Cancer Res.2001, 61 (2):439-444.
    [12]Bursch W., Ellinger A., Kienzl H., et al. Active cell death induced by the antiestrogens tamoxifen and ICI 164 384 in human mammary carcinoma cells (MCF-7) in culture:the role of autophagy, Carcinogenesis.1996,17(8)1595-1607
    [1]Kim D.H., Sarbassov D.D., Ali S.M., et al. mTOR interacts with raptor to form a nutrient sensitive complex that signals to the cell growth machinery [J]. Cell,2002, 110(2):163-175
    [2]David C. R., Guillermo M., Guido K. Autophagy and Aging [J]. Cell,2011,146(2): 682-695
    [3]Hara K, Maruki Y, Long X, et al. Raptor, a binding partner of targer of rapamycin (TOR), mediat es TOR action [J]. Cell,2002,110(2):177-189
    [4]Noda N.N., Kumeta H., Nakatogawa H., et al. Structural basis of target recognition by Atg8/LC3 during selective autophagy[J]. Genes Cells 2008; 13(12):1211-1218
    [5]Seglen PO, Gordon PB.3-Methyladenine:specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes [J]. Proc Natl Acad Sci USA.1982, 79(6):1889-1892
    [1]Hanahan D, Weinberg RA., Hallmarks of cancer:the next generation [J]. Cell.2011 144(5):646-674
    [2]Duffy MJ. The urokinase plasminogen activator system:role in malignancy. Curr Pharm Des.2004,10(1):39-49
    [3]Duffy MJ, Duggan C.The urokinase plasminogen activator system:a rich source of tumour markers for the individualised management of patients with cancer [J]. Clin Biochem.2004,37(7):541-548
    [4]Fietz S., Einspanier R., Hoppner S., et al. Determination of MMP-2 and-9 activities in synovial fluid of horses with osteoarthritic and arthritic joint diseases using gelatin zymography and immunocapture activity assays. Equine Vet J.2008,40(3):266-271
    [5]Shi Y.W., Zhang L., Yuan J.M., et al, Zinc binding site in PICK1 is dominantly located at the CPC motif of its PDZ domain[J]. J Neurochem.2008,106 (3):1027-1034
    [6]Kobayashi H, Suzuki M, Kanayama N, et al. A soybean Kunitz trypsin inhibitor suppresses ovarian cancer cell invasion by blocking urokinase upregulation [J]. Clin Exp Metastasis.2004; 21 (2):159-166.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700