用户名: 密码: 验证码:
金属离子荧光探针的研究及新型聚集荧光增强分子的发现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
首先,本文设计合成了若干种新型罗丹明酰胺衍生物,实现了对水溶液中六价铬离子、二价铜离子和三价铁离子的荧光增强型分析检测,研究了罗丹明酰胺衍生物分子探针与金属离子作用的机理和性质。通过晶体结构分析,提供了该类化合物分子结构中罗丹明环内酰胺环存在的直接证据;通过核磁共振波谱分析,阐明了罗丹明酰胺衍生物的环内酰胺环“开-关”转换是探针对金属离子产生荧光增强型响应的根本原因。这些分子探针响应金属离子的方式可分为两类:金属离子诱导反应型和金属离子络合型。前者指分子探针与金属离子发生化学反应后产生光谱性质不同于分子探针的产物,从而在体系中加入金属离子后产生光谱信号变化;后者指分子探针通过作为配体与金属离子形成了光谱性质不同于分子探针本身的络合物,从而对金属离子产生相应的光谱信号变化。其优点为信号增强显著,受常见背景干扰小。在酸性水溶液中,罗丹明B酰肼对六价铬离子的检测限达0.3 ppb;在乙醇和水混合缓冲溶液体系中,罗丹明6G酰肼水杨醛希弗碱对二价铜离子的检测限达10 nM;在中性缓冲水溶液中,二罗丹明B酰二乙三胺能对不低于10?5 M浓度级别的三价铁离子实现分析检测。上述三种检测方法均能够在室温下半小时内完成,且对水溶液中可能存在的其他常见金属离子有较强的抗干扰能力。此外,本文应用前两种方法,成功的对饮用水和河水水样中六价铬离子和二价铜离子进行了分析检测。
     其次,本文发现了一类基于N-N单键旋转的新型聚集荧光增强型分子,得到了该类分子中具有代表性的二水杨醛缩肼希弗碱的晶体结构,详细研究了其在不良溶剂(聚集状态)、良溶剂(均一溶液)和固体状态下的发光行为,利用该类化合物的原位生成所产生的显著荧光增强特性,以相应的水杨醛衍生物作为试剂,成功实现了对水溶液中肼浓度的高灵敏度、高选择性分析检测。这类新型聚集荧光增强型化合物的优点是合成简单,成本低廉,在光学传感器、发光二极管及相关器件等研制领域具有潜在的应用价值。
This dissertation firstly described the synthesis of a series of rhodamine amide derivatives. The crystal structure of one compound in this series was obtained and served as the direct evidence for the existence of rhodamine spirolactam ring moiety in their molecular structures. Meanwhile, the application of these compounds as fluorescent probes for Cr2O72?, Cu2+ and Fe3+ by the rhodamine spirolactam ring“close-open”switch was also studied. The interaction between these fluorescent probes and metal ions could be divided into two kinds: metal ion-induced reaction and metal ion-induced chelation. In the former case, fluorescent probe underwent chemical reaction with metal ion to yield a product with different fluorescent character, thus produced signal change in the presence of metal ion; in the latter case, fluorescent probe chelated with metal ion to form a complex with different fluorescent property, which induced fluorescence change to the solution upon metal ion binding. Nevertheless, both of them were based on the metal ion-induced spirolactam ring“close-open”switch of rhodamine amide, with their advantages of significant absorption and fluorescence enhancement and optical signal above 500 nm that was resistant to sample background. Using rhodamine B hydrazide, Cr2O72? could be detected in acidic water with 0.3 ppb detection limit; Cu2+ could be quantified in neutral ethanol/water solution with a detection limit of 10 nM by rhodamine 6G salicyl hydrazone; Fe3+ with a concentration higher than 10?5 M level could also be monitored with a rhodamine amide as fluorescent probe in neutral water. All these three analytical protocols could be completed within half an hour, and with good resistance to other metal ions that commonly coexisted in water. Determinations of Cr2O72? and Cu2+ in drinking water and river water samples were also successfully achieved using these methods.
     In addition, a novel series of compounds with aggregation-induced emission enhancement (AIEE) characteristics were discovered and their spectral properties in different states were studied in this dissertation. The crystal structure of salicylaldehyde azine was obtained as a representative. The advantage of this new series of AIEE compounds was their ease of synthesis and low cost. By monitoring the significant fluorescence enhancement upon the formation of these AIEE compounds, hydrazine concentration in water could be detected using corresponding salicylaldehydes.
引文
[1] Sigel H (Ed.). Metal ions in biological systems, properties of copper. Boca Raton: CRC Press, 2004
    [2] Waggoner D J, Bartnikas T B, Gitlin J D. The Role of copper in neurodegenerative disease. Neurobiol. Dis., 1999, 6: 221-230
    [3] High B, Bruce D, Richter M M. Determining copper ions in water using electrochemiluminescence. Anal. Chim. Acta, 2001, 449: 17-22
    [4] Tapia L, Suazo M, Hodar C, et al. Copper exposure modifies the content and distribution of trace metals in mammalian cultured cells. Biometals, 2003, 16: 169-174
    [5]薛华,李隆弟,郁鉴源,陈德朴.分析化学(第二版).北京:清华大学出版社, 1994,第三章
    [6] McDonagh C, Burke C S, MacCraith B D. Optical chemical sensors. Chem. Rev., 2008, 108: 400-422
    [7] Wolfbeis O S. Fibre Optic Chemical sensors and biosensors. Boca Raton: CRC Press, 1991, Volumes 1 and 2
    [8] Cammann G G, Guilbault E A, Hal H, et al. The Cambridge definition of chemical sensors, Cambridge workshop on chemical sensors and biosensors. New York: Cambridge University Press, 1996
    [9] Callan J F, de Silva A P, Magri D C. Luminescent sensors and switches in the early 21st century. Tetrahedron, 2005, 61: 8551-8588
    [10] Kiyose K, Kojima H, Nagano T. Functional near-infrared fluorescent probes. Chem. Asian. J., 2008, 3: 506-515
    [11] Otsuki J, Akasaka T, Araki K. Molecular switches for electron and energy transfer processes based on metal complexes. Coord. Chem. Rev., 2008, 252: 32-56
    [12] Kim J S, Quang D T. Calixarene-derived fluorescent probes. Chem. Rev., 2007, 107: 3780-3799
    [13] Thomas S W III, Joly G D, Swager T M. Chemical sensors based on amplifying fluorescent conjugated polymers. Chem. Rev., 2007, 107: 1339-1386
    [14] Rurack K. Flipping the light switch“ON”-the design of sensor molecules that show cation-induced ?uorescence enhancement with heavy and transition metal ions. Spectrochim. Acta. A, 2001, 57: 2161-2195
    [15] Czarnik A W. Desperately seeking sensors. Chem. Biol., 1995, 2: 423-428
    [16] de Silva A P, Gunaratne H Q N, Gunnlaugsson T, et al. Signaling recognition events with fluorescent sensors and switches. Chem. Rev., 1997, 97: 1515-1566
    [17] Roundhill D M. Optical sensors with metal ions, in: Roundhill D M, Fackler J P Jr (Eds.). Optoelectronic properties of inorganic compounds, New York: Plenum, 1999, 317
    [18] Czarnik A W (Ed.). Fluorescent chemosensors for ion and molecule recognition, ACS Symp. Ser, vol. 538, Washington DC: American Chemical Society, 1993
    [19] Desvergne J P, Czarnik A W (Eds.). Chemosensors of ion and molecule recognition, NATO ASI Ser., Ser. C, vol. 492, Dordrecht: Kluwer Academic Publishers, 1997.
    [20] Valeur B, Leray I. Design principles of fluorescent molecular sensors for cation recognition. Coord. Chem. Rev., 2000, 205: 3-40
    [21] Fabbrizzi L, Poggi A. Sensors and switches from supramolecular chemistry. Chem. Soc. Rev., 1995, 24: 197-202
    [22] ISI Web of Knowledge数据库网址http://apps.isiknowledge.com/
    [23] Singh A K, Majumdar N. Role of metal cations in color transition and hydrolysis of the chromophores of retinal-binding photoreceptor proteins. J. Photochem. Photobiol. B., 1997, 39: 140-145
    [24] Alarcon R, Silva M, Valcareal M. Kinetic fluorimetric determination of microamounts of copper by its catalytic effect on the hydrolysis of 2-hydroxybenzaldehyde azine. Anal. Lett., 1982, 15: 891-907
    [25] Bera M, Mukhopadhyay U, Ray D. Iron(III) induced 2-phenyl imidazolidine ring hydrolysis of a new binucleating Schiff base ligand: X-ray structure of the mononuclear FeIII(NNO)2 end product. Inorg. Chim. Acta., 2005, 358: 437-443
    [26] Lykourinou-Tibbs V, Ercan A, Ming L J. Iron(III)-Chelex resin complex as a prototypical heterogeneous catalyst for phosphodiester hydrolysis. Catal. Commun., 2003, 4: 549-553
    [27] Sadler N P, Chuang C C, Milburn R M. Iron(III)-promoted hydrolysis of 4-nitrophenyl phosphate. Inorg. Chem., 1995, 34: 402-404
    [28] Lin W Y, Yuan L, Feng J B, et al. A Fluorescence-enhanced chemodosimeter for Fe3+ based on hydrolysis of bis(coumarinyl) schiff base. Eur. J. Org. Chem., 2008, 2689-2692
    [29] Zhao Y G, Lin Z H, He C, et al. A“turn-on”fluorescent sensor for selective Hg(II) detection in aqueous media based on metal-induced dye formation. Inorg. Chem. 2006, 45: 10013-10015
    [30] Chae M Y, Czarnik A W. Fluorometric chemodosimetry. Mercury(II) and silver(I) indication in water via enhanced fluorescence signaling. J. Am. Chem. Soc., 1992, 114: 9704-9705
    [31] Zhang G X, Zhang D Q, Yin S W, et al. 1,3-Dithiole-2-thione derivatives featuring an anthracene unit: new selective chemodosimeters for Hg(II) ion. Chem. Commun., 2005, 2161-2163
    [32] Liu B, Tian H. A selective fluorescent ratiometric chemodosimeter for mercury ion. Chem. Commun., 2005, 3156-3158
    [33] Ros-Lis J, Marcos M D, Martínez-Má?ez R, et al. A regenerative chemodosimeter based on metal-induced dye formation for the highly selective and sensitive optical determination of Hg2+ ions. Angew. Chem. Int. Ed., 2005, 44: 4405-4407
    [34] Song K C, Kim J S, Park S M, et al. Fluorogenic Hg2+-selective chemodosimeter derived from 8-hydroxyquinoline. Org. Lett., 2006, 8: 3413-3416
    [35] Lee M H, Cho B K, Yoon J, et al. Selectively chemodosimetric detection of Hg(II) in aqueous media. Org. Lett., 2007, 9: 4515-4518
    [36] Manimala J, Anslyn E V. Solid-phase synthesis of guanidinium derivatives from thiourea and isothiourea functionalities. Eur. J. Org. Chem., 2002, 3909-3922
    [37] Kim K S, Qian L. Fire-retardant and intumescent compositions for cellulosic material. Tetrahedron Lett., 1993, 34: 7677-7680
    [38] Batey R A, Powell D A. A general synthetic method for the formation of substituted 5-aminotetrazoles from thioureas: a strategy for diversity amplification. Org. Lett., 2000, 2: 3237-3240
    [39] Boeglin D, Cantel S, Heitz A, et al. Solution and solid-supported synthesis of 3,4,5-trisubstituted 1,2,4-triazole-based peptidomimetics. Org. Lett., 2003, 5: 4465-4468
    [40] Hennrich G, Walther W, Resch-Genger U, et al. Cu(II)- and Hg(II)-induced modulation of the fluorescence behavior of a redox-active sensor molecule. Inorg. Chem., 2001, 40: 641-644
    [41] Yang Y K, Yook K J, Tae J. A rhodamine-based fluorescent and colorimetric chemodosimeter for the rapid detection of Hg2+ ions in aqueous media. J. Am. Chem. Soc., 2005, 127: 16760-16761
    [42] Ko S K, Yang Y K, Tae J, et al. In vivo monitoring of mercury ions using a rhodamine-based molecular probe. J. Am. Chem. Soc., 2006, 128: 14150-14155
    [43] Wu J S, Hwang I C, Kim K S, et al. Rhodamine-based Hg2+-selective chemodosimeter in aqueous solution: fluorescent OFF-ON. Org. Lett., 2007, 9: 907-910
    [44] Aoki S, Sakurama K, Ohshima R, et al. Design and synthesis of a caged Zn2+ probe, 8-benzenesulfonyloxy-5-N,N-dimethylaminosulfonylquinolin-2- ylmethyl-pendant 1,4,7,10-tetraazacyclododecane, and its hydrolytic uncaging upon complexation with Zn2+. Inorg. Chem., 2008, 47: 2747-2754
    [45] Kovács J, R?dler T, Mokhir A. Chemodosimeter for CuII detection based on cyclic peptide nucleic acids. Angew. Chem. Int. Ed., 2005, 45: 7815-7817
    [46] Kovács J, Mokhir A. Catalytic hydrolysis of esters of 2-hydroxypyridine derivatives for Cu2+ detection. Inorg. Chem., 2008, 47: 1880-1882
    [47] Wu Q, Anslyn E V. Catalytic signal amplification using a heck reaction. An example in the fluorescence sensing of Cu(II). J. Am. Chem. Soc., 2004, 126: 14682-14683
    [48] Graf N, Goeritz M, Kraemer R. A metal-ion-releasing probe for DNA detection by catalytic signal amplification. Angew. Chem., 2006, 45: 4013-4015
    [49] Fife T H, Przystas T J. Divalent metal ion catalysis in the hydrolysis of esters of picolinic acid. Metal ion promoted hydroxide ion and water catalyzed reactions. J. Am. Chem. Soc., 1985, 107: 1041-1047
    [50] Qi X, Jun E J, Xu L, et al. New BODIPY derivatives as OFF-ON fluorescent chemosensor and fluorescent chemodosimeter for Cu2+: cooperative selectivity enhancement toward Cu2+. J. Org. Chem., 2006, 71: 2881-2884
    [51] Dujols V, Ford F, Czarnik A W. A long-wavelength fluorescent chemodosimeter selective for Cu(II) ion in water. J. Am. Chem. Soc., 1997, 119: 7386-7387
    [52] Kierat R M, Kraemer R. A fluorogenic and chromogenic probe that detects the esterase activity of trace copper(II). Bioorg. Med. Chem. Lett., 2005, 15: 4824-4827
    [53] Mokhir A, Kraemer R. Double discrimination by binding and reactivity in fluorescent metal ion detection. Chem. Commun., 2005, 2244-2246
    [54] Zhou Z, Fahrni C J. A fluorogenic probe for the Copper(I)-catalyzed azide-alkyne ligation reaction: modulation of the fluorescence emission via 3(n,π*)-1(π,π*) inversion. J. Am. Chem. Soc., 2004, 126: 8862-8863
    [55] Kollmannsberger M, Rurack K, Resch-Genger U, et al. Design of an efficient charge-transfer processing molecular system containing a weak electron donor: spectroscopic and redox properties and cation-induced fluorescence enhancement. Chem. Phys. Lett., 2000, 329: 363-369
    [56] Gunnlaugsson T, Bichell B, Nolan C. Fluorescent PET chemosensors for lithium. Tetrahedron, 2004, 60: 5799-5806
    [57] Cha N R, Moon S Y, Chang S K. New ON-OFF type Ca2+-selective fluoroionophore having boron-dipyrromethene fluorophores. Tetrahedron Lett., 2003, 44: 8265-8268
    [58] Pearson A J, Xiao W. Fluorescence and NMR binding studies of N-aryl-N'-(9-methylanthryl)diaza-18-crown-6 derivatives. J. Org. Chem., 2003, 68: 5369-5376
    [59] Pearson A J, Hwang J J, Ignatov M E. Crown-annelated p-phenylenediamine derivatives as electrochemical and fluorescence responsive chemosensors: fluorescence studies. Tetrahedron Lett., 2001, 42: 3537-3540
    [60] Pearson A J, Hwang J J. Crown-annelated p-phenylenediamine derivatives as electrochemical and fluorescence responsive chemosensors: cyclic voltammetry studies. Tetrahedron Lett., 2001, 42: 3541-3543
    [61] Nakahara Y, Kida T, Nakatsuji Y, et al. A novel fluorescent indicator for Ba2+ in aqueous micellar solutions. Chem. Commun., 2004, 224-225
    [62] Clapham B, Sutherland A J. Scintillation-based potassium signalling using 2,5-diphenyloxazole-tagged aza-18-crown-6. Chem. Commun., 2003, 84-85
    [63] Chang C J, Nolan E M, Jaworski J, et al. Bright fluorescent chemosensor platforms for imaging endogenous pools of neuronal zinc. Chem. Biol., 2004, 11: 203-210
    [64] Hirano T, Kikuchi K, Urano Y, et al. Improvement and biological applications of fluorescent probes for zinc, ZnAFs. J. Am. Chem. Soc., 2002, 124: 6555-6562
    [65] Lim N C, Brückner C. DPA-substituted coumarins as chemosensors for zinc(II): modulation of the chemosensory characteristics by variation of the position of the chelate on the coumarin. Chem. Commun., 2004, 1094-1095
    [66] Bhattacharya S, Gulyani A. First report of Zn2+ sensing exclusively at mesoscopic interfaces. Chem. Commun., 2003, 1158-1159
    [67] Gunnlaugsson T, Lee T C, Parkesh R. A highly selective and sensitive fluorescent PET (photoinduced electron transfer) chemosensor for Zn(II). Org. Biomol. Chem., 2003, 1: 3265-3267
    [68] Gunnlaugsson T, Lee T C, Parkesh R. Cd(II) sensing in water using novel aromatic iminodiacetate based fluorescent chemosensors. Org. Lett., 2003, 5: 4065-4068
    [69] Gunnlaugsson T, Lee T C, Parkesh R. Highly selective fluorescent chemosensors for cadmium in water. Tetrahedron, 2004, 60: 11239-11249
    [70] Kumar S, Kaur S, Singh G. Photoactive chemosensors 2: 8-hydroxyquinoline based Cu(II) selective fluorescent tripod. Supramol. Chem., 2003, 15: 65-67
    [71] Zheng Y J, Cao X H, Orbulescu J, et al. Peptidyl fluorescent chemosensors for the detection of divalent copper. Anal. Chem., 2003, 75: 1706-1712
    [72] Brasola E, Mancin F, Rampazzo E, et al. A fluorescence nanosensor for Cu2+ on silica particles. Chem. Commun., 2003, 3026-3027
    [73] Cao Y D, Zheng Q Y, Chen C F, et al. A new fluorescent chemosensor for transition metal cations and on/off molecular switch controlled by pH. Tetrahedron Lett., 2003, 44: 4751-4755
    [74] Nolan E M, Lippard S J. A "turn-on" fluorescent sensor for the selective detection of mercuric ion in aqueous media. J. Am. Chem. Soc., 2003, 125: 14270-14271
    [75] Guo X, Qian X, Jia L. A highly selective and sensitive fluorescent chemosensor for Hg2+ in neutral buffer aqueous solution. J. Am. Chem. Soc., 2004, 126: 2272-2273
    [76] Prodi L, Bargossi C, Montalti M, et al. An effective fluorescent chemosensor for mercury ions. J. Am. Chem. Soc., 2000, 122: 6769-6770
    [77] Aoki S, Sakurama K, Matsuo N, et al. A new fluorescent probe for Zinc(II): an 8-hydroxy-5-N,N-dimethylaminosulfonylquinoline-pendant 1,4,7,10-tetra- azacyclododecane. Chem. Eur. J., 2006, 12: 9066-9080
    [78] Bhardwaj V K, Pannu A P S, Singh N, et al. Synthesis of new tripodal receptorsda‘PET’based‘off–on’recognition of Ag+. Tetrahedron, 2008, 64: 5384-5391
    [79] Martínez R, Zapata F, Caballero A, et al. 2-Aza-1,3-butadiene derivatives featuring an anthracene or pyrene unit: highly selective colorimetric and fluorescent signaling of Cu2+ cation. Org. Lett., 2006, 8: 3235-3238
    [80] Tang B, Cui L J, Xu K H, et al. A sensitive and selective near-infrared fluorescent probe for mercuric ions and its biological imaging applications. ChemBioChem, 2008, 9: 1159-1164
    [81] Lee H N, Kim H N, Swamy K M K, et al. New acridine derivatives bearing immobilized azacrown or azathiacrown ligand as ?uorescent chemosensors for Hg2+ and Cd2+. Tetrahedron Lett., 2008, 49: 1261-1265
    [82] Mashraqui S H, Sundaram S, Khan T, et al. Zn2D selective luminescent‘off–on’probes derived from diaryl oxadiazole and aza-15-crown-5. Tetrahedron, 2007, 63: 11093-11100
    [83] Shiraishi Y, Ichimura C, Hirai T. A quinoline–polyamine conjugate as a ?uorescent chemosensor for quantitative detection of Zn(II) in water. Tetrahedron Lett., 2007, 48: 7769-7773
    [84] Sarkar M, Banthia S, Samanta A. A highly selective‘o?–on’?uorescence chemosensor for Cr(III). Tetrahedron Lett., 2006, 47: 7575-7578
    [85] Li G K, Xu Z X, Chen C F, et al. A highly e?cient and selective turn-on ?uorescent sensor for Cu2+ ion based on calix[4]arene bearing four iminoquinoline subunits on the upper rim. Chem. Comm., 2008, 1774-1776
    [86] Xue L, Wang H H, Wang X J, et al. Modulating affinities of di-2-picolylamine (DPA)-substituted quinoline sensors for zinc ions by varying pendant ligands. Inorg. Chem., 2008, 47: 4310-4318
    [87] Iyoshi S, Taki M, Yamamoto Y. Rosamine-based fluorescent chemosensor for selective detection of Silver(I) in an aqueous solution. Inorg. Chem., 2008, 47: 3946-3948
    [88] Kim J, Morozumi T, Nakamura H. Discriminating detection between Mg2+ and Ca2+ by fluorescent signal from anthracene aromatic amide moiety. Org. Lett., 2007, 9: 4419-4422
    [89] Nolan E M, Racine M E, Lippard S J. Selective Hg(II) detection in aqueous solution with thiol derivatized fluoresceins. Inorg. Chem., 2006, 45: 2742-2749
    [90] Wang J B, Qian X H. Two regioisomeric and exclusively selective Hg(II) sensor molecules composed of a naphthalimide fluorophore and an o-phenylenediamine derived triamide receptor. Chem. Comm., 2006, 109-111
    [91] Burdette S C, Frederickson C J, Bu W M, et al. ZP4, an improved neuronal Zn2+ sensor of the zinpyr family. J. Am. Chem. Soc., 2003, 125: 1778-1787
    [92] Benniston A C, Harriman A, Lawrie D J, et al. A general purpose reporter for cations: absorption, fluorescence and electrochemical sensing of zinc(II). Dalton Trans., 2003, 4762-4769
    [93] Barigelletti F, Flamigni L, Calogero G, et al. A functionalized ruthenium(II)-bis-terpyridine complex as a rod-like luminescent sensor of zinc(II). Chem. Commun., 1998, 2333-2334
    [94] Descalzo A B, Martínez-Má?ez R, Radeglia R, et al. Coupling selectivity with sensitivity in an integrated chemosensor framework: design of a Hg(2+)-responsive probe, operating above 500 nm. J. Am. Chem. Soc., 2003, 125: 3418-3419
    [95] Métivier R, Leray I, Valeur B. A highly sensitive and selective fluorescent molecular sensor for Pb(II) based on a calix[4]arene bearing four dansyl groups. Chem. Commun., 2003, 996-997
    [96] Malval J P, Lapouyade R, Léger J M, et al. Tripodal ligand incorporating dual fluorescent ionophore: a coordinative control of photoinduced electron transfer. Photochem. Photobiol. Sci., 2003, 2: 259-266
    [97] Morozumi T, Hiraga H, Nakamura H. Intramolecular charge-transfer behavior of 1-pyrenyl aromatic amides and its control through the complexation with metal ions. Chem. Lett., 2003, 32: 146-147
    [98] Jung H J, Singh N, Jang D O. Highly Fe3+ selective ratiometric ?uorescent probe based on imine-linked benzimidazole. Tetrahedron Lett., 2008, 49: 2960-2964.
    [99] Kim J, Morozumi T, Kurumatani N, et al. Novel chemosensor for alkaline earth metal ion based on 9-anthryl aromatic amide using a naphthalene as a TICT control site and intramolecular energy transfer donor. Tetrahedron Lett., 2008, 49: 1984-1987
    [100] Yang H, Zhou Z G, Xu J, et al. A highly selective ratiometric chemosensor for Hg2D based on the anthraquinone derivative with urea groups. Tetrahedron, 2007, 63: 6732-6736
    [101] Mei Y J, Bentley P A. A ratiometric ?uorescent sensor for Zn2+ based on internal charge transfer (ICT). Bioorg. Med. Chem. Lett., 2006, 16: 3131-3134
    [102] Dennis A E, Smith R C.“Turn-on”fluorescent sensor for the selective detection of zinc ion by a sterically-encumbered bipyridyl-based receptor. Chem. Comm., 2007, 4641-4643
    [103] Xu Z C, Qian X H, Cui J N, et al. Exploiting the deprotonation mechanism for the design of ratiometric and colorimetric Zn2D ?uorescent chemosensor with a large red-shift in emission. Tetrahedron, 2006, 62: 10117-10122
    [104] Komatsu K, Urano Y, Kojima H, et al. Development of an Iminocoumarin-Based Zinc Sensor Suitable for Ratiometric Fluorescence Imaging of Neuronal Zinc. J. Am. Chem. Soc., 2007, 129: 13447-13454
    [105] Kiyose K, Kojima H, Urano Y, et al. Development of a ratiometric fluorescent zinc ion probe in near-infrared region, based on tricarbocyanine chromophore. J. Am. Chem. Soc., 2006, 128: 6548-6549
    [106] Wang J B, Qian X H, Cui J N. Detecting Hg2+ ions with an ICT fluorescent sensor molecule: remarkable emission spectra shift and unique selectivity. J. Org. Chem., 2006, 71, 4308-4311
    [107] Yang J S, Lin Y D, Chang Y H, et al. Synthesis, dual fluorescence, and fluoroionophoric behavior of dipyridylaminomethylstilbenes. J. Org. Chem., 2005, 70: 6066-6073
    [108] Xu Z C, Xiao Y, Qian X H, et al. Ratiometric and selective fluorescent sensor for CuII based on internal charge transfer (ICT). Org. Lett., 2005, 7: 889-892
    [109] Zhang Y, Guo X F, Si W X, et al. Ratiometric and water-soluble fluorescent zinc sensor of carboxamidoquinoline with an alkoxyethylamino chain as receptor. Org. Lett., 2008, 10: 473-476
    [110] Wu D Y, Xie L X, Zhang C L, et al. Quinoline-based molecular clips for selective ?uorescent detection of Zn2+. Dalton Trans., 2006, 3528-3533
    [111] Kim H J, Park S Y, Yoon S, et al. FRET-derived ratiometric ?uorescence sensor for Cu2+. Tetrahedron, 2008, 64: 1294-1300
    [112] Wu F Y, Bae S W, Hong J I. A selective ?uorescent sensor for Pb(II) in water. Tetrahedron Lett., 2006, 47: 8851-8854
    [113] Othman A B, Lee J W, Wu J S, et al. Calix[4]arene-based, Hg2+-induced intramolecular fluorescence resonance energy transfer chemosensor. J. Org. Chem., 2007, 72: 7634-7640
    [114] Lee M H, Kim H J, Yoon S, et al. Metal ion induced FRET OFF?ON in tren/dansyl-appended rhodamine. Org. Lett., 2008, 10: 213-216
    [115] Chen J A, Lai J L, Lee G H, et al. Cooperative and selective lithium complexation of 2,11,13,22-tetraaza-5,8,16,19-tetraoxa-1,12- dioxocyclodocosanes. Org. Lett., 2001, 3: 3999-4002
    [116] Che Y, Yang X M, Zang L. Ultraselective ?uorescent sensing of Hg2+ through metal coordination-induced molecular aggregation. Chem. Comm., 2008, 1413-1415
    [117] Xie J, Ménand M, Maisonneuve S, et al. Synthesis of bispyrenyl sugar-aza-crown ethers as new fluorescent molecular sensors for Cu(II). J. Org. Chem., 2007, 72: 5980-5985
    [118] Liu L, Zhang D Q, Zhang G X, et al. Highly selective ratiometric fluorescence determination of Ag+ based on a molecular motif with one pyrene and two adenine moieties. Org. Lett., 2008, 10: 2271-2274
    [119] Liu J W, Brown A K, Meng X L, et al. A catalytic beacon sensor for uranium with parts-per-trillion sensitivity and millionfold selectivity. Proc. Natl. Acad. Sci. USA, 2007, 104: 2056-2061
    [120] Liu J W, Lu Y. A DNAzyme catalytic beacon sensor for paramagnetic Cu2+ ions in aqueous solution with high sensitivity and selectivity. J. Am. Chem. Soc., 2007, 129: 9838-9839
    [121] Li J, Lu Y. A highly sensitive and selective catalytic DNA biosensor for lead ions. J. Am. Chem. Soc., 2000, 122: 10466-10467
    [122] Lu Y. Metalloprotein and metallo-DNA/RNAzyme design: current approaches, success measures, and future challenges. Inorg. Chem., 2006, 45: 9930-9940
    [123] Chiang C K, Huang C C, Liu C W, et al. Oligonucleotide-based fluorescence probe for sensitive and selective detection of mercury(II) in aqueous solution. Anal. Chem., 2008, 80: 3716-3721
    [124] Ono A, Togashi H. Highly selective oligonucleotide-based sensor for mercury(II) in aqueous solutions. Angew. Chem. Int. Ed., 2004, 43: 4300-4302
    [125] Matsushita M, Meijiler M M, Wirsching P, et al. A blue fluorescent antibody-cofactor sensor for mercury. Org. Lett., 2005, 7: 4943-4946
    [126] Lee S J, Bae D R, Han W S, et al. Different morphological organic–inorganic hybrid nanomaterials as fluorescent chemosensors and adsorbents for CuII ions. Eur. J. Inorg. Chem., 2008, 1559-1564
    [127] Ali E M, Zheng Y G, Yu H H, et al. Ultrasensitive Pb2+ detection by glutathione-capped quantum dots. Anal. Chem., 2007, 79: 9452-9458
    [128] Díez-Gil C, Martínez R, Ratera I, et al. Nanocomposite membranes as highly selective and sensitive mercury(II) detectors. J. Mater. Chem., 2008, 18: 1997-2002
    [129] Lee J S, Han M S, Mirkin C A. Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angew. Chem. Int. Ed., 2007, 46: 4093-4096
    [130] Mu L X, Shi W S, Chang J C, et al. Silicon nanowires-based fluorescence sensor for Cu(II). Nano Lett., 2008, 8: 104-109
    [131] Bae S, Tae J. Rhodamine-hydroxamate-based ?uorescent chemosensor for FeIII. Tetrahedron Lett., 2007, 48: 5389-5392
    [132] Kwon J Y, Jang Y J, Lee Y J, et al. A highly selective fluorescent chemosensor for Pb2+. J. Am. Chem. Soc., 2005, 127: 10107-10111
    [133] Lee M H, Wu J S, Lee J W, et al. Highly sensitive and selective chemosensor for Hg2+ based on the rhodamine fluorophore. Org. Lett., 2007, 9: 2501-2504
    [134] Yang H, Zhou Z G, Huang K W, et al. Multisignaling optical-electrochemical sensor for Hg2+ based on a rhodamine derivative with a ferrocene unit. Org. Lett., 2007, 9: 4729-4732
    [135] Mao J, Wang L N, Dou W, et al. Tuning the selectivity of two chemosensors to Fe(III) and Cr(III). Org. Lett., 2007, 9: 4567-4570
    [136] Zhang X, Shiraishi Y, Hirai T. Cu(II)-selective green fluorescence of a rhodamine-diacetic acid conjugate. Org. Lett., 2007, 9: 5039-5042
    [137] Zheng H, Qian Z H, Xu L et al. Switching the recognition preference of rhodamine B spirolactam by replacing one atom: design of rhodamine B thiohydrazide for recognition of Hg(II) in aqueous solution. Org. Lett., 2006, 8: 859-861
    [138] Soh J H, Swamy K M K, Kim S K, et al. Rhodamine urea derivatives as fluorescent chemosensors for Hg2+. Tetrahedron Lett., 2007, 48: 5966-5969
    [139] Wu D, Huang W, Duan C, et al. Highly sensitive fluorescent probe for selective detection of Hg2+ in DMF aqueous media. Inorg. Chem., 2007, 46: 1538-1540
    [140] Shi W, Ma H. Rhodamine B thiolactone: a simple chemosensor for Hg2+ in aqueous media. Chem. Comm., 2008, 1856-1858
    [141] Zhan X Q, Qian Z H, Zheng H, et al. Rhodamine thiospirolactone. Highly selective and sensitive reversible sensing of Hg(II). Chem. Comm., 2008, 1859-1861
    [142] Xiang Y, Tong A, Jin P, et al. New Fluorescent Rhodamine hydrazone chemosensor for Cu(II) with high selectivity and sensitivity. Org. Lett., 2006, 8: 2863-2866
    [143] Chen X, Jia J, Ma H, et al. Characterization of rhodamine B hydroxylamide as a highly selective and sensitive fluorescence probe for copper(II). Anal. Chim. Acta, 2009, 632: 9-14
    [144] Zhao M, Yang X F, He S F, et al. A rhodamine-based chromogenic and fluorescent chemosensor for copper ion in aqueous media. Sens. Actuat. B, 2009, 135: 625-631
    [145] Swamy K M K, Ko S K, Kwon S K, et al. Boronic acid-linked fluorescent and colorimetric probes for copper ions. Chem. Comm., 2008, 5915-5917
    [146] Xiang Y, Tong A. A new rhodamine-based chemosensor exhibiting selective FeIII-amplified fluorescence. Org. Lett., 2006, 8: 1549-1552
    [147] Zhang M, Gao Y, Li M, et al. A selective turn-on fluorescent sensor for FeIII and application to bioimaging. Tetrahedron Lett., 2007, 48: 3709-3712
    [148] Zhang X, Shiraishi Y, Hirai T. A new rhodamine-based fluorescent chemosensor for transition metal cations synthesized by one-step facile condensation. Tetrahedron Lett., 2007, 48: 5455-5459
    [149] Chen X, Zou J. Application of rhodamine B hydrazide as a new fluorogenic indicator in the highly sensitive determination of hydrogen peroxide and glucose based on the catalytic effect of iron(III)-tetrasulfonato-phthalocyanine. Microchim. Acta, 2007, 157: 133-138
    [150] Kenmoku S, Urano Y, Kojima H, et al. Development of a highly specific rhodamine-based fluorescence probe for hypochlorous acid and its application to real-time imaging of phagocytosis. J. Am. Chem. Soc., 2007, 129: 7313-7318
    [151] Chen X, Wang X, Wang S, et al. A highly selective and sensitive fluorescence probe for the hypochlorite anion. Chem.-Eur. J., 2008, 14: 4719-4724
    [152] Pires M M, Chmielewski J. Fluorescence imaging of cellular glutathione using a latent rhodamine. Org. Lett., 2008, 10: 837-840
    [153] Deans R, Kim J, Machacek M R, et al. A poly(p-phenyleneethynylene) with a highly emissive aggregated phase. J. Am. Chem. Soc., 2000, 122: 8565-8566
    [154] An B K, Kwon S K, Jung S D, et al. Enhanced emission and its switching in fluorescent organic nanoparticles. J. Am. Chem. Soc., 2002, 124: 14410-14415
    [155] Yu G, Yin S, Liu Y, et al. Structures, electronic states, photoluminescence, and carrier transport properties of 1,1-disubstituted 2,3,4,5-tetraphenylsiloles. J. Am. Chem. Soc., 2005, 127: 6335-6346
    [156] Luo J, Xie Z, Lam J Y W, et al. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun., 2001, 1740-1741
    [157] Bhongale C J, Hsu C S. Emission enhancement by formation of aggregates in hybrid chromophoric surfactant amphiphile/silica nanocomposites. Angew. Chem., Int. Ed., 2006, 45: 1404-1408
    [158] Qian Y, Li S, Zhang G, et al. Aggregation-induced emission enhancement of 2-(2’-hydroxyphenyl)benzothiazole-based excited-state intramolecular proton-transfer compounds. J. Phys. Chem. B, 2007, 111: 5861-5868
    [159] Jenekhe S A, Osaheni J A. Excimers and exciplexes of conjugated polymers science, 1994, 265: 765-768
    [160] Friend R H, Gymer R W, Holmes A B, et al. Electroluminescence in conjugated polymers. Nature, 1999, 397: 121-128
    [161] Chen J, Peng H, Law C C W, et al. Hyperbranched poly(phenylenesilolene)s: synthesis, thermal stability, electronic conjugation, optical power limiting, and cooling-enhanced light emission. Macromolecules, 2003, 36: 4319-4327
    [162] Li Z, Dong Y, Mi B, et al. Structural Control of the Photoluminescence of Silole Regioisomers and Their Utility as Sensitive Regiodiscriminating Chemosensors and Efficient Electroluminescent Materials. J. Phys. Chem. B, 2005, 109: 10061-10066
    [163] An B K, Lee D S, Park Y S, et al. Strongly fluorescent organogel system comprising fibrillar self-assembly of a trifluoromethyl-based cyanostilbene derivative. J. Am. Chem. Soc., 2004, 126: 10232-10233
    [164] Lim S J, An B K, Jung S D, et al. Photoswitchable organic nanoparticles and a polymer film employing multifunctional molecules with enhanced fluorescence emission and bistable photochromism. Angew. Chem., Int. Ed., 2004, 46: 6346-6350
    [165] Wang F, Han M Y, Mya K Y, et al. Aggregation-driven growth of size-tunable organic nanoparticles using electronically altered conjugated polymers. J. Am. Chem. Soc., 2005, 127: 10350-10355
    [166] Itami K, Ohashi Y, Yoshida J i. Triarylethene-based extendedπ-systems: programmable synthesis and photophysical properties. J. Org. Chem., 2005, 70: 2778-2792
    [167] Bhongale C J, Chang C W, Lee C S, et al. Relaxation dynamics and structural characterization of organic nanoparticles with enhanced emission. J. Phys. Chem. B, 2005, 109: 13472-13482
    [168] Hong N, Haussler M, Lam J W Y, et al. Label-Free Fluorescent Probing of G-Quadruplex Formation and Real-Time Monitoring of DNA Folding by a Quaternized Tetraphenylethene Salt with Aggregation-Induced Emission Characteristics. Chem.-Eur. J., 2008, 14: 6428-6437
    [169] Tong H, Hong Y N, Dong Y Q, et al. Fluorescent "light-up" bioprobes based on tetraphenylethylene derivatives with aggregation-induced emission characteristics. Chem. Commun., 2006, 3705-3707
    [170] Tong H, Hong Y N, Dong Y Q, et al. Protein detection and quantitation by tetraphenylethene-based fluorescent probes with aggregation-induced emission characteristics. J. Phys. Chem. B, 2007, 111: 11817-11823
    [171] Wang M, Zhang D, Zhang G, Zhu D. The convenient fluorescence turn-on detection of heparin with a silole derivative featuring an ammonium group. Chem. Commun., 2008, 4469-4471
    [172] Wang M, Zhang D, Zhang G, Tang Y, Wang S, Zhu D. Fluorescence turn-on detection of DNA and label-free fluorescence nuclease assay based on the aggregation-induced emission of silole. Anal. Chem., 2008, 80: 6443-6448
    [173] Xiang Y, Tong A. Ratiometric and selective fluorescent chemodosimeter for Cu(II) by Cu(II)-induced oxidation. Luminescence, 2008, 23:28-31
    [174] Xiang Y, Li N, Chen X, Tong A. Highly sensitive and selective optical chemosensor for determination of Cu2+ in aqueous solution. Talanta, 2008, 74:1148-1153
    [175] Xiang Y, Li Z, Tong A. Rhodamine B-quinoline-8-amide as a fluorescent‘ON’probe for Fe3+ in acetonitrile. Luminescence, 2008, 23:103-103
    [176] Xiang Y, Mei L, Li N, et al. Sensitive and selective spectrofluorimetric determination of chromium(VI) in water by fluorescence enhancement. Anal. Chim. Acta, 2007, 581:132-136.
    [177] Sawyer C N, McArty R L. Chemistry for environmental engineering. New York: McGraw Hill, 1978
    [178] Richard F, Bourg A. Aqueous geochemistry of chromium: A review. Water Resour., 1991, 25: 807-816
    [179] Sittig M. Priority toxic pollutants, health impacts and allowable limits, Noyes Data Corporation, 1980, p. 158
    [180] Katz S A, Salem H. The biological and environmental chemistry of chromium. New York: VCH Publishers, 1994
    [181] International Agency for Research on Cancer IARC, International Agency for Research on Cancer Monographs on the Evaluation of the Carcinogenic Risks to Humans, Vol. 49, chromium, Nickel, and Welding, IARC publications, 1990
    [182] http://www.envir.gov.cn/law/standard/6.htm
    [183] Arancibia V, Valderrama M, Silva K, et al. Determination of chromium in urine samples by complexation-supercritical fluid extraction and liquid or gas chromatography. J. Chromatogr. B, 2003, 785: 303-309
    [184] Cornelis R, Borguet F, Kimpe J D. Trace elements in medicine. Speciation: the new frontier. Anal. Chim. Acta, 1993, 283: 183-189
    [185] Cornelis R. Use of radiochemical methods as tools for speciation purposes in environmental and biological sciences. Analyst, 1992, 117, 583-588
    [186] Zayed M A, Barsoum B N, Hassan A E. Spectrophotometric determination of iron and chromium in Cr-electroplating baths at the helwan engineering industrial company using pyrocatechol as indicator. Microchem. J., 1996, 54: 72-80
    [187] Singer P M A, Aldstadt J H. A comparative study of diffusion samplers for the determination of hexavalent chromium by sequential injection spectrophotometry. Microchem. J., 2003, 74: 47-57
    [188] Balasubramanian S, Pugalenthi V. Determination of total chromium in tannery waste water by inductively coupled plasma-atomic emission spectrometry, flame atomic absorption spectrometry and UV-visible spectrophotometric methods. Talanta, 1999, 50: 457-467
    [189] Kaneko M, Kurihara M, Nakano S, et al. Flow-injection determination of chromium(III) by its catalysis on the oxidative coupling of 3-methyl-2-benzothiazolinone hydrazone with N-ethyl-N-(2-hydroxy-3-sulfopropyl)-3-methoxyaniline. Anal. Chim. Acta, 2002, 474: 167-176
    [190] Andersen J E T. Introduction of hydrogen peroxide as an oxidant in flow injection analysis: speciation of Cr(III) and Cr(VI). Anal. Chim. Acta, 1998, 361: 125-131
    [191] Paleologos E K, Lafis S I, Tzouwara-Karayanni S M, et al. Speciation analysis of CrIII-CrVI using flow injection analysis with fluorimetric detection. Analyst, 1998, 123: 1005-1009
    [192] Jie N, Jiang J. Spectrofluorimetric determination of chromium with 8-hydroxyquinoline-5-sulphonic acid. Analyst, 1991, 116: 395-397
    [193] Paleologos E K, Stalikas C D, Tzouwara-Karayanni S M, et al. Selective speciation of trace chromium through micelle-mediated preconcentration, coupled with micellar flow injection analysis–spectrofluorimetry. Anal. Chim. Acta, 2001, 436: 49-57
    [194] Anthemidis A N, Zachariadis G A, Kougoulis J S, et al. Flame atomic absorption spectrometric determination of chromium(VI) by on-line preconcentration system using a PTFE packed column. Talanta, 2002, 57: 15-22
    [195] Lamerias J, Soares M E, Bastos M L, et al. Quantification of total chromium and hexavalent chromium in UHT milk by ETAAS. Analyst, 1998, 123: 2091-2095
    [196] Razek T M A, Spear S, Hassan S S M, et al. Selective measurement of chromium(VI) by fluorescence quenching of ruthenium. Talanta, 1999, 48: 269-275
    [197] Jie N, Zhang Q, Yang J, et al. Determination of chromium in waste-water and cast iron samples by fluorescence quenching of rhodamine 6G. Talanta, 1998, 46: 215-219
    [198] Wang L, Wang L, Xia T, et al. Selective fluorescence determination of chromium(VI) with poly-4-vinylaninline nanoparticles. Spectrochim. Acta Part A, 2004, 60: 2465-2468
    [199] Toal S J, Jones K A, Magde D, et al. Luminescent silole nanoparticles as chemoselective sensors for Cr(VI). J. Am. Chem. Soc., 2005, 127: 11661-11665
    [200] Yang X F, Guo X Q, Zhao Y B. Development of a novel rhodamine-type fluorescent probe to determine peroxynitrite. Talanta, 2002, 57: 883-890
    [201] Irving H M N H, Freiser H, West T S. IUPAC compendium of analytical nomenclature, definitive rules. Oxford: Pergamon Press, 1981
    [202]向宇,童爱军.一种用于水样中微量六价铬含量测定的溶液及其应用:中国, 200810056858.4(中国专利申请号)
    [203] High B, Bruce D, Richter M M. Determining copper ions in water using electrochemiluminescence. Anal. Chim. Acta, 2001, 449:17-22
    [204] Tapia L, Suazo M, Hodar C, et al. Copper exposure modifies the content and distribution of trace metals in mammalian cultured cells. Biometals, 2003, 16: 169-174
    [205] Sigel H. Metal ions in biological systems, vol. 12: Properties of copper, 1981.
    [206] Waggoner D J, Bartnikas T B, Gitlin J D. The role of copper in neurodegenerative disease. Neurobiol. Dis., 1999, 6: 221-230
    [207] Anthoni U, Christophersen C, Nielsen P, et al. Structure of red and orange fluorescein.Structural Chem., 1995, 6: 161-165
    [208] Lee P F, Yang C, Fan D, et al. Synthesis, characterization and physicochemical properties of copper(II) complexes containing salicylaldehyde semicarbazone. Polyhedron, 2003, 22: 2781-2786
    [209] Ross A R S, Ikonomou M G, Thompson J A J, et al. Determination of dissolved metal species by electrospray ionization mass spectrometry. Anal. Chem., 1998, 70: 2225-2235
    [210] Matsumoto A, Fukumoto T, Adachi H, et al. Electrospray ionization mass spectrometry of metal complexes. Gas phase formation of a binuclear copper(II)-5-Br-PADAP complex. Anal. Chim. Acta, 1999, 390: 193-199
    [211] Di Marco B D, Bombi G G, Tubaro M, et al. Electrospray ionization mass spectrometry in studies of aluminium(III)-ligand solution equilibria. Rapid Commun. Mass Spectrom., 2003, 17: 2039-2046
    [212] Vosburgh W C, Cooper G R. Complex ions. I. The identification of complex ions in solution by spectrophotometric measurements. J. Am. Chem. Soc., 1941, 63: 437-442
    [213] Connors K A. Binding constants-the measurement of molecular complex stability. New York: John Wiley & Sons, 1987, Chapter 4
    [214] Varnes A W, Dodson R B, Wehry E L. Interactions of transition-metal ions with photoexcited states of flavines. Fluorescence quenching studies. J. Am. Chem. Soc., 1972, 94: 946-950
    [215] Torrado A, Walkup G K, Imperiali B. Exploiting polypeptide motifs for the design of selective Cu(II) ion chemosensors. J. Am. Chem. Soc., 1998, 120: 609-610
    [216] Li Y, Yang C M. A rationally designed novel receptor for probing cooperative interaction between metal ions and bivalent tryptophan side chain in solution. Chem. Commun., 2003, 2884-2885
    [217] Shao N, Zhang Y, Cheung S M, et al. Copper ion-selective fluorescent sensor based on the inner filter effect using a spiropyran derivative. Anal. Chem., 2005, 77: 7294-7303
    [218] Yang H, Liu Z, Zhou Z, et al. Highly selective ratiometric fluorescent sensor for Cu(II) with two urea groups. Tetrahedron Lett., 2006, 47: 2911-2914
    [219] Yang J, Lin C, Hwang C. Cu2+-induced blue shift of the pyrene excimer emission: A new signal transduction mode of pyrene probes. Org. Lett., 2001, 3: 889-892
    [220] Yang R, Zhang Y, Li K, et al. Fluorescent ratioable recognition of Cu2+ in water using a pyrene-attached macrocycle/gamma-cyclodextrin complex. Anal. Chim. Acta, 2004, 525: 97-103
    [221] Li A, He H, Ruan Y, et al. Oxidative cyclization of N-acylhydrazones. Development of highly selective turn-on fluorescent chemodosimeters for Cu2+. Org. Biomol. Chem., 2009, 7: 193-200
    [222]向宇,童爱军.罗丹明6G酰肼水杨醛希弗碱、合成方法及在铜离子含量测定的应用:中国, 200810056855.0(中国专利申请号)
    [223] Aisen P, Wessling-Resnick M, Leibold E A. Iron metabolism. Curr. Opin. Chem. Biol., 1999, 3: 200-206
    [224] Ma L, Luo W, Quinn P J, et al. Design, synthesis, physicochemical properties, and evaluation of novel iron chelators with fluorescent sensors. J. Med. Chem., 2004, 47: 6349-6362
    [225] Nudelman R, Ardon O, Hadar Y, et al. Modular fluorescent-labeled siderophore analogues. J. Med. Chem., 1998, 41: 1671-1678
    [226] Weizman H, Ardon O, Mester B, et al. Fluorescently-labeled ferrichrome analogs as probes for receptor-mediated, microbial iron uptake. J. Am. Chem. Soc., 1996, 118: 12368-12375
    [227] Tang W, Xiang Y, Tong A. Salicylaldehyde azines as fluorophores of aggregation-induced emission enhancement characteristics. J. Org. Chem., 2009, 74: 2163-2166
    [228] Chen X, Xiang Y, Li Z, Tong A. Sensitive and selective fluorescence determination of trace hydrazine in aqueous solution utilizing 5-chlorosalicylaldehyde. Anal. Chim. Acta, 2008, 625: 41-46
    [229] Collins G E, Latturner S, Rose-Pehrsson S L. Chemiluminescence detection of hydrazine vapor. Talanta, 1995, 42: 543-551
    [230] Weeks R W, Yasuda S K, Dean B K. Fluorescent detection of hydrazines via fluorescamine and isomeric phthalaldehydes. Anal. Chem., 1976, 48: 159-161
    [231] Collins G E, Rose-Pehrsson S L. Sensitive, fluorescent detection of hydrazine via derivatization with 2,3-naphthalene dicarboxaldehyde. Anal. Chim. Acta, 1993, 284: 207-215
    [232] Collins G E, Rose-Pehrsson S L. Fluorescent detection of hydrazine, monomethylhydrazine, and 1,1-dimethylhydrazine by derivatization with aromatic dicarbaldehydes. Analyst, 1994, 119: 1907-1913
    [233] Malone H E, Barron R E. Acid-base method for determining mixtures of diethylene triamine with hydrazine or substituted hydrazines. Anal. Chem., 1965, 37: 548-549
    [234] Serencha N M, Hanna J G, Kuchar E J. Determination of mixtures of hydrazine and monomethylhydrazine by reaction with salicylaldehyde. Anal. Chem., 1965, 37: 1116-1118
    [235] Malone H E. Determination of mixtures of hydrazine and 1,1-dimethylhydrazine. Anal. Chem., 1961, 33: 575-577
    [236] Malone H E, Biggers R A. Acid-base method for determining mixtures of either hydrazine-1,1-dimethylhydrazine or monomethylhydrazine-1,1-dimethylhydrazine. Anal. Chem., 1964, 36: 1037-1039
    [237] Schmidt E W. Hydrazine and Its Derivatives, vol. 2, 2nd ed.. New York: Wiley-Interscience, 2001, p. 820
    [238] Weilmuenster E. Utilization of high-energy fuel elements. Ind. Eng. Chem., 1957, 49: 1337-1338
    [239] Huffman C W, Godar E M, Ohki K, et al. Synthesis of hydrazine derivatives as plant growth inhibitors. J. Agric. Food Chem., 1968, 16: 1041-1046
    [240] Balsamo A, Macchia B, Macchia F, et al. Synthesis and antibacterial activities of new (.alpha.-hydrazinobenzyl) cephalosporins. J. Med. Chem., 1983, 26: 1648-1650
    [241] Troyan J E. Properties, production, and uses of hydrazine. Ind. Eng. Chem., 1953, 45: 2608-2612
    [242] Terlizzi P M, Streim H. Liquid propellant handling, transfer, and storage. Ind. Eng. Chem., 1956, 48: 774-777
    [243] Budavari S. The Merck Index, 12th ed. Merck Research Laboratories. NJ: Whitehouse Station, 1996, p. 816
    [244] Tang B Z, Geng Y, Lam J W Y, et al. Processible nanostructured materials with electrical conductivity and magnetic susceptibility: preparation and properties of maghemite/polyaniline nanocomposite films. Chem. Mater., 1999, 11: 1581-1589

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700