用户名: 密码: 验证码:
棉纤维发育早期的转录调控机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花是一种重要的经济作物,棉纤维发育的调控机制一直是棉花研究的重点。前人研究表明,MYB类转录因子在棉纤维发育早期起着重要的调控作用,其中,R2R3-MYB类转录因子GhMYB25是棉纤维分化的关键正调控因子,其是否与其它转录因子共同组成调控纤维发育的新途径还不清楚;R3-MYB类转录因子是表皮毛发育的负调控因子,棉花中该类转录因子尚待克隆分析和功能鉴定。此外,BR是一类调控棉纤维分化和细胞伸长的激素,但是其作用的具体机制还需要进一步分析。
     为了研究棉花起始期的转录调控机制,本研究选取纤维品质最优的海岛棉作为主要研究对象,从基因克隆、进化分析、表达分析、蛋白与DNA互作、蛋白与蛋白互作、转基因植物验证功能等方面开展了一系列的工作,并取得了以下结果:
     一.GbML1结合L1盒并与GbMYB25互作共同调控纤维的起始发育
     本研究从棉花起始期的胚珠cDNA中通过RACE技术克隆了一个新的HD-Zip IV家族转录因子(GbML1)。GbML1蛋白通过ZLZ结构域形成二聚体,并以HD结构域直接结合L1盒。GbML1能够结合纤维特异表达基因RDL1的启动子及其自身启动子。GbML1与GbMYB25均在发育的胚珠中强表达,两者都能定位于细胞核。GbML1通过START-SAD结构域特异地结合GbMYB25的C端,其中START结构域的空间结构对于蛋白互作有着重要影响。尽管GbML1是个弱激活子,但是GbMYB25的C2结构域具有强激活能力,因此GbML1与GbMYB25组成了一个具有识别特异序列的强激活复合体,共同激活纤维特异基因的表达。拟南芥中过量表达GbML1增加了叶片及茎的表皮毛数量。因此,GbML1是新的控制纤维分化的关键转录因子。
     二. SANT/MYB类转录因子参与调控纤维的发育
     本研究还从早期发育的胚珠cDNA文库中克隆了两个SANT/MYB类转录因子,即GbRL1和GbRL2。
     GbRL1序列上与RAD基因比较相似,进化上属于同一分支,在花瓣中表达较强,且在拟南芥中过量表达的表型与过量表达RAD基因类似,因此GbRL1很可能是RAD的同源基因。此外,GbRL1在纤维起始期的胚珠中的表达是纤维伸长期的8倍以上,在伸长期的棉纤维中也可以检测到其表达,故GbRL1不仅参与花瓣的发育,还与胚珠及棉纤维的发育相关。启动子克隆和分析表明,GbRL1可能受到控制花器官发育和开花时间控制的MADS盒转录因子及WUS基因的共同调控。
     与GbRL1相反,GbRL2在纤维起始期的胚珠中的表达非常弱,在纤维伸长期逐渐增强,且在+8DPA的胚珠中的表达强于纤维。GhRL2基因在Xu142及其无纤维突变体fl中的表达存在显著差异。在-3DPA时,GbRL2在fl突变体中强表达,而在野生型中检测不到其表达;在+5DPA时,GbRL2在fl突变体弱表达,而在野生型里强表达,故GbRL2可能是纤维发育的负调控因子。GbRL2的启动子除了具有MADS盒类转录因子的识别序列外,还具有L1盒,因此GbRL2可能还受到L1层调控基因如GbML1的调控。
     三. SRN1参与调控植物的多器官发育过程
     SRN1是拟南芥油菜素内酯处理的特异响应基因,本研究显示其编码一个定位于细胞核的NAC转录激活因子。SRN1在维管组织中优势表达,在各器官的保卫细胞及种子的表皮中也有较强的表达。抑制SRN1的表达导致叶和茎的发育异常和雄性育性降低。过量表达SRN1引起种子发育异常,子叶和叶片的色素积累增加,胚轴变短加粗,叶片伸展受到抑制,顶端优势受到抑制,器官发生融合等。这可能是由于过量表达SRN1激活了STM-CUC途径的基因表达而影响了茎端分生组织的发育。SRN1能够结合L1盒,且能负调控启动子中具有L1盒的HD-Zip IV家族基因如PDF2的表达。此外,SRN1是纤维素合成酶基因表达的正调控基因。过量表达SRN1增加了生长素在子叶中的分布。SRN1在蛋白水平可能受到修饰。
Cotton is an important economic crop and the regulatory mechanism underlyingcotton fibre development is always the focus of cotton research. Previous studies haveshown that MYB transcription factors play important roles in fibre development.R2R3-MYB transcription factor GhMYB25is a key positive regulator of fibreinitiation and elongation. However, whether it defines a new genetic pathway of fibredevelopment remains unknown. In contrast to the positive role of R2R3-MYBtranscription factors, R3-MYB transcription factors negatively regulate trichomedifferentiation. However, cotton R3-MYB transcription factors remain to be clonedand functionally analysed. BR is an important hormone that regulates fibredifferentiation and elongation, but the molecular mechanism of this regulation needsto be analysed.
     To understand the transcriptional regulation mechanism during cotton fibre earlydevelopment, we chose the high-quality fibre bearing cultivar, Gossypium barbadense,as the main resource. By combination of the effects of gene cloning, evolution study,expression analysis, protein-DNA binding, protein-protein interaction and functionalstudy by transgenic plants, we achieved the results as follows.
     1. An L1box binding protein, GbML1interacts with GbMYB25to regulateearly fibre development.
     A new HD-Zip IV family member, designated as GbML1, was cloned from earlystage ovules by RACE technique. GbML1could form homodimers by its ZLZdomain and this dimer formation is critical for its binding to DNA. GbML1couldspecifically bind to L1box by its HD domain. Moreover, GbML1bound to its ownpromoter and a fibre-specific promoter. The expression of GbML1and GbMYB25wassimilar during cotton ovule development and both proteins could be localized intonucleus. Furthermore, GbML1could interact with the C terminal part of GbMYB25by its START-SAD domain and the three dimentional structure of START domainwas important for the binding. Though GbML1itself was a weak activator, the C2domain of GbMYB25had strong activation activity. Thus the complex formed byGbML1and GbMYB25both had the DNA specific binding activity andtranscriptional activation activity. This complex could bind to the promoters of fibrespecific genes and then activated their expression. Overexpression of GbML1inArabidopsis increased the trichome number in the leaf and stem epidermis, whichsupported that GbML1was a key regulator in cotton fibre differentiation anddevelopment.
     2. SANT/MYB transcription factors are involved in regulating fibre development
     We also cloned two SANT/MYB transcription factors from the early ovulelibrary by RACE techinique.
     The sequence of GbRL1was similar to RAD, and they fell into the same group inthe phylogenetic tree analysis. Furthermore, GbRL1had strong expression in petalsand ectopic overexpression of GbRL1in Arabidopsis had similar developmentalalterations as overexpression of RAD. These results supported that GbRL1was thehomolog of RAD in petal development. Unlike the restricted expression of RAD,GbRL1had strong expression in the ovules at initiation stage. The expression ofGbRL1could also be detected in the fibres during fibre elongation. Thus, GbRL1might also play a role in ovule and fibre development. The cloning and analysis of theGbRL1promoter revealed that GbRL1might be controlled by the MADS box geneswhich controlled the flower organ identity and flowering-time. GbRL1had an unusual big intron which contained the binding site for WUS, thus WUS might also controlGbRL1expression.
     On the contrary, the expression of GbRL2was undetectable on-3DPA andvery weak on0DPA, but increased during fibre elongation. The expression of GbRL2in ovules was stronger than fibres on+8DPA. GhRL2had different expressionpattern in fibreless mutant fl compared with its wild type Xu-142. Before anthesis (-3DPA), GhRL2was expressed strongly in the ovules of the fl mutant while in signal inthe WT was still not detectable. While the GhRL2signal was weak in the fl mutantovules at+5DPA, the signal in WT ovules was still stong. This expression pattern aswell as the fact that GbRL2belonged to the R3-MYB like family suggested thatGbRL2might be a negative regulator of cotton fibre differentiation. Besides theregulatory element for MADS box transcription factors, there was an L1box in theGbRL2promoter, suggesting that GbRL2might be cotrolled by L1bindingtranscription factors, such as GbML1.
     3. SRN1is involved in multiple organs’ development
     SRN1was considered as a reporter gene for BR treatment. Our results showedthat SRN1encoded a nucleus-localized transcription activator and the transcriptionactivation activity was contributed by its C terminal. SRN1was preferentiallyexpressed in the vascular tissues of different organs, and the expression of SRN1wasalso detected in the epidermis such as guard cells and the seed coat. The repression ofSRN1expression let to the abnormal lateral shoot and reduced male fertiliy caused byboth few spores and thick secondary wall. Overexpression of SRN1resulted in smalland light seeds with low geminating rate. Overexpression of SRN1also increased thepigmentation accumulation in cotyledons and leaves, increased the width ofhypocotyls, repressed the hypocotyl elongation and leaf expansion, changed theepidermal morphology of cotyledons and leaves, reduced the apical dominance, andled to fusions of various organs. SRN1might control SAM development by activatingSTM-CUC pathway. Moreover, SRN1protein could bind to L1box and negativelyregulate the expression HD-Zip IV family members, such as PDF2in Arabidopsis. SRN1was also shown to be a positive regulator of cellulose synthase genes, such asCesA4, CesA7and CesA8. Overexpression of SRN1increased the auxin content incotyledons. The SRN1protein might be regulated by phosphorylation anddegredation.
引文
[1]潘家驹.棉花育种学.北京:中国农业出版社,1998.
    [2]罗明. GhDET2和GhKTN1在棉花纤维发育中的功能.西南大学博士论文.2007.
    [3]丰嵘,张宝红,郭香墨.外源Bt基因对棉花产量、品质及抗虫性的影响.棉花学报,1996.8(1):7211.
    [4]张宝红,丰嵘.转基因抗虫棉研究的现状、问题与对策.作物学报,1998.24(2):248-256.
    [5] Wang S., Wang J.W., Yu N., et al. Control of plant trichome development by acotton fibre MYB gene. Plant Cell,2004.16(4):2323-2334.
    [6] Basra A., Malik C.P. Development of the cotton fibre. International Review ofCytology,1984.89:65-113.
    [7] Wilkins T.A., Jernstedt J.A. Molecular genetics of developing cotton fibres. In:Basra AM, ed. Cotton fibres. New York, NY: Hawthorne Press,231-267.1999.
    [8] Kim H.J., Triplett B.A. Cotton fibre growth in planta and in vitro: models for plantcell elongation and cell wall biogenesis. Plant Physiol.,2001.127:1361-1366.
    [9]张辉,汤文开,谭新,龚路路,李学宝.棉纤维发育及其相关基因表达调控研究进展.植物学通报,2007.24(2):127-133.
    [10] Machado A.C., Wu Y.R., Yang Y.M., et al. The MYB transcription factorGhMYB25regulates early fibre and trichome development. Plant J.,2009.59(1):52-62.
    [11] Taliercio E.W., Boykin D. Analysis of gene expression in cotton fibre initials.BMC Plant Biology,2007.7:22.
    [12] Lee J.J., Woodward A.W., Chen Z.J. Gene expression changes and early events incotton fibre development. Ann Bot.,2007.100(7):1391-1401.
    [13] Ramsey J. C., Berlin J. D. Ultrastructure of early stages of cotton fibredifferentiation. Bot. Gaz.,1976.137(1):11-19.
    [14] Beasey C.A., Ting I.P. Hormonal regulation of growth in unfertilized cottonovules. Science,1973.179(4077):1003-1005.
    [15]Stewart J.M. Fibre initiation on the cotton ovule (G hirsutum). Amer J Bot,1975.62(2):723-730.
    [16] Graves D.A., Stewart J M.D. Analysis of the protein constituency of developingcotton fibre. J Exp Bot,1988.39(198):59-69.
    [17] Graves D.A. and Stewart J.M. Chronology of the differentiation of cotton(Gossypium hirsutum L.) fibre cells. Planta,1988.175(2):254-258.
    [18]刘进元,赵广荣,李骥.棉花纤维品质改良的分子工程.植物学报,2000.42(10):991-995.
    [19] Wilkins T.A. Vacuolar H(+)-ATPase69-kilodalton catalytic subunit cDNA fromdeveloping cotton (Gossypium hirsutum) ovules. Plant Physiol.,1993.102(2):679-80.
    [20] Ramsey J.C., Berlin J. D. Ultrastructural spects of early stages in cotton fiberelongation. Amer J Bot,1976.63(6):868-876.
    [21]上官小霞,王凌健,李燕娥,梁运生.棉花纤维发育的分子机理及品质改良研究进展.棉花学报,2008.20(1):62-69.
    [22] Pear J.R., Kawagoe Y., Schreckengost W.E., et al. Higher plants containhomologs of the bacterial celA genes encoding the catalytic subunit of cellulosesynthase. Proc Natl Acad Sci USA,1996.93(22):12637-12642
    [23] Delmer D.P.Cellulose biosynthesis: exciting times for a difficult field of study.Annu Rev Plant Physiol Plant Mol Biol.1999.50(1):245-276.
    [24] Amor Y., Haigler C.H., Johnson S., et al. A membrane-associated form ofsucrose synthase and its potential role in synthesis of cellulose and callose in plants.Proc Natl Acad Sci U S A.1995.92(20):9353-9357.
    [25]郭旺珍,孙敬,张天真.棉花纤维品质基因的克隆与分子育种.科学通报,2003.48(5):411-417.
    [26] Stracke R., Werber M., Weisshaar B. The R2R3-MYB gene family inArabidopsis thaliana. Curr Opin Plant Biol.2001.4(5):447-456.
    [27]刘蕾,杜海,唐晓凤et al. MYB转录因子在植物抗逆胁迫中的作用及其分子机理.遗传学报,2008.30(10):1265-1271.
    [28]陈清,汤浩茹,董晓莉et al.植物Myb转录因子的研究进展.基因组学与应用生物学,2009.28(2):365-372.
    [29] Marks M.D., Feldmann K.A. Trichome development in Arabidopsis thaliana:T-DNA Tagging of the GLABROUS1Gene. Plant Cell,1989.1(11):1043-1050.
    [30] Herman PL, Marks MD.Trichome development in Arabidopsis thaliana:isolationand complementation of the GLABROUS1Gene. Plant Cell,1989.1(11):1051-1055.
    [31] Ishida T, Kurata T, Okada K, et al. A genetic regulatory network in thedevelopment of trichomes and root hairs. Annu Rev Plant Biol.2008.59(1):365-386
    [32] Payne C.T., Zhang F., Lloyd A.M. GL3encodes a bHLH protein that regulatestrichome development in Arabidopsis through interaction with GL1and TTG1.Genetics,2000.156(3):1349-1362.
    [33] Bernhardt C., Lee M.M., Gonzalez A., et al. The bHLH genes GLABRA3(GL3)and ENHANCER OF GLABRA3(EGL3) specify epidermal cell fate in theArabidopsis root. Development,2003.130(7):6431-6439.
    [34] Walker A.R., Davison P.A., Bolognesi-Winfield A.C., et al. The TRANSPARENTTESTA GLABRA1locus, which regulates trichome differentiation and anthocyaninbiosynthesis in Arabidopsis, encodes a WD40repeat protein. Plant Cell,1999.11(7):1337-1350.
    [35] Galway M.E., Masucci J.D., Lloyd A.M., et al. The TTG gene is required tospecify epidermal cell fate and cell patterning in the Arabidopsis root. Dev. Biol.1994.166(2):740-754.
    [36] Zhang F., Gonzalez A., Zhao M., et al. A network of redundant bHLH proteinsfunctions in all TTG1-dependent pathways of Arabidopsis. Development,2003.130(20):4859-4869.
    [37] Masucci J.D., Rerie W.G., Foreman D.R., et al. The homeobox gene GLABRA2isrequired for position-dependent cell differentiation in the root epidermis ofArabidopsis thaliana. Development,1996.122(4):1253-1260.
    [38] Kirik V., Schnittger A., Radchuk V., et al. Ectopic expression of the ArabidopsisAtMYB23gene induces differentiation of trichome cells.Dev Biol.2001.235(2):366-77.
    [39] Kirik V., Lee M.M., Wester K., et al. Functional diversification of MYB23andGL1genes in trichome morphogenesis and initiation. Development,2005.132(7):1477-1485.
    [40] Schnittger A., Jürgens G., Hülskamp M. Tissue layer and organ specificity oftrichome formation are regulated by GLABRA1and TRIPTYCHON in Arabidopsis.Development,1998.125(12):2283-2289.
    [41] Kirik V., Simon M., Huelskamp M., Schiefelbein J. The ENHANCER OF TRYAND CPC1gene acts redundantly with TRIPTYCHON and CAPRICE in trichome androot hair cell patterning in Arabidopsis. Dev. Biol.,2004.268(2):506-513.
    [42] Wester K., Digiuni S., Geier F. et al. Functional diversity of R3single-repeatgenes in trichome development. Development,2009136(9):1487-96.
    [43] Kirik V., Simon M., Wester K., et al. ENHANCER of TRY and CPC2(ETC2)reveals redundancy in the region-specific control of trichome development ofArabidopsis. Plant Mol. Biol.2004.55(3):389-398.
    [44] Schellmann S., Schnittger A., Kirik V., et al. TRIPTYCHON and CAPRICEmediate lateral inhibition during trichome and root hair patterning in Arabidopsis.EMBO J.2002.21(19):5036-5046.
    [45] Wada T, Tachibana T, Shimura Y, Okada K. Epidermal cell differentiation inArabidopsis determined by a Myb homolog, CPC. Science,1997.277(5329):1113-1116.
    [46] Esch J.J., Chen M., Sanders M., et al. A contradictory GLABRA3allele helpsdefine gene interactions controlling trichome development in Arabidopsis.Development,2003.130(24):5885-5894.
    [47] Savage N.S., Walker T., Wieckowski Y., et al. A mutual support mechanismthrough intercellular movement of CAPRICE and GLABRA3can pattern theArabidopsis root epidermis. PLoS Biol.2008.6(9): e235.
    [48] Folkers U., Berger J., Hülskamp M. Cell morphogenesis of trichomes inArabidopsis: differential control of primary and secondary branching by branchinitiation regulators and cell growth. Development,1997.124(19):3779-3786.
    [49]Ilgenfritz H., Bouyer D., Schnittger A., et al. The Arabidopsis STICHEL gene is aregulator of trichome branch number and encodes a novel protein. Plant Physiol.2003.131(2):643-655.
    [50] Krishnakumar S., Oppenheimer D.G.. Extragenic suppressors of the arabidopsiszwi-3mutation identify new genes that function in trichome branch formation andpollen tube growth. Development,1999.126(14):3079-88.
    [51] Kim G.T., Shoda K., Tsuge T., et al. The ANGUSTIFOLIA gene of Arabidopsis, aplant CtBP gene, regulates leaf-cell expansion, the arrangement of corticalmicrotubules in leaf cells and expression of a gene involved in cell-wall formation.EMBO J.2002.21(6):1267-1279.
    [52] Folkers U., Kirik V., Sch binger U., et al. The cell morphogenesis geneANGUSTIFOLIA encodes a CtBP/BARS-like protein and is involved in the control ofthe microtubule cytoskeleton. EMBO J.2002.21(6):1280-1288.
    [53] Jakoby M.J., Falkenhan D., Mader M.T., et al. Transcriptional profiling of matureArabidopsis trichomes reveals that NOECK encodes the MIXTA-like transcriptionalregulator MYB106. Plant Physiol.2008.148(3):1583-1602.
    [54] Noda K., Glover B.J., Linstead P., Martin C. Flower colour intensity depends onspecialized cell shape controlled by a Myb-related transcription factor. Nature,1994.369(6482):661-664.
    [55] Li S.F., Milliken O.N., Pham H., et al. The Arabidopsis MYB5transcriptionfactor regulates mucilage synthesis, seed coat development, and trichomemorphogenesis. Plant Cell,2009.21(1):72-89.
    [56] Windsor J.B., Symonds V.V., Mendenhall J., and Lloyd, A.L. Arabidopsis seedcoat development: morphological differentiation of the outer integument. Plant J.2000.22(6):483-493.
    [57] Zhang, F., Gonzalez, A., Zhao, M., et al. A network of redundant bHLHproteins functions in all TTG1-dependent pathways of Arabidopsis. Development,2003.130(120):4859-4869.
    [58] Western T.L., Young D.S., Dean G.H., et al. MUCILAGE-MODIFIED4encodes aputative pectin biosynthetic enzyme developmentally regulated by APETALA2,TRANSPARENT TESTA GLABRA1, and GLABRA2in the Arabidopsis seed coat. PlantPhysiol.2004.134(1):296-306.
    [59] Gonzalez A., Mendenhall J., Huo Y., Lloyd A. TTG1complex MYBs, MYB5and TT2, control outer seed coat differentiation. Dev Biol.2009.325(2):412-421.
    [60] Shangguan X.X., Xu B., Yu Z.X., et al. Promoter of a cotton fibre MYB genefunctional in trichomes of Arabidopsis and glandular trichomes of tobacco. J Exp Bot.2008.59(13):3533-3542.
    [61] Suo J., Liang X., Pu L., Zhang Y., Xue Y. Identification of GhMYB109encodinga R2R3MYB transcription factor that expressed specifically in fiber initials andelongating fibers of cotton (Gossypium hirsutum L.). Biochim Biophys Acta,2003.1630(1):25-34.
    [62] Pu L., Li Q., Fan X., et al. The R2R3MYB transcription factor GhMYB109isrequired for cotton fiber development. Genetics,2008.180(2):811-820.
    [63] Wu Y., Machado A.C., White R.G., et al. Expression profiling identifies genesexpressed early during lint fibre initiation in cotton. Plant Cell Physiol.2006.47(1):107-127.
    [64] Loguerico L.L., Zhang J.Q., Wilkins T.A. Differential regulation of six novelMYB-domain genes defines two distinct expression patterns in allotetraploid cotton(Gossypium hirsutum L.). Mol Gen Genet.1999.261(45):660-671.
    [65] Humphries J.A., Walker A.R., Timmis J.N., Orford S.J. Two WD-repeat genesfrom cotton are functional homologues of the Arabidopsis thaliana TRANSPARENTTESTA GLABRA1(TTG1) gene. Plant Molecular Biology,2005.57(1):67–81.
    [66] Guan X.Y., Li Q.J., Shan C.M., et al. The HD-Zip IV gene GaHOX1from cottonis a functional homologue of the Arabidopsis GLABRA2. Physiol Plant,2008.134(1):174-182.
    [67] Ariel F.D., Manavella P.A., Dezar C.A., Chan R.L. The true story of the HD-Zipfamily. Trends Plant Sci.200712(9):419-426.
    [68] Nakamura M., Katsumata H., Abe M., et al. Characterization of the class IVhomeodomain-Leucine Zipper gene family in Arabidopsis. Plant Physiol.2006.141(4):1363-1375.
    [69] Costa S., Shaw P. Chromatin organization and cell fate switch respond topositional information in Arabidopsis. Nature,2006.439(7075):493-496.
    [70]Caro E., Castellano M.M., Gutierrez C. A chromatin link that couples celldivision to root epidermis patterning in Arabidopsis. Nature,2007.447(7141):213-217.
    [71] Tominaga-Wada R., Iwata M., Sugiyama J., et al. The GLABRA2homeodomainprotein directly regulates CESA5and XTH17gene expression in Arabidopsis roots.Plant J.2009.60(3):564-574.
    [72] Abe M., Katsumata H., Komeda Y., Takahashi T. Regulation of shoot epidermalcell differentiation by a pair of homeodomain proteins in Arabidopsis. Development,2003.130(4):635-643.
    [73] Lu P., Porat R., Nadeau J.A., O'Neill S.D. Identification of a meristem L1layer-specific gene in Arabidopsis that is expressed during embryonic patternformation and defines a new class of homeobox genes. Plant Cell,1996.8(12):2155-2168.
    [74] Abe M., Takahashi T., Komeda Y. Identification of a cis-regulatory element forL1layer-specific gene expression, which is targeted by an L1-specific homeodomainprotein. Plant J.2001.26(5):487-494.
    [75]Kubo H., Peeters A.J., Aarts M.G., et al. ANTHOCYANINLESS2, a homeoboxgene affecting anthocyanin distribution and root development in Arabidopsis. PlantCell,1999.11(7):1217-1226.
    [76] Yu H., Chen X., Hong Y.Y., et al. Activated expression of an ArabidopsisHD-START protein confers drought tolerance with improved root system and reducedstomatal density. Plant Cell,2008.20(4):1134-1151.
    [77] Kinoshita T., Miura A., Choi Y., et al. One-way control of FWA imprinting inArabidopsis endosperm by DNA methylation. Science,2004.303(5657):521-523.
    [78] Gehring M., Bubb K.L., Henikoff S. Extensive demethylation of repetitiveelements during seed development underlies gene imprinting. Science,2009.324(5933):1447-1451.
    [79] Corley S.B., Carpenter R., Copsey L., Coen E. Floral asymmetry involves aninterplay between TCP and MYB transcription factors in Antirrhinum. Proceedings ofthe National Academy of Sciences, USA,2005.102(14):5068-5073.
    [80] Costa M.M., Fox S., Hana A.I., et al. Evolution of regulatory interactionscontrolling floral asymmetry. Development,2005.132(22):5093-5101.
    [81] Baxter C.E., Costa M.M., Coen E. Diversification and co-option of RAD-likegenes in the evolution of floral asymmetry. Plant J.,2007.52(1):105-113.
    [82] Pagnussat G.C., Yu H.J., Ngo Q.A., et al. Genetic and molecular identification ofgenes required for female gametophyte development and function in Arabidopsis.Development,2005.132(3):603-614.
    [83] Barg R., Sobolev I., Eilon T., et al. The tomato early fruit specific gene Lefsm1defines a novel class of plant-specific SANT MYB domain proteins. Planta,2005.221(2):197-211.
    [84] Zhou X.R., Wang Y.Z., Smith J.F., Chen R. Altered expression patterns of TCPand MYB genes relating to the floral developmental transition from initialzygomorphy to actinomorphic in Bournea (Gesneriaceae). New Phytologist,2008.178(3):532-543.
    [85] Preston J.C., Kost M.A., Hileman L.C. Conservation and diversification of thesymmetry developmental program among close relatives of snapdragon withdivergent floral morphologies. New Phytol.2009.182(3):751-762.
    [86] Sun Y., Fokar M., Asami T., et al. Characterization of the brassinosteroidinsensitive1genes of cotton. Plant Molecular Biology,2004.54(2):221-232.
    [87] Sun Y., Veerabomma S., Abdel-Mageed H.A., et al. Brassinosteroid regulatesfiber development on cultured cotton ovules. Plant Cell Physiology,2005.46(8):1384-1391.
    [88]Shi Y.H., Zhu S.W., Mao X.Z., et al. Transcriptome profiling, molecular,biological, and physiological studies reveal a major role for ethylene in cotton fibercell elongation.The Plant Cell,2006.18(3):651-664.
    [89] Li C.H., Zhu Y.Q. Meng Y.L. et al. Isolation of genes preferentially expressed incotton fibers by cDNA filter arrays and RT-PCR. Plant Science,2002.163(6):1113-1120.
    [90] Samuel Yang S., Cheung F., Lee J.J., et al. Accumulation of genome-specifictranscripts, transcription factors and phytohormonal regulators during early stages offiber cell development in allotetraploid cotton. Plant J.2006.47(5):761-775.
    [91] Luo M., Xiao Y., Li X., et al. GhDET2, a steroid5alpha-reductase, plays animportant role in cotton fiber cell initiation and elongation. Plant J.2007.51(3):419-430.
    [92] Luo M., Tan K., Xiao Z., et al. Cloning and expression of two sterol C-24methyltransferase genes from upland cotton (Gossypium hirsuturm L.). J GenetGenomics.2008.35(6):357-363.
    [93] Peng L., Kawagoe Y., Hogan P., Delmer D. Sitosterol-beta-glucoside as primerfor cellulose synthesis in plants. Science,2002.295(5552):147-150.
    [94] Schrick K., Fujioka S., Takatsuto S., et al. A link between sterol biosynthesis, thecell wall, and cellulose in Arabidopsis.Plant J.2004.38(2):227-243.
    [95] Olsen A.N., Ernst H.A., Leggio L.L., Skriver K. NAC transcription factors:structurally distinct, functionally diverse.Trends Plant Sci.2005.10(2):79-87.
    [96]李鹏,黄耿青,李学宝.植物NAC转录因子.植物生理学通讯,2010.46(3):294-300.
    [97]彭辉,于兴旺,成慧颖, et al.植物NAC转录因子家族研究概况.植物学报,2010.45(2):236–248.
    [98] Souer E., Houwelingen V.A., Kloos D., et al.. The no apical meristem gene ofpetunia is required for patternformation in embryos and flowers and is expressed atmeristem and primordial boundaries. Cell,1996.85(2):159-170.
    [99] Aida M., Ishida T., Fukaki H., et al. Genes involved in organ separation inArabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell,1997.9(6):841-857.
    [100] Ooka H., Satoh K., Doi K., et al. Comprehensive analysis of NAC family genesin Oryza sativa and Arabidopsis thaliana. DNA Res,2003.10(6):239-247.
    [101] Ernst H.A., Olsen A.N., Skriver K., et al. Structure of the conserved domain ofANAC, a member of the NAC family of transcription factors. EMBO Rep,2004.5(3):297-303.
    [102] Hao Y.J., Song Q.X., Chen H.W. Plant NAC-type transcription factor proteinscontain a NARD domain for repression of transcriptional activation Planta,2010. Aug4.[Epub ahead of print] DOI10.1007/s00425-010-1238-2.
    [103] Hu R., Qi G., Kong Y., et al.Comprehensive analysis of NAC domaintranscription factor gene family in Populus trichocarpa.BMC Plant Biol.2010.10:145.
    [104] Lenhard M., Jürgens G., Laux T. The WUSCHEL and SHOOTMERISTEMLESSgenes fulfill complementary roles in Arabidopsis shoot meristem regulation.Development,2002.129(13):3195-3206.
    [105] Long, J. A., Moan, E. I., Medford, J., Barton, M. K. A member of theKNOTTED class of homeodomain proteins encoded by the SHOOTMERISTEMLESSgene of Arabidopsis. Nature,1996.379(6560):66-69.
    [106] Clark S.E., Jacobsen S.E., Levin J.Z., Meyerowitz E.M. The CLAVATA andSHOOT MERISTEMLESS loci competitively regulate meristem activity inArabidopsis. Development,1996.122(5):1567-1575.
    [107] Belles-Boix E., Hamant O., Witiak S.M., et al. KNAT6: an Arabidopsishomeobox gene involved in meristem activity and organ separation. Plant Cell,200618(8):1900-1907.
    [108] Aida M., Ishida T. and Tasaka M. Shoot apical meristem and cotyledonformation during Arabidopsis embryogenesis: interaction among the CUP-SHAPEDCOTYLEDON and SHOOT MERISTEMLESS genes. Development,1999.126(8):1563-1570.
    [109] Hibara K., Takada S. and Tasaka M. CUC1gene activates the expression ofSAM-related genes to induce adventitious shoot formation. Plant J.,2003.36(5):687-696.
    [110] Takada S., Hibara K., Ishida T., Tasaka M. The CUP-SHAPED COTYLEDON1gene of Arabidopsis regulates shoot apical meristem formation. Development,2001.128(7):1127-1135.
    [111] Tamaki H., Konishi M., Daimon Y., et al. Identification of novel meristemfactors involved in shoot regeneration through the analysis of temperature-sensitivemutants of Arabidopsis. Plant J.,2009.57(6):1027-1039.
    [112] Kubo M., Udagawa M., Nishikubo N., et al. Transcription switches forprotoxylem and metaxylem vessel formation. Genes Dev.2005.19(16):1855-1860.
    [113] Yamaguchi M., Goué N., Igarashi H., et al. VASCULAR-RELATEDNAC-DOMAIN6and VASCULAR-RELATED NAC-DOMAIN7effectively inducetransdifferentiation into xylem vessel elements under control of an induction system.Plant Physiol.2010,153(3):906-914.
    [114] Yamaguchi M., Kubo M., Fukuda H., Demura T. Vascular-relatedNAC-DOMAIN7is involved in the differentiation of all types of xylem vessels inArabidopsis roots and shoots. Plant J.2008.55(4):652-664.
    [115] Mitsuda N., Seki M., Shinozaki K., Ohme-Takagi M. The NAC transcriptionfactors NST1and NST2of Arabidopsis regulate secondary wall thickenings and arerequired for anther dehiscence. Plant Cell,200517(11):2993-3006.
    [116] Zhong R., Demura T., Ye Z.H. SND1, a NAC domain transcription factor, is akey regulator of secondary wall synthesis in fibers of Arabidopsis.Plant Cell,200618(11):3158-3170.
    [117] Yamaguchi M., Ohtani M., Mitsuda N., et al. VND-INTERACTING2, a NACdomain transcription factor, negatively regulates xylem vessel formation inArabidopsis. Plant Cell,2010.22(4):1249-1263.
    [118] Mitsuda N., Iwase A., Yamamoto H., et al. NAC transcription factors, NST1andNST3, are key regulators of the formation of secondary walls in woody tissues ofArabidopsis. Plant Cell,2007.19(1):270-280.
    [119] Mitsuda N., Ohme-Takagi M. NAC transcription factors NST1and NST3regulate pod shattering in a partially redundant manner by promoting secondary wallformation after the establishment of tissue identity. Plant J.2008.56(5):768-778.
    [120] Zhong R., Lee C., Zhou J., et al. A battery of transcription factors involved inthe regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell,2008.20(10):2763-2782.
    [121] Yin Y., Wang Z.Y., Mora-Garcia S., et al. BES1accumulates in the nucleus inresponse to brassinosteroids to regulate gene expression and promote stem elongation.Cell,2002.109(2):181-191.
    [122] Wang Z.Y., Nakano T., Gendron J., et al. Nuclear-localized BZR1mediatesbrassinosteroid-induced growth and feedback suppression of brassinosteroidbiosynthesis. Dev Cell,2002.2(4):505-513.
    [123] He J.X., Gendron J.M., Sun Y., et al. BZR1is a transcriptional repressor withdual roles in brassinosteroid homeostasis and growth responses. Science,2005.307(5715):1634-1638.
    [124] Nemhauser J.L., Hong F., Chory J. Different plant hormones regulate similarprocesses through largely nonoverlapping transcriptional responses. Cell,2006.126(3):467-475.
    [125] Robert S., Chary S.N., Drakakaki G., et al. Endosidin1defines a compartmentinvolved in endocytosis of the brassinosteroid receptor BRI1and the auxintransporters PIN2and AUX1. Proc Natl Acad Sci U S A,2008.105(24):8464-8469.
    [126] Che P., Lall S., Howell S.H. Developmental steps in acquiring competence forshoot development in Arabidopsis tissue culture. Planta,2007.226(5):1183-1194.
    [127] Popescu S.C., Popescu G.V., Bachan S., et al. Differential binding ofcalmodulin-related proteins to their targets revealed through high-density Arabidopsisprotein microarrays. Proc Natl Acad Sci USA,2007.104(11):4730-4375.
    [128] Nuruzzaman M., Manimekalai R., Sharoni A.M., et al. Genome-wide analysisof NAC transcription factor family in rice. Gene,2010.465(12):30-44.
    [129] Teng S., Keurentjes J., Bentsink L., et al. Sucrose-specific induction ofanthocyanin biosynthesis in Arabidopsis requires the MYB75/PAP1gene. PlantPhysiol.2005.139(4):1840-1852.
    [130] Wu Y., Llewellyn D.J., White R., et al. Laser capture microdissection and cDNAmicroarrays used to generate gene expression profiles of the rapidly expanding fibreinitial cells on the surface of cotton ovules. Planta,2007.226:1475-1490.
    [131] Liu L.J., Zhang Y.C., Li Q.H., et al. COP1-mediated ubiquitination ofCONSTANS is implicated in cryptochrome regulation of flowering in Arabidopsis.Plant Cell,2008.20(2):292-306.
    [132] Larkin M.A., Blackshields G., Brown N.P.,et al.ClustalW and ClustalX version2. Bioinformatics,2007.23(21):2947-2948.
    [133] Zhang X., Henriques R., Lin S.S., et al. Agrobacterium-mediated transformationof Arabidopsis thaliana using the floral dip method. Nat Protoc2006.1(2):641-646.
    [134] Higo K., Ugawa Y., Iwamoto M., Korenaga T. Plant cis-acting regulatory DNAelements (PLACE) database. Nucleic Acids Research,1999.27(1):297-300.
    [135] Hepworth S.R., Valverde F., Ravenscroft D., et al. Antagonistic regulation offlowering-time gene SOC1by CONSTANS and FLC via separate promoter motifs.EMBO J.2002.21(16):4327-4337.
    [136] Hong R.L., Hamaguchi L., Busch M.A., Weigel D. Regulatory elements of thefloral homeotic gene AGAMOUS identified by phylogenetic footprinting andshadowing. Plant Cell,2003.15(6):1296-1309.
    [137] Liu X., Zuo K., Zhang F., et al. Identification and expression profile ofGbAGL2, a C-class gene from Gossypium barbadense. J Biosci,2009.34(6):941-951.
    [138] Liu X., Zuo K.J., Xu J.T., et al. Functional analysis of GbAGL1, a D-lineagegene from cotton (Gossypium barbadense). J Exp Bot.2010.61(4):1193-1203.
    [139] Hosoda K., Imamura A., Katoh E., et al. Molecular structure of the GARPfamily of plant Myb-related DNA binding motifs of the Arabidopsis responseregulators. Plant Cell,2002.14(9):2015-2029.
    [140] Tucker-Kellogg L., Rould M.A., Chambers K.A., et al. Engrailed (Gln50-->Lys)homeodomain-DNA complex at1.9A resolution: structural basis for enhancedaffinity and altered specificity. Structure,1997.5(8):1047-1054.
    [141] Stevenson C.E., Burton N., Costa M.M., et al. Crystal structure of the MYBdomain of the RAD transcription factor from Antirrhinum majus. Proteins,2006.65(4):1041-1045.
    [142] Lohmann J.U., Hong R.L., Hobe M., et al. A molecular link between stem cellregulation and floral patterning in Arabidopsis. Cell,2001.105(6):793-803.
    [143] Geourjon C., Deléage G. SOPMA: significant improvements in proteinsecondary structure prediction by consensus prediction from multiple alignments.Comput Appl Biosci.1995.11(6):681-684.
    [144] Ohgishi M., Oka A., Morelli G., et al. Negative autoregulation of theArabidopsis homeobox gene ATHB-2. Plant J.2001.25(4):389-398.
    [145] Ko J.H., Beers E.P., Han K.H. Global comparative transcriptome analysisidentifies gene network regulating secondary xylem development in Arabidopsisthaliana. Mol Genet Genomics,2006.276(6):517-531.
    [146] Kim T.W., Wang Z.Y. Brassinosteroid signal transduction from receptorkinases to transcription factors. Annu Rev Plant Biol.2010.61(1):681-704.
    [147]方建平,洪军孟,赵左士.油菜素内酯对棉花增产效应的研究.中国棉花,1994.21(2):12-14
    [148]杨进,李晓玲.油菜素内酯对棉花结铃性的影响.荆门职业技术学院学报,2002.17(6):42-44.
    [149] Earley K.W., Haag J.R., Pontes O., et al. Gateway-compatible vectors for plantfunctional genomics and proteomics. Plant J.2006.45(4):616-629.
    [150] Miki D., Shimamoto K. Simple RNAi vectors for stable and transientsuppression of gene function in rice. Plant Cell Physiol.2004.45(4):490-495.
    [151] Schwab R., Ossowski S., Riester M., et al. Highly Specific Gene Silencing byArtificial MicroRNAs in Arabidopsis. Plant Cell,2006.18(5):1121-1133.
    [152] Ossowski S., Schwab R., Weigel D. Gene silencing in plants using artificialmicroRNAs and other small RNAs The Plant Journal,2008.53(4):674-690
    [153] Curtis M.D., Grossniklaus U. A gateway cloning vector set for high-throughputfunctional analysis of genes in planta. Plant Physiol.2003.133(2):462-469.
    [154] Seo P.J., Kim S.G., Park C.M. Membrane-bound transcription factors in plants.Trends Plant Sci.2008.13(10):550-556.
    [155] Higginson T., Li S.F., Parish R.W. AtMYB103regulates tapetum and trichomedevelopment in Arabidopsis thaliana. Plant J.2003.35(2):177-192.
    [156] Zhang Z.B., Zhu J., Gao J.F., et al. Transcription factor AtMYB103is requiredfor anther development by regulating tapetum development, callose dissolution andexine formation in Arabidopsis. Plant J.2007.52(3):528-538.
    [157] Meng C.M., Cai C.P., Zhang T.Z., Guo W.Z. Characterization of six novel NACgenes and their responses to abiotic stresses in Gossypium hirsutum L. Plant Science,2009.176(3):352-359.
    [158] Pu L., Li Q., Fan X., et al. The R2R3MYB transcription factor GhMYB109isrequired for cotton fiber development. Genetics,2008.180(2):811-820.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700