用户名: 密码: 验证码:
河流型饮用水水源地安全保障体系构建及实证研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,由于我国工业经济的迅猛发展和城镇化进程的提速,导致工业废水和城镇生活污水排放总量居高不下,对水环境构成了巨大压力,我国可饮用水资源短缺已成为不争的事实。针对河流型饮用水水源地供水量最大,供水水质最差,安全保障问题最为突出的现状,本研究按时间序列构建了涵盖选址评价、污染物监管与应急响应、保护区污染防控方案和已建水源地适宜性评价为主要内容的河流型饮用水水源地安全保障体系。
     针对我国多项重大饮用水源污染事故中暴露出的水源地在规划选址中存在的问题,提出并构建了河流型饮用水水源地选址评价体系;基于层次分析法(AHP)从法律制约、环境质量、水资源保障和环境风险四方面筛选出28个关键影响因子并对评价指标进行赋权和量化,为河流型饮用水水源地选址方案优选与决策提供依据。以牡丹江市饮用水水源地选址方案为实例,对构建的选址评价体系进行实证研究,数据表明,方案Ⅰ得分为92.78,方案Ⅱ得分为86.15,方案Ⅰ可作为优先推荐方案。
     针对河流型饮用水水源地受流域污染物排放影响大、累计健康风险高的特点,对现已实施的《生活饮用水卫生标准》、《地表水环境质量标准》和主要排水标准中涵盖的有机污染物进行对称性分析,指出标准体系中的污染物控制类别和浓度限值有较大差异,污染物监管存在盲区。利用固相萃取-气相色谱/质谱技术对松花江流域中某化工厂排水进行实证分析,检测数据表明,氯乙烷、1,2-二氯乙烷、1,1,2-三氯乙烷、甲苯、苯胺和三氯乙醛6项毒性有机污染物在标准体系中的重合性较差,验证了标准体系对污染物监控存在疏漏。结合河流型饮用水水源地的污染特征,提出重点污染物监测目录的建立方法用以指导日常环境监测,并建立包括事故报告、应急处置、应急技术和应急终止为内容的应急响应方案。
     针对河流型饮用水水源地存在流域空间跨度大、水文情况复杂、污染物迁移速度快的特点,提出了包括水源地保护区合理划分、污染物削减和污染物阻断为内容的水源地保护区污染防控方案。以牡丹江市主水源为实例,优化水源地一、二级及准保护区的划分;防控方案采用喷射环流耦合人工湿地技术对农村生活污水进行治理,沼气发酵技术对农村畜禽养殖污染物进行削减,滨水缓冲带技术对农村种植污染物进行阻断;综合污染防控方案的实施,可使保护内水源水COD削减2293.4 t/a,NH3-N削减318.9 t/a,TP削减46.1 t/a。
     针对环境要素变化对河流型饮用水水源地服务功能的综合影响,基于压力-状态-响应模型(Pressure-State-Response, PSR),从健康风险、水资源承载力和事故风险角度,提出并构建河流型饮用水水源地适宜性评价体系,对已建水源地是否有能力支撑城镇可持续发展做出适宜性评价。以中型工业城市—齐齐哈尔市的浏园水源地为实例,进行河流型饮用水水源地适宜性评价体系实证研究。研究表明,该水源地铬(六价)的最大致癌风险度为6.12×10-4,属较高健康风险度;未来5年工业用水保障率为43.7%,存在较大缺口;环境风险属中度风险;据此,给出水源地建设与管理建议,为管理决策提供依据。
In recent years, the rapid development of industrial economy and acceleration of urbanization have caused the discharging of industrial wastewater and urban sewage remain so stubbornly high, which makes water environment of China face an enormous pressure. The shortage of drinking source water has been an indisputable fact in China. In this study, the security system which cover site selection assessment, pollutants monitoring and emergency response, pollution prevention and control of protected zone and suitability assessment was established for River drinking source water being the largest supply quantity,the worst water quality and the most outstanding of security status.
     The assessment system of site selection for River source water was proposed and established for the problems of site selection exposed in a number of pollution incidents. Basing on Analytic-Hierarchy-Process (AHP), twenty-eight key factors were selected and empowered from legal constraints, environmental quality, water security and environmental risk. Taking the site selection plan of source water of Mudanjiang city as the case, the assessment system of site selection for River source water was implemented. Study showed that the score of planⅠwas 92.78 and the score of planⅡwas 86.15, planⅠcould be recommended as a priority program.
     The symmetry analysis of organic pollutants was made on Standards for drinking water quality, Environmental quality standards for surface water and major discharge standards against the characteristics of River drinking source water be impacted by the pollutant emissions of river basin and high cumulative health risk. Analysis shows there were different on type and concentration limits of pollutants in standards, and blind spot of monitoring. The draining water of some chemical plant in Songhua River basin was selected to make the organic pollutant ingredient examination by solid phase extraction-gas chromatograph-mass spectrometry (SPE-GC-MS). The data showed that six toxic organic pollutants including chloroethane, 1,2-dichloroethane, 1,1,2-trichloroethane, toluene, aniline and chloral were poor overlap in the standard system which proved the omission in pollutant monitoring. With pollution characteristics of River drinking source water, the methods of establishing key pollutant monitoring list was proposed to guide the daily environmental monitoring, and the emergency response procedures including accident reports, emergency treatment, emergency technology and emergency termination.
     The prevention and control program of source water protection zone including reasonable division of protection zone, reduction of point and non-point source pollution and pollutants blocking was proposed against the characteristics of fast transport of pollutants, large space and complicated hydrology. The main source water of Mudanjiang city as the case was studied which include determining the reasonable scope of protection zone, rural sewage treated by jet-loop coupled with constructed wetland technology, rural livestock pollution reducted by biogas fermentation and planting pollution blocked by riparian buffer zone. The source water can be reduced COD 2293.4 t/a, NH3-N 318.9 t/a, TP 46.1 t/a by the implementation of integrated pollution prevention and control programs, and source water quality will be greatly improved.
     With Pressure-State-Response (PSR) model,the suitability assessment system of River drinking source water was established by indicators of health risk, water capacity and environmental risk to evaluate the ability of source water supporting the sustainable development of cities against the combined effects of environmental factors changing for the service function . Taking Liuyuan source water of Qiqihaer city as an example, the study of suitability assessment system for of River source water was implemented. Study showed that the carcinogenic risk of chromium (VI) reached 6.12×10-4, that was a high degree of health risk; the industrial water security reached 43.7% in next 5 years, that was a wide gap ; environmental risk was moderate. According to conclution of indicators, the suggestion of construction and management about source water was given for management decisions.
引文
[1]环境保护部.中国环境状况公报[EB/OL]. (2010-5-31)[2011-3-15]. http://jcs.mep.gov.cn/hjzl/zkgb/2010hjzkgb/
    [2]郑丙辉,付青,刘琰.中国城市饮用水源地环境问题与对策[J].环境保护. 2007, 371(10):59~61.
    [3]李宗明.农村饮用水安全问题[J].中国发展观察,2005(10):19-21.
    [4]钱易.中国水污染控制对策之我见[J].环境保护,2007, 371(7):20-23.
    [5]蔺智深.中国政府向联合国环境署通报松花江水污染事件[N].人民日报,2005-11-27(003).
    [6]贺广华,周立耘.湖南妥善处理湘江镉污染[N].人民日报,2006-01-09(006).
    [7]刘兆权,韩瑜庆,黄海波.太湖蓝藻暴发,无锡自来水变质市民饮水吃紧[N].新华每日电讯,2007-05-31(001).
    [8]张锐,吴清泉.水利部门落实应急供水措施确保沿湖群众饮水安全[N].云南日报,2008-09-02(002).
    [9]杨树立.我省紧急处置盐城水污染[N].新华日报,2009-02-22(A01).
    [10]邱凉.城市水源地突发污染事故风险源项辨识与分析[J].人民长江,2008,39(28):19~20
    [11]聂明华,杨毅,刘敏.太湖流域水源地悬浮颗粒物中的PAH、OCP和PCB [J].中国环境科学, 2011,31(8):1347-1354.
    [12]张建永,朱党生,曾肇京,等.我国城市饮用水水源地分区安全评价与措施[J].水资源保护, 2011,27(1):1-5.
    [13]蒋海涛,容明知.建立长江下游饮用水源安全保障体系的若干思考[J].人民长江. 2011,42(2):39-41.
    [14]姜伟,黄卫.集中式饮用水水源地环境监控预警体系构建[J].环境监控与预警, 2011,12(6):38-40.
    [15]李燕,李恒鹏.基于WEAP模型的西苕溪流域水质安全保障方案[J].水科学进展,2010,21(5):665-673.
    [16]刘新,王东红,李静,等.中国饮用水中多环芳烃的分布和健康风险评价[J].生态毒理学报, 2011,6(2):207-214.
    [17] EPA. State Source Water Assessment and Protection Programs: FinalGuidance[R]. In: EPA 816-R-97e009. 1997.
    [18] Ministry for the Environment Newzealand. Amonitoring and grading framework for New Zealand drinking-watersourees[G/OL]. (2002-4-22)[2011-3-15]. http://www.mfe.govt.nz/
    [19] U.S.EPA. Index of Watershed Idieators:Anoverview[G/OL]. (2000-9-15)[2011-3-15]. http://www.epa.gov/iwi/iwi/
    [20]汤卫文.关于集中式供水水源的选址[J].人民珠江,2002(4):11-12.
    [21]周强陆,雍森.城市水源选址的风险评价[J].广州环境科学,1997,12(4):20-24.
    [22]黎坤,陈晓宏,江涛,等.多目标系统模糊优选理论在城市饮用水源地选址中的应用[J].中山大学学报(自然科学版),2005,44(4):120-123.
    [23] GB50013-2006.室外给水设计规范[S].北京:国家建设部,2006.
    [24]周金全.地表取水工程[M].北京:化工出版社,1986:3-8.
    [25]刘自放.水资源与取水工程[M].北京:中国建筑出版社,2000:113-119.
    [26]宋祖诏.取水工程[M].北京:中国水利水电出版社,2002:17-28.
    [27]李丽娟,梁丽乔,刘昌明,等.近20年我国饮用水污染事故分析及防治对策[J].地理学报,2007,62(9):917-924.
    [28]张勇,王东宇,杨凯. 1985-2005年中国城市水源地突发污染事件不完全统计分析[J].安全与环境学报,2006,6(2):79-84.
    [29]王东宇,张勇. 2006年中国城市饮用水源突发污染事件统计及分析[J].安全与环境学报,2007,7(6):150-155.
    [30] J.D. Plummer, S.C. Long. Monitoring source water for microbial contamination: Evaluation of water quality measures[J]. Water Res. 2007,41: 3716 -3728.
    [31] O. Savichtcheva , S. Okabe. Alternative indicators of fecal pollution: relations with pathogens and conventional indicators,current methodologies for direct pathogen monitoring, and future application perspectives[J]. Water Res., 2006,40: 2463–2476.
    [32] M.L. Jugan, L. Oziol, M. Bimbot, et al. In vitro assessment of thyroid and estrogenic endocrine disruptors in wastewater treatment plants, rivers and drinking water supplies in the greater Paris area (France) [J]. Science of the Total Environment, 2009(407): 3579-3587.
    [33] A.C. Johnson, R.J. Williams, P. Simpson, et al. What difference mightsewage treatment performance make to endocrine disruption in rivers? [J]. Environ. Pollut. , 2007(147):194-202.
    [34] Michael Goss, Charlene Richards. Development of a risk-based index for source water protection planning, which supports the reduction of pathogens from agricultural activityentering water resources[J]. Journal of Environmental Management, 2008(87):623-632.
    [35] R.J. Patrick. Uneven access to safe drinking water for First Nations in Canada: Connecting health and place through source water protection[J]. Health & Place, 2011(17):386-389.
    [36] M.B. Emelko, Uldis Silins, K.D. Bladon, et al. Implications of land disturbance on drinking watertreatability in a changing climate: Demonstrating the need for“source water supply and protection”strategies[J]. Water research, 2011(45):461 -472.
    [37] J.L. Ivey, R.C. de Loe¨, R.D. Kreutzwiser. Planning for source water protection in Ontario[J]. Applied Geography, 2006(26):192-209.
    [38] Andreas Lindhe, Lars Rose′n, Tommy Norberg, et al. Cost-effectiveness analysis of risk-reduction measures to reach water safety targets[J]. Water research, 2011(45):241 -253
    [39] J. Bartram, L. Corrales, A.Davison. Water Safety Plan Manual: Step-By-Step Risk Management for Drinking-Water Suppliers[R]. World Health Organization, Geneva, 2009:115-124.
    [40] Gitte Lemming, Peter Friis-Hansen, P.L. Bjerg. Risk-based economic decision analysis of remediation options at a PCE-contaminated site[J]. Journal of Environmental Management, 2010, 9(1):1169-1182.
    [41] U.S. EPA. Health Effects Assessment for Tetrachloroethylene[R]. EPA/600/8-89-096.1988.
    [42] U.S.EPA. Risk Assessment Guidance for Superfund. In: Human Health Evaluation Manual (Part A)[G]. 1989.
    [43] U.S. EPA. Estimating Potential for Occurence of DNAPL at Superfund Sites[R].1990.
    [44]黄奕龙,王仰麟,谭启宇,等.城市饮用水源地水环境健康风险评价及风险管理[J].地学前沿,2006,13(3):162-167.
    [45]陈炼钢,陈敏建,丰华丽.基于健康风险的水源地水质安全评价[J].水力学报,2008,39(2):235-239.
    [46]王东红,原盛广,马梅,等.饮用水中有毒污染物的筛查和健康风险评价[J].环境科学学报, 2007, 27(12): 1937-1943.
    [47]王丽萍,周晓蔚,李继清.饮用水源污染风险评价的模糊-随机模型研究[J].清华大学学报(自然科学版), 2008,48(9): 69-72.
    [48]孟伟,张远,郑丙辉.水环境质量基准、标准与流域水污染物总量控制策略[J].环境科学研究,2006,19(3):1-6.
    [49]田仁生,王业耀,李宇军.我国水污染物排放标准体系调整的比较探讨[J].上海环境科学,2002,21(8):481-484.
    [50]胡林林,周羽化.国家饮用水安全标准体系分析与建议[J].中国卫生监督杂志,2007,14(5):345-350.
    [51]程静,于红霞,金洪钧.生活与工业污水混合处理系统中关键毒物追踪[J].上海环境科学,2001,20(2):82-84.
    [52]张杰,李冬.城市水系统健康循环理论与方略[J].哈尔滨工业大学学报,2010,42(6):849-854
    [53]张迅.关于健全环境应急管理机制的若干思考[J].环境保护,2009(21):31-33.
    [54]付朝阳,金勤献.环境应急管理信息系统的总体框架与构成研究[J].中国环境监测,2007,23(5):82-86.
    [55]曾维华.中国环境应急响应体系建设的探讨[J].环境保护,2005(12):42-47.
    [56]熊长保,刘香.如何发挥环境应急监测在突发环境污染事故中的作用[J].江西化工, 2009(2):49-52.
    [57]蓝楠.中外饮用水源保护法律制度比较[J].国土资源,2006(11):62-64.
    [58]罗岳平,邱振华,李宁,等.美国生活饮用水安全法及其评价[J].净水技术,2001,20(4):5-7.
    [59] B.E.M.A. Mubaraki, D. Bromn. Wellhead protection area delineation using a coupled GIS and groundwater model[J]. Journal of Environmental Management, 1998(54):205-214.
    [60]李建新.德国饮用水水源保护区的建立与保护[J].地理科学进展,1998,17(4):88-97.
    [61] W.G. Knisel. CREAM: A Field-scale Model for Chemicals Runoffand Erosionfrom Agricultural Management System[C]. Proc. 13th Conf. Moldingand Simulation, 1982.
    [62] L.J. Lane. The Water Erosion Prediction Project: ModelOverview[C]. In Proc. Natl. Water Conf. ASCE., 1989.
    [63] Andrea Rinaldo, Enrico Bertuzzo, Gianluca Botter. Nonpoint source transport models from empiricism tocoherent theoretical frameworks[J]. Ecological Modelling, 2005(184):19-35.
    [64] T.J. Jackson, W.J. Rawls. SCS Curve Numbers from a LandsatData Base[J]. Water Resour., 1981(17): 857-861.
    [65] A.W. Thomas. Quantifying Concentrated-Flow Erosion on Cropland with Arial Photogrammetry[J]. J. Soil Water Con-serv., 1986(41):249-254.
    [66] J. Spooner. Determining the Statistical Sensitivity of the Water Quality Monitoring Program in the Taylor Creek-NubbinSlough, Florida Projec. [J] Lake Reservoir Manage., 1988(4):113-120.
    [67] T.J. Logan. Erosion Control Potential with Conservation Tillage in the Lake Erie Basin: Estimate Using the Universal Soil Loss Equation and the Land Resource Information System (LIRS) [J]. J. Soil Water Conserv., 1982(37): 50-58.
    [68] V. Vanek. Riparian Zone as a Source of Phosphorus for a Groundwater-Dominated Lake[J]. Water Res., 1991(25):409-416.
    [69] E.Daniel. Non-point Sources[J]. Water Environment Research, 1993, 65(4): 65-72.
    [70] M.T. Auer, S.L. Niehaus. Modeling Fecal Coliform BacteriaⅠ. Field and Laboratory Determination of Loss Kinetics[J].Water Res., 1993(27): 693-703.
    [71] A. Obrador. Simulation of Atrazine Persistence in Spanish Soil[J]. Pestic. Sci., 1993(37): 301-316.
    [72] H.N. Hayhoe Estimating Snowmelt Runoff Erosion Indices for Canada[J]. Soil Water Conserv. 1995(50): 174-184.
    [73] R. Lowance. A Conceptual Model for Assessing Ecological Risk to Water Quality[J]. Environ Manage., 1995(19): 239-247.
    [74] D.E. Line, S.W.Coffey. Targeting Critical Areas with Pollutant Runoff Models and GIS[R]. ASAE Paper 922015, Am.Soc. Agric. Eng., St. Joseph. Mich., 1992.
    [75] W. Xiang. Application of a GIS-Based Stream Buffer Generation Model toEnvironmental Policy Evaluation[J]. Environ. Manage., 1993(17): 817-824.
    [76] UllrichA, Volkm. Application of the soil and water assessment tool to predict the impact of alternative management practices on water quality and quantity[J]. AgriculturalWater Management, 2009(96): 1207-1217.
    [77] J. Giupponic , A. Fassio. A computer tool for sustainable use ofwater resources at the catchment scale[J]. Mathematics and Computers in Simulation, 2004, 64(1) :13-24.
    [78] Leviteh, Sallyh, J.Cour . Testing water demand management scenarios in a water-stressed basin in SouthAfrica: Application of the WEAP model[J]. Physics and Chemistry of the Earth, 2003(28): 779-786.
    [79] Jonghwa Ham, G. hun, Hyung-Joong Kim. Modeling the effects of constructed wetland on nonpoint source pollution control and reservoir water quality improvement[J]. Journal of Environmental Sciences, 2010, 22(6): 834-839.
    [80] Monika Schaffner, Hans-Peter Bader, Ruth Scheidegger. Modeling the contribution of point sources and non-point sources to Thachin River water pollution[J]. Science of the Total Environment, 2009(407): 4902-4915.
    [81] Robert Budd , Anthony geen , Kean S. Goh. Removal mechanisms and fate of insecticides in constructed wetlands[J]. Chemosphere, 2011(83):1581-1587.
    [82] David Elsaesser, Anne-Grete Buseth Blankenberg, Anna Geist. Assessing the influence of vegetation on reduction of pesticide concentration in experimental surface flow constructed wetlands: Application of the toxic units[J]. Ecological Engineering, 2011(37) :955-962.
    [83] C.R. Taylor, P.B. Hook, O.R. Steinc. Seasonal effects of 19 plant species on COD removal in subsurface treatment wetland microcosms[J]. Ecological Engineering, 2011, (37):703-710.
    [84] P. Kaparaju, J. Rintala. Mitigation of greenhouse gas emissions by adopting anaerobic digestion technology on dairy, sow and pig farms in Finland[J]. Renewable Energy, 2011(36) :31-41.
    [85] Azeem Khalid , Muhammad Arshad , Muzammil Anjum. The anaerobic digestion of solid organic waste[J]. Waste Management, 2011(31): 1737-1744.
    [86] P.K. Pandey , P. M. Ndegwa , L. Michelle Soupir. Efficacies of inoculant on the start up of anaerobic reactors treating dairy manure under stirred and unstirred conditions[J]. Biomass and Bioenergy, 2011(35):2705-2720.
    [87] V. Anbumozhi, J. Radhakrishnan , E. Yamaji. Impact of riparian buffer zones on water quality and associated management considerations[J]. Ecol. Eng., 2005,24 (5):517-523.
    [88] D.L. Correll. Principles of planning and establishment of buffer zones[J]. Ecol. Eng., 2005, 24 (5):433-439.
    [89] R. Hatano, T. Nagume, Hata, et al. Impact of nitrogen cycling on stream water quality in a basin associated with forest, grassland and animal husbandry, Hokkaido, Japan[J]. Ecol. Eng., 2005, 24 (5):509-515.
    [90]朱铁群.我国水环境农业非点源污染防治研究简述[J].农村生态环境,2000,16(3):55-57.
    [91]燕惠民,陈欣欣,谭济才.新时期农业环境监督管理探讨[J].农业环境与发展,2004, 21 (1): 36-38.
    [92]崔海英.农业面源污染的成因与治理措施[J].现代农业科技, 2008, (11): 356-358.
    [93]陶敏,贺锋,徐栋,等.氧调控下复合垂直流人工湿地脱氮研究[J].环境科学,2011,32(3):717-722.
    [94]刘树元,阎百兴,王莉霞,等.潜流人工湿地中氮磷污染物净化的分层效应研究[J].环境科学, 2011,32(3): 723-728.
    [95]冯琳,甘莉,王化,等.人工湿地设计及运行参数对挥发性烷基硫化物去除的影响[J].环境科学,2010,31(2): 345-351.
    [96]庞长泷,马放,邱珊,等.寒冷地区中小型城镇污水的处理实用技术[J].环境科学与技术,2010,33(12):192-195.
    [97]董泽琴,孙铁珩,李培军,等.悬浮填料床/地下渗滤系统深度处理生活污水[J].中国给水排水, 2006,22(8): 70-73.
    [98]郭茂新,孙培德.兼氧接触氧化与土地渗滤联合处理农村污水的研究[J].环境科污染与防治,2007,29(2):145-147.
    [99]周林强,刘柱成,管冬兴.蚯蚓在我国小城镇污水处理中的应用[J].中国资源综合利用,2008,26(11): 31-33.
    [100]易当皓,张杰,杨健.蚯蚓生物滤池的化学除磷可行性研究[J].中国给水排水,2008,24(19):32~36.
    [101]邢美燕,杨健,马小杰,等.蚯蚓生物滤池的硝化性能及其影响因素研究[J].中国给水排水,2008,24(3): 9-12.
    [102]郭敏,韩鹏飞.农业面源污染的成因及控制对策[J].河北农业科学,2009,13 (4): 93-96.
    [103]朱磊,卢剑波.沼气发酵产物的综合利用[J].农业环境科学学报,2007(26):176-180.
    [104]张克强.畜禽养殖业污染物处理与处置[M].北京:化学工业出版社,2004:42-51.
    [105]望凯军.畜禽养殖业污染防治技术与政策[M].北京:化学工业出版社,2004:22-26.
    [106]张颖.农业固体废弃物资源化利用[M].北京:化学工业出版社,2005:26-55.
    [107]阎丽凤,石险峰,于立忠,等.沈阳地区河岸植被缓冲带对氮、磷的削减效果研究[J].中国生态农业学报,2011,19(2):403-408.
    [108]杨帆,高大文,高辉.草本缓冲带优化配置对氮磷的去除效果[J].东北林业大学学报, 2011,39(2):57-59.
    [109]王敏,黄宇驰,吴建强.植被缓冲带径流渗流水量分配及氮磷污染物去除定量化研究[J].环境科学,2010,31(11): 2605-2611.
    [110]李林英,苏天杨,姚延梼.不同缓冲带植物在河岸缓冲带中所起的不同作用研究[J].天津农业科学, 2010,16(6):69-72.
    [111] Seong-Rin Lim,Sangwon Suh, Jung-Hoon Kim, et al. Urban water infrastructure optimization to reduce environmentalimpacts and costs[J]. Journal of Environmental Management, 2010( 91): 630-637.
    [112] O. Petit, C. Baron. Integrated water resources management: from general principles to its implementation by the state[J]. Nat.Resour., 2009(33):49-59.
    [113] S. Pollard, D. Toit. Integrated water resource management in complexsystems: how the catchment management strategies seek to achieve sustainabilityand equity in water resources in South Africa[J]. Water SA., 2009(34): 671-680.
    [114]崔凤军.城市水环境承载力及其实证研究[J].自然资源学,1998,13(1):58-62.
    [115]黄薇,陈进.流域水资源评价广义指标体系研究[J].长江科学学院院报,2005,22(4):22-25.
    [116]田文苓.区域水资源承载力与评价指标体系研究[J].海河水利,2003,(2):42-43.
    [117]袁鹰,甘泓,汪林,等.水资源承载能力三层次评价指标体系研究[J].水资源与水工程学报,2006,17(3):13-17. [118 ]水利部.全国城市饮用水水源地安全保障规划[R].北京:水利部水利水电规划设计总院,2006.
    [119]环境保护部.全国饮用水水源地基础环境调查及评估报告[R].北京:中国环境规划院,2008.
    [120]朱党生,张建永,程红光,等.城市饮用水水源地安全评价(Ⅰ):评价指标和方法[J].水利学报,2010,41(7):778~785.
    [121]朱党生,张建永,程红光,等.城市饮用水水源地安全评价(Ⅱ):评价指标和方法[J].水利学报, 2010,41(7):914-920.
    [122]逄勇,徐秋霞.水源地水污染风险等级判别方法及应用[J].环境监控与预警, 2009,1(2):1-4.
    [123]沙鲁生.农村饮用水水源地安全保障与水污染防治[J].中国水利,2009,(11):26-28.
    [124]魏世孝,周献中.多属性决策理论方法及其在C3I系统中的应用[M].北京:国防工业出版社,1998:23-46.
    [125]刘家学.对指标属性有偏好信息的一种决策方法[J].系统工程理论与实践,1998,(2):54-57.
    [126]戴文战.基于三层BP网络的多指标综合评估方法及应用[J].系统工程理论与实践,1999,(5):29-34.
    [127]陈守煜.工程模糊集理论与应用[M].北京:国防工业出版社,1998:55-68.
    [128]李崧,邱微,赵庆良,等.层次分析法应用于黑龙江省生态环境质量评价研究[J].环境科学,2006,27(5):1031-1034.
    [129]洪继华,宋依兰.层次分析法在水环境规划中的应用[J].环境科学与技术, 2000,(1):35-39.
    [130]邓寅生,邓东丰,唐敏.层次分析法在生命周期评价中的改进应用研究[J].环境科学与技术,2009,32(6):169-171.
    [131] U. Simon, R. Bruggemann, S. Pudenz. Aspects of decision support in water management -example Berlin and Potsdam (Germany) Spatially differentiated evaluation[J] . Water Research, 2004, 38(7):1809-1816.
    [132] S.K. Caroline, J. Suzanne, L. Teunis. Comparing uncertain alternatives for a possible airport island location in the North Sea[J]. Ocean & Coastal Management, 2003,46(11): 1031-1047.
    [133] GB3838-2002.地表水环境质量标准[S].北京:国家环境保护部,国家质量监督检验检疫总局,2002.
    [134] GB5749-2006.生活饮用水卫生标准[S].北京:国家卫生部,2006.
    [135] SL/Z322-2005.建设项目水资源论证导则[S].北京:国家水利部,2005.
    [136]洪继华,宋依兰.层次分析法在水环境规划中的应用[J].环境科学与技术,2000,(1):32-39.
    [137]刘恒,耿雷华,陈晓燕.区域水资源可持续利用评价指标体系的建立[J].水科学进展,2003, 14(3):265-270.
    [138]赵彦伟,杨志峰.城市河流生态系统健康评价初探[J].水科学进展. 2005, 16(3):349-355.
    [139] L.S. Birnbaum, D.F. Staskal. Brominated flame retardants:cause for concern?[J]. Environmental Health Perspectives, 2004,(112):9-17.
    [140]杨红莲,袭著革,闫峻.新型污染物及其生态和环境健康效应[J].生态毒理学报, 2009,4(1):28-34.
    [141]邵晓玲,马军,文刚.松花江流域某自来水厂中内分泌干扰物的调查[J].环境科学,2008,29(10):2723-2728.
    [142]孙艳,黄璜,胡洪营,等.污水处理厂出水中雌激素活性物质浓度与生态风险水平[J].环境科学研究, 2010,23(12):1487-1493.
    [143] GB18918-2002.城镇污水处理厂污染物排放标准[S].北京:国家环境保护部,国家质量监督检验检疫总局,2002.
    [144] GB8978-1996.污水综合排放标准[S].北京:国家质量监督检验检疫总局,1996.
    [145]陈艳卿.论国家水污染物排放标准体系调整思路与当前工作重点[J].中国环境管理, 2003(22):1-3.
    [146] CJ3082-1999.污水排入城市下水道水质标准[S].北京:住房和城乡建设部, 1999.
    [147]郁建栓.固相萃取-气相色谱/质谱法测定地面水中半挥发性有机物[J].岩矿测试, 2006,25(4):331-333.
    [148]肖珂,王勇,路鑫,等.固相微萃取-气相色谱/质谱测定工业废水中痕量有机物的研究[J].色谱, 2003, 21(1):76-80.
    [149]国家环境保护部.国家污染物环境健康风险名录[M].北京:中国环境科学出版社,2009:11-15.
    [150]李建新.我国生活饮用水水源保护区的问题研究[J].环境保护科学,2000,26(100):21-22.
    [151]汪林,朱京海,刘家斌.饮用水水源保护区划分问题探讨[J].环境保护科学,2005,31(131):67-69.
    [152]常德政,袁金华,王有乐.河流型水源保护区划分方法探讨[J].环境科学与技术,2010,33(2):181-183.
    [153]贾晗,吴若菁,黄婧,等.生物法处理畜禽养殖污水的研究现状与展望[J].水处理技术,2008,37(4):7-10.
    [154]陈明新.畜禽养殖场污染防治技术[J].湖北畜牧兽医,2010,8:4~5.
    [155] C. Tong. Review on environmental indicator research[J]. Research On Environmental Science, 2000,13(4):53-55.
    [156]常元勋.环境污染对人体健康的影响[J].中国全科医学,2006, 9(13): 1080~1081.
    [157]汪泉观.基础毒理学[M].北京:化学工业出版社,1991:23-35.
    [158] U.S.EPA. Risk assessment guidance for superfund volume i human health evaluation manual (Part A)[R]. 1989:193-198.
    [159]高继军,张力平,黄圣彪,等.北京市饮用水源水重金属污染物健康风险的初步评价[J].环境科学,2004,25(2):47-50.
    [160]胡二邦.环境风险评价实用技术、方法和案例[M].北京:中国环境科学出版社,2009:153-456.
    [161]肖满意,董翊立.山西省水资源承载能力评估[J].山西水利科技,1998,(123):5-11.
    [162]薛小杰,惠泱河,黄强.城市水资源承载力及其实证研究[J].西北农业大学学报, 2000,28(6):135-139.
    [163]王煜,杨立彬,张新海.西北地区水资源可利用量及承载能力分析[J].人民黄河,2002,24(6):10-12.
    [164]毛小苓,刘阳生.国内外环境风险评价研究进展[J].应用基础与工程科学学报,2003,11(3):266-272.
    [165]毕军,杨洁,李其亮.区域环境风险分析和管理[M].北京:中国环境科学出版社,2006:120-142.
    [166]刘晓钟,李中州.齐齐哈尔市区地下水现状及开发利用[J].黑龙江环境通报,2009,33(2):37-38.
    [167]陈明致,高敏,柳木森,等.松花江志[M].吉林:吉林人民出版社, 2002:45-55.
    [168] U.S.EPA. Integrated risk information system [EB/OL]. (2006-11-21) [2011-3-15]. http://www.epa.gov/iris/index.html.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700