用户名: 密码: 验证码:
原小檗碱类生物碱作用差异的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
原小檗碱类生物碱是一种异喹啉类生物碱,广泛存在于多种属植物体内,其药理作用广泛,其中抗菌、镇痛和降糖作用是临床常用的药理作用。我们通过实验观察原小檗碱型生物碱小檗碱、黄连碱、巴马汀、药根碱、延胡索乙素及罗通定的抑菌作用、镇痛作用和抗糖尿病作用的差异,并分别从理论上初步分析了其作用机理。
     1.抑菌作用
     采用平皿扩散法,研究了原小檗碱类生物碱对G~+菌(金黄色葡萄球菌、表皮葡萄球菌)、G~-菌(痢疾杆菌、肺炎克雷伯杆菌)标准菌株的抑菌作用。对于G~+菌金黄色葡萄球菌和表皮葡萄球菌,小檗碱的抑菌作用是巴马汀的3倍,是药根碱的10倍左右;对于痢疾杆菌的抑菌作用,小檗碱是黄连碱1.4倍,是巴马汀的10倍;对肺炎克雷伯菌仅小檗碱和黄连碱有抑菌作用,且小檗碱的抑菌作用是黄连碱的1.9倍。
     分析结构表明,原小檗碱的季铵结构是抗菌活性所必须的结构,C2C3位的亚甲二氧基能增强抗菌活性。原小檗碱立体结构与四环素类和喹诺酮类结构叠合较好,提示作用机理有相似之处,可能通过抑制细菌核蛋白体30S亚基或DNA回旋酶A产生抑菌作用。配体-受体对接研究结果表明,原小檗碱与DNA回旋酶B和sortase B不匹配。
     2.镇痛作用
     给药1小时后,小鼠腹腔注射0.6%醋酸引起炎性疼痛,立即记录15分钟小鼠扭体次数,并计算药物对扭体反应的抑制率。罗痛定、延胡索乙素、小檗碱、巴马汀及黄连碱对扭体反应的抑制率分别为98.4,92.7,40.8,26.7,11.0%。罗通定、延胡索乙素和小檗碱的作用有统计学差异。分别测定给药前和单次灌
    
     天津医科大学硕士研究生学位论灰
    胃给药后30,60,120分钟的热板致痛阂值。罗通定和延胡索乙素在50mg/kg能
    明显延长小鼠舔足时间,但小果碱、巴马汀和黄连碱150mg/kg对小鼠舔足时
    间仍没影响。
     理论计算表明,原小聚碱四氢化后(延胡索乙素,罗通定),B一C环的二面
    角以及N一CS,N一C14的键长发生改变,由此引起立体结构发生明显改变,镇痛
    作用显著提高。四氢原小璧碱的镇痛作用与其它化合物不同,可能主要通过中
    枢起作用。而小聚碱等原小栗碱季胺盐与环氧酶对接有合理性,提示可能是通
    过抑制环氧酶而产生镇痛作用。分子动力学模拟显示,原小聚碱化合物与环氧
    酶2主要是通过范德华作用结合,而且2,3位及9,10位的取代基在与受体结合
    时贡献不同,这可能与其对化学性疼痛的抑制率不同相关。
     3.降糖作用
     尾静脉快速注射四氧喀咙SOm叭g制造糖尿病小鼠模型,连续5天灌胃
    给药,末次给药2小时后测空腹血糖。小璧碱、黄连碱Zoomg/kg对四氧嚓咙
    小鼠有降糖作用,且二者的降糖作用与二甲双肌比较差别无显著性印>0 .05),巴
    马汀则无降糖作用。
     原小聚碱化合物CZ,C3位的亚甲二氧基可能与其降糖作用有关。原小聚
    碱化合物与胰岛素增敏剂受体PPAR一丫对接结果与实验结果有一定的可比性,
    认为原小聚碱可能通过PPAR一Y受体发挥降糖作用。进一步的分子动力学模拟
    显示,原小栗碱主要是通过范德华相互作用与PPAR一Y蛋白产生作用。
     总之,原小璧碱类生物碱结构差异很小,而作用面很广,作用差异较大,
    对构效关系的研究是一个很大的挑战。我们结合理论和实验研究,找到了一些
    可能的作用规律,但要真正阐明作用规律,还需要大量更深入的理论和实验研
    究。
Protoberberine alkaloids, a kind of isoquinolone alkaloids, exist in several genera of the plant families. They have multiple pharmacological activities, especially the antibacterial, analgesic and anti-diabetic activities are the main effects that widely applied in clinic. The difference of the antibacterial, analgesic and anti-diabetic activities among berberine, palmatine, coptisine, jatrorrhizine, corydalis B and rotundine was studied. The mechanism of their function was analyzed by theoretical studies on molecular levels.
    1. Antibacterial activity
    The antimicrobial activity of protoberberines agaist the stardard strains of Gram-positive bacterium(s. aureus and s. epidermidis ) and Gram-negative bacterium (S. flexneri, E.coli and K.pnermoniae ) were tested using disc method with azithromycin and gentamicin as reference in vitro. The results showed that corydalis B exhibited no inhibitory activity against G+ and G- bacterium. The activities of berberine agaist S. aureus and S. epidermidis were about 3 and 10 times greater than that of berberine and jatrorrhizine respectively. Berberine was found to be 1.4 and 10 times more active aganist S. flexneri than coptisine and palmatine respectively. For K .pnermoniae, only berbeine and coptisine have antibacterial activities and the activity of berberine is 1.9 times than that of coptisine.
    
    
    
    Structures analysis revealed that quaternary nitrogen is essential to antibacterial activity and the methylenedioxy group at the C2 and C3 is required for enhanced activity. The 3D structures of berberine , tetracyclines and quinolones have been compared and overlapped well ,which indicated probably their antibacterial mechanism is identical . The mechanism of antimicrobial of protoberberines maybe relate to the inhibition of 3 OS ribosome or DNA gyraseA . Molecular docking revealed that protoberberine alkaloids were not appropriate to DNA gyrase B or sortase B.
    2. Analgesic activity
    After 1 hour the drugs were administrated, the mice were intraperitoneally injected with 0.2ml of 0.6% acetic acid solution. The numbers of writhing reflex were counted for 15 minutes after the acetic acid injection. Rotundine , corydalis B and berberine could inhibit writhing movements of mice and the inhibitory rate of rotundine ,corydalis B, berberine ,palmatine and coptisine is 98.4, 92.7, 40.8, 26.7, 11.0% respectively. Licking paw time was measured before administration and 30,60,120min after single orally administrated. At dose of 50mg/kg ,rotundine and corydalis B had effects on mice licking paw time, but berberine, palmatine and coptisine have no effect at dose of 150mg/kg.
    Rotundine and corydalis B of tetrahydroprotoberberines showed strong analgesic activity induced by chemical and heat stimulation. Theoretical calculation demonstrated that the dihedral angle of ring B and C and the bond lengths of N-C8, N-C14 strongly changed after reduction of the ring C, which lead to the three-dimensional structure changed strongly, thus the analgesic activity increased . The analgesic mechanism of tetrahydroprotoberberines was different to the other compounds, probably it is concerned to the central mechanism. The docking of other prtoberbennes with cyclo-oxygenase is rational ,which suggested the other alkoloids
    
    
    of the proberberines maybe act as the cyclo-oxygenase inhibitors. Molecular dynamics simulations had been performed in Hyperchem 7.0, the results showed the protoberines mainly combined to Cox2 by Van der Waals , and the effects of substituent groups of 2,3 and 9,10 have different effects during ligand-receptor docking, which maybe relat to the analgesic activity induced by acetic acid.
    3. Antidiabetic activity
    Diabetic mice models were made after iv injected alloxan at dose of 80mg/kg. After orally administrated for 5 days , the blood samples were collected 2h after administration for determining fasting blood glucose with glucose oxidase method. Berberine and coptisine have anti-diabetic activities at dose of 200mg/kg. There was no significant difference of lowering glucose among b
引文
1.耿东升.黄连素的抗炎与免疫调节作用.解放军药学学报,2000,16(6):317-320
    2.黄伟民,徐尚忠,徐有秋.黄连素抗心律失常机理---电压钳制术观察延迟激活钾离子流的变化.中华心血管病杂志,1992,20(5):310-312
    3. Küpeli E, Kosar M, Yesilada E, et al. A comparative study on the antiinflammatory antinociceptive and antipyretic effects of isoquinoline alkaloids from the roots of Turkish Berberis species. Life Sci, 2002,72(6):645-657.
    4. Ko W H, Yao X Q, Lau C W, et al. Vasorelaxant and antiproliferative effects of berberine. Eur J Pharmacol. 2000, 399(2-3):187-196
    5. Lizuka N, Miyamoto K, Okita K, et al. Inhibitory effect of Coptidis Rhizoma and berberine on the proliferation of human esophageal cancer cell lines. Cancer Lett ,2000:148(1): 19-25
    6.吴寿金,赵泰,秦永祺.现代中草药成分化学.北京:中国医药科技出版社,2001,826-829
    7. Cemakova M, Kostalova D. Antimicrobial activity of berberine-- a constituent of Mahonia aquifolium. Folia Microbiol (Praha), 2002,47(4):375-378
    8. Okunade AL, Hufford CD, Richardson MD ,et al. Antimicrobial properties of alkaloids from Xanthorhiza simplicissima. Journal of Pharmaceutical Sciences, 1994, 83(3):404-406
    9. Iwasa K, Kamigauchi M, Ueki M, et al. Antibacterial activity and struture-activity relationships of berberine analogs. Eur J Med Chem, 1996,31:469-478.
    10. Iwasa K, Kamigauchi M, Suglura M,et al. Antimicrobial activity of some 13-alkayl-substituted protoberberinium salts. Planta Med, 1996, 63:196-198.
    11. Vollekova A, Kost'alova D, Kettmann V, Toth J. Antifungal activity of Mahonia aquifolium extrat and its major protoberberine alkaloids. Phytother Res.2003,17(7):834-837.
    12.季宇彬.中草药有效成分药理与其应用.哈尔滨:黑龙江科学技术 1994,69-80
    
    
    13. Iwasa K, Nanba H, Lee DU, et al. Structure-activity relationships of protoberberines having antimicrobial activity. Planta Med, 1998, 64:748-751.
    14. Iwasa K, Lee DU, Kang SI,et al. Animicrobial activity of 8-alkayl- and 8-phenyl-substituted berberines and their 12-bromo derivatives. J Nat Prod, 1998,61 (9): 1150-1153.
    15. Hong SW, Kim SH, Jeun JA, et al. Atimicrobial activity of 9-O-acyl -and-9-O-benzoyl-subsituted berberrubines. Planta Med,2000, 66:361-363
    16.徐叔云,卞如濂,陈修.药理实验方法学.第三版.北京:人民卫生出版社,2001,1654-1657。
    17.徐叔云,如濂,陈修,药理实验方法学.第三版.北京:人民卫生出版社,2001.1647-1651
    18. Erdem Yesilada, Esra Küpeli. Berberis crataegina DC. root exhibits potent anti-inflammatory, analgesic and febrifuge effects in mice and rats. Journal of Ethnopharmacology, 2002, (79):237-248
    19.徐叔云,卞如濂,陈修.药理实验方法学.第三版.北京:人民卫生出版社,2001,882-883
    20.陈奇.中药药理研究方法学.北京:人民卫生出版社,1996,377-378
    21.陈其明,谢其智.黄连及小檗碱降血糖作用的研究.药学学报,1986,21(6):401-406
    22.倪艳霞,刘安张,高云峰等.黄连素治疗Ⅱ型糖尿病60例疗效观察与实验研究.中西结合杂志,1988,8(12):711-713
    23.童金花.黄连素片治疗Ⅱ型糖尿病49例临床观察.新中医,1997,29(3):33-34。
    24.陆付耳,冷三华,屠庆年等.黄连解毒汤与黄连素对2型糖尿病大鼠葡萄糖和脂质代谢影响的比较研究.华中科技大学学报(医学版),2002,31(6):662-665
    25.徐叔云,卞如濂,陈修.药理实验方法学.第三版.北京:人民卫生出版社,2001.1517-1519
    26. Hansch C, Fujita T. ρ- σ- π analysis. A method for the correlation of biological activity and chemical structure. J Am Chem Soc, 1964,
    
    86(8): 1616-1626.
    27. Cramer RD Ⅲ, Patterson DE, Bunce JD. Effect of Shape on Binding of Steroids to Carrier Proteins. J Am Chem Soc, 1988, 110(18):5959-5967
    28. Golbraikh A, Bernard P, Chretien JR. Validation of protein-based alignment in 3Dquantitative structure-activity relationship with COMFA model. Eur J Med Chem, 2000,35(1):123-136
    29. Palomer A, Pascual J, Cabre F, et al. Derivation of pharmacophore and COMFA models for leukotriene D(4) receptor antagonists of the quinolinyl(bridged)aryl series. J Med Chem, 2000,43(3):392-400.
    30. Bohm M, Strzebecher J, Kleb G. Three-dimensional quantitative structure -activity relationship analyses using comparative molecular field analysis and comparative molecular similarity indices analysis to elucidate selectivity differences of inhibitors binding to trypsin, thrombin, and factor Xa. J Med Chem, 1999, 42(3):458-477
    31. Makhija MT, Kulkarni VM. Molecular electrostatic potentials as input for the alignment of HIV-1 integrase inhibitors in 3D QSAR.J Comput Aided Mol Des 2001,15(11):961-978
    32.陈凯先,蒋华良,嵇汝运.计算机辅助药物设计---原理、方法及应用.上海:上海科技出版社,2000,255-277
    33. Kuntz I D. Structure-based Strategies for Drug Design and Discovery. Science, 1992,257(5073): 1078-1082
    34. Syby16.5 Manual. Tripos Inc. 1699 South Hanley Rd, St Louis, MO,USA
    35. Olson AJ, Goodsell DS. Automated Docking and the Search for HIV Protease Inhibitors. SAR QSAR Environ Res, 1998,8(3-4):273-285
    36. Klebe G, Mietzner T. Correlation of Crystal Data to Analyze and predict ligand/receptor interactions. In: Jones D W, ed. Organic Crystal Chemistry. Oxford: Oxford University Press, 1992,135
    37. Judson R. Genetic Algorithms and their Use in Chemisty. In: Lipkowitz K B, Boyd D B, ed. Reviews in computational chemistry, Vol 10. New York: VCH Publishers, 1997.
    
    
    38. Bhm HJ. The development of a simple empirical scoring function to estimate the binging constant for a protein-ligand complex of known three-dimensional structure. J Comput Aided Mol Des, 1994,8(3):243-256
    39. Klebe G, Mietzner T. A fast and efficient method to generate biologically relevant conformations. J Comput Aided Mol Des, 1994, 8(5):583-606
    40. Moon J B. Howe W J. Computer Design of bioactive molecules : A method for receptor-based de novo ligand design. Proteins, 1991, 11 (4):314-328
    41. Sun DX, Abraham SN, Beachey EH. Influence of berberine sulfate on synthesisi and expression of pap fimbrial adhesin on uropathogenic Escherichia coll. Antimicrobial Agents and Chemotherapy 1988, 32(8): 1274-1277
    42. Sun DX, Courtney HS, Beachey EH. Berberine sulfate block adherence of Streptococcus Pyogenes to epithelial cells ,fibronectin,and hexadecane. Antimicrobial agents and chemotherapy, 1988,32(9): 1370-1374
    43. Li TK, Bathory E, LaVoie EJ et al. Human topoisomerase Ⅰ poising by protoberberines: potential roles for both drug-DNA and drug-enzyme interaction. Biochemistry 2000,39(24):7107-7116
    44. Yoshinori Kobayashi, Yoshinori Yamashita, Noboru Fufii, et al. Inhibitors of DNA topoisomerase Ⅰ and Ⅱ isolated from the Coptis Rhizomes. Planta Med 1995,61:414-418
    45. Krishnan P, Bastow KF. The 9-position in berberine analogs is an important determinant of DNA topoisomerase Ⅱ inhibition. AntiCancer Drug Des 2000, 15(4):255-264
    46.赵长春,于俊生,章杰兵.药物与DNA的相互作用研究1小檗碱作为DNA的发光开关及Ph值的影响.无机化学学报,1997,13(3):325-329
    47. Soo-Hwan Kim, Dong-Sun Shin, Mi-Na Oh, et al. Inhibition of the bacterial surface protein anchoring transpeptidase sortase by isoquinoline alkaloids. Biosci Biotechnol Biochem, 2004, 68(2):421-424
    48.金国章,郑秀风,胥彬.延胡索的药理研究Ⅶ.延胡索乙素旋光异构体的中枢作用.生理学报,1964,27(1):47-58
    49.金国章,周启霆,陈丽娟,俞蕾平等.四氢原小檗碱同类物(THPB)对DA受
    
    体的新药理作用。中国科学基金,2000,(5):300-304
    50. Fukuda K, Hibiya Y, Muton M, et al. Inhibition by berberine of cyclooxygenase -2 transcriptional activity in human colon cancer cells. Journal of Ethnopharmacology 1999,66(2):227-233.
    51.周丽斌、扬颖、唐金凤等.小檗碱对脂肪细胞糖代谢的影响.上海第二医科大学学报,2002,22(5):412-414
    52.陈其明,谢明智.小檗碱对正常小鼠血糖调节的影响.药学学报 1987,22(3):161-165
    53.殷峻,胡仁明,唐金风等.小檗碱的体外降螗作用.上海第二医科大学学报2001.21(5):425-428。
    54. Debanath D, Kumar GS, Nandi R et al. Interaction of berberine chloride with deoxyribonucleic acids: evidence for base and sequence specificity. Indian J Biophys, 1989,26(4):201-208,
    55. Saran A, Srivastava S, Coutinho E ,et al. 1H NMR investigation of the interaction of berberine and sanguinarine with DNA. Indian J Biochem Biophys, 1995, 32(2): 74-77.
    56. Debnath D, Suresh Kumar G, Maiti M. Circular dichroism studies of the structure of DNA complex with berberine. J Biomol Struct Dyn, 1991,9:61-79
    57. Nandi R, Debnath D, Maiti M. Interactions of berberine with poly(A) and Trna. Biochim biophys acta. 1990,1049(3):339-342
    58. Gong GQ, Zong ZX, Song YM. Spectrofluorometric determination of DNA and RNA with berberine. Spectrochim Acta A Mol Biomol Spectrosc, 1999, 55A (9): 1903-1907
    59. Pilch DS, Yu c, Makhey D ,et al,. Minor groove-directed and intercalative ligand-DNA interactions in the poisoning of human DNA topoisomerase Ⅰ by protoberberine analogs. Biochemistry, 1997,36(41): 12542-12553
    60. Mazmanian SK, Liu G, Ton-That H, et al. Staphylococcus aureus sortase mutants defective in the display of surface proteins and in the pathogenesis of animal infections. Proc Natl Acad Sci USA, 2000, 97(10): 5510-5515
    61. Ilangovan U, Ton-That H, Iwahara J, et al.Clubb. Structure of sortase, the
    
    tranpeptidase that anchors proteins to the cell wall of Staphylococcus aureus, PANS, 2001,98(11):6056-6061.
    62. Ton-That H, Mazmanian SK, Alksne L, et al. Anchoring of surface proteins to the cell wall of Staphylococcus aureus. Cysteine 184 and histidine 120 of sortase form a thiolate-imidazolium ion pair for catalysis. J Biol Chem,2002,277(9):7447-7452.
    63. Huang X, Aulabaugh A,Ding W, et al. Kinetic mechanism of Staphylococcus aureus sortase SrtA. Biochemisitry, 2003, 42 (38): 11307-11315.
    64. Zong Y, Mazmanian SK, Schneewind O, et al. The structure of sortase B, a cysteine transpeptidase that tethers surface protein to the Staphylococcus aureus cell wall. Structure (Camb): 2004,12 (1): 105-112
    65. Bierne H, Garandeau C, Pucciarelli MG, et al. Sortase B,a new class of sortase in Listeria monocytogenes. J Bacteriol. 2004, 186 (7): 1972-1982.
    66. Mazmanian SK,Ton-That H,Su k.et al. An iron-regulated sortase anchors a class of surface protein during Staphylococcus aureus pathogenesis. PNAS,99(4):2293-2298
    67. Kuo CL, Chi CW, Liu TY. The anti-inflammatory potential of berberine in vitro and in vivo. Cancer Lett. 2004,203 (2): 127-137
    68.台卫平,罗和生,黄连素抑制结肠癌细胞还氧合酶-2的作用.中华内科杂志,2003,42(8):558-560
    69. Hu JY, Jin GZ. Effect of tetrahydropalmatine analogs on Fos expression induced by formalin-pain. Acta Pharmacol Sin, 1999, 20(3): 193-200
    70. Hu JY, Jin GZ. Superspinal D2 receptor involved in antinociception induced by 1-tetrahydropalmatine. Acta Pharmacol Sin, 1999, 20:715-719
    71. Storlin LH, Oakes ND, Pan D, et al. Syndromes of insulin resistance in the rat. Inducement by diet and the amelioration with benfluorex. Diabetes,1993, 42: 457-460.
    72. Kraegen Ew, Clark PW. Jenkins AB, et al. Development of muscle insulin resistance after liver insulin resistance in high fat-fed rat. Diabetes 1991, 40: 1397-1403.
    
    
    73.高从荣,张家庆,黄庆玲.黄连素增加胰岛素抵抗大鼠模型胰岛素敏感性的实验研究.中西医结合杂志1997,17(3):162-164.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700