用户名: 密码: 验证码:
外加菌剂对养殖水体水质及其微生物群落结构的影响初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水产养殖是人为控制下繁殖、培育和收获水生动植物的生产活动。虽然全世界淡水、海水养殖都还有巨大的发展潜力,但目前遇到的水质污染问题已经非常严重且开始制约其自身发展。
     本文构建了养殖水体模型,通过监测水质化学指标和16S rDNA-PCR技术,研究四株细菌对养殖水体水质的净化作用。具体研究如下:
     (1)研究了光合细菌、枯草芽孢杆菌、干酪乳杆菌和短小芽孢杆菌这四种微生态菌剂对模型水质化学指标的影响。
     研究发现四种菌剂对氮素的影响明显。在四株菌中,枯草芽孢杆菌和干酪乳杆菌会使得TN在实验全程高于CK;四株菌均能在不同程度下降低N02,相对相符均在45%以上;各菌在加入后对水体的N03-的变化趋势影响为先升后降,其中,光合细菌对NO3-的最高降幅可达90%;枯草芽孢杆菌和干酪乳杆菌在投菌后短期内会升高水体NH4+,但都会随即马上降低,并最终相对降幅分别达到在83.8%和73%。
     对磷素影响效果,除枯草芽孢杆菌会升高水体中TP和SOP含量外,其它3株菌均能明显降低磷素含量,它们对TP的相对降幅均在55%以下。短小芽孢杆菌能有效降低SOP,最高可达到93.1%。
     光合细菌和干酪乳杆菌会在短时间内增大pH的波动,但波动范围在3%以内;另外,除枯草芽孢杆菌对COD无影响外,其它3株菌均能不同程度的降低COD含量,其中光合细菌和短小芽孢杆菌对COD的降低能力最强。
     (2)研究了光合细菌和枯草芽孢杆菌最适投菌浓度。
     光合细菌的最适投菌浓度在104个菌/mL,此浓度下能很好的降低NO2-等氮素和COD;去除水体中氮素则应以104个菌/mL的浓度来投加枯草芽孢杆菌最适,但若以降低COD为主要目的则应以105个菌/mL浓度投加该菌剂最适。
     (3)研究了104个菌/mL浓度下光合细菌对水体微生态种群丰富度的影响。
     DGGE电泳图的分析结果显示,光合细菌能增加水体中微生物的种类;而种群丰富度曲线结果也显示,投加光合细菌菌剂能明显增加水体微生物种群多样性。从而增强水体自身的抗逆性和自我修复能力。
Aquaculture is under the control of human breeding, cultivation and harvest of aquatic animals and plants production. While the world fresh water and marine aquaculture still has such huge potential for development, but has encountered very serious water pollution problem and began to restrict its own development.
     We build a model of aquaculture water; four strains of bacteria on the water quality of aquaculture water purification mechanism were studied by chemical indicators of water quality monitoring and 16S rDNA-PCR technology. Specific studies are as follows:
     (1) The impacts of the four strains----photosynthetic bacteria, Bacillus subtilis, Lactobacillus casei and Bacillus pumilus microbial agents on the aquaculture water quality have been studied separately.
     Results show that the impact of four agents can affect nitrogen significantly. Bacillus subtilis and Lactobacillus casei will make the TN increased in the whole experiment; four strains in the varying degrees decreased NO2-, were relatively consistent 45% or more; after adding these four strains, the NO3- of water were all first increased then decreased, and photosynthetic bacteria NO3- maximum decline was about 90%; Bacillus subtilis and Lactobacillus casei in the investment increased water NH4+ shortly after dosing then immediately reduced and eventually reached the relative decline of 83.8% and 73% separately.
     To the water phosphorus, in addition to the Bacillus subtilis experiment TP and SOP will be increased water content, the other 3 strains could reduce the phosphorus content, and their relative decline of TP were 55% less. Bacillus pumilus can effectively reduce the SOP, can reach 93.1%.
     Photosynthetic bacteria and Lactobacillus casei enhanced the pH value fluctuation in a short time, and the range under 3%. In addition, with the exception of Bacillus subtilis had no effect on the COD, the other 3 strains could reduce the COD content of different degree, in which photosynthetic bacteria and Bacillus pumilus strongest reduction of COD.
     (2) Got the optimal dosing concentration of photosynthetic bacteria and Bacillus subtilis.
     Photosynthetic bacteria's, optimal dosing concentration is 104 bacteria/mL; when dosing concentration of Bacillus subtilis is 10 bacteria/mL were best for removal of nitrogen, but if the primary purpose is reducing COD it should be 105 bacteria/mL.
     (3) The impact after dosing 104 bacteria/mL photosynthetic bacteria on the microbial population has been studied.
     DGGE electrophoresis analysis showed that photosynthetic bacteria increased the types of microorganisms in water; and species richness curve also showed that adding photosynthetic bacteria can significantly increase the microbial diversity of water. Thereby, adding agents can enhance the water resistance and its ability to repair itself.
引文
1.陈孔生.养殖池中亚硝酸盐中毒及防治对策[J].科学养鱼,2003:39.
    2.丁雷等.芽胞菌对养鱼水质影响的研究[J].淡水渔业,1999,29(10):7-10.
    3.方耀林.淡水鱼类种质资源人工生态库理化环境现状研究[J].淡水渔业.1998,28(3):37-39.
    4.傅利剑,郭丹钊,史春龙.碳源及碳氮比对异养反硝化微生物异养反硝化作用的影响[J].农村生态环境,2005,21(2):42-45.
    5.高明辉.亚硝酸盐在水生动物体内的吸收机制及蓄积的影响因素[J].南方水产,2008,4(4):73-79.
    6.顾宗濂.环境微生物工程[M].南京:南京大学出版社,1998.
    7.国家环保局《水和废水监测分析方法》编委会.水和废水监测分析方法.第3版.北京:中国环境科学出版社,1989.
    8.国家科技部·浅海滩涂资源开发[M]·北京:海洋出版社,1999.
    9.何国民,卢婉娴,刘豫广,等·海湾网箱渔场老化特征分析[J]·中国水产科学,1997,4(5):32-37.
    10.何苗,张晓健.厌氧—缺氧/好氧工艺与常规活性污泥法处理焦化废水的比较[J].给水排水,1997,23(6):31-33.
    11.何望,杨品红,曾艳君.亚硝酸盐对河蟹蚤状幼体及蟹苗毒性试验[J].内陆水产,1997,7:5-6.
    12.胡家文,姚维志.养殖水体富营养化及其防治[J].水利渔业,2005,25(6):74-76.
    13.胡菊香,吴生桂,邹清等.生物水净化剂对养殖池塘水质的调控作用初探[J].水利渔业,2003,23(6):40-41.
    14.计新丽等.海水养殖自身污染机制及其对环境的影响[J].海洋环境科学,2000,19(4):66-71.
    15.李长慧.光合细菌的营养价值及在养殖业中的应用[J].青海大学学报(自然科学版),2001,19(2):34-35.
    16.李军,杨秀山,彭永臻.微生物与水处理[M].北京:化学工业出版社,2002,378-380.
    17.刘双江等.采用光合细菌控制水体中亚硝酸盐的研究[J].环境科学,1995,16(6):21-23.
    18.沈耀良,王宝贞.废水生物处理新技术-理论与应用[M].北京:中国环境科学出版社,1999
    19.舒廷飞,温琰茂,陆雍森等.网箱养殖N、P物质平衡研究——以广东省哑铃湾网箱养殖研究为例[J].环境科学学报,2004,24(6):1046-1052.
    20.隋大鹏.微生态制剂对南美白对虾生长和非特异性免疫影响因子的研究.[硕士学位论文].青岛:中国海洋大学图书馆,2003.
    21.王歆鹏,陈坚,华兆哲等.硝化菌群在不同条件下的增殖速率和硝化活性[J].应用与环境生物学报,1999,5(1):64-68.
    22.王彦波,许梓荣,邓岳松.养殖中氨氮和亚硝酸盐氮的危害及治理[J].饲料工业,2002,23(12:46-48).
    23.王艳萍,谭大凤.影响硝化抑制剂效力的因素[J].青海大学学报,1996,14(2):36-44.
    24.魏泰莉,余瑞兰,聂湘平等.水中亚硝酸盐对彭泽鲫血红蛋白及高铁血红蛋白的影响[J].大连水产学院学报,2001,16(1):67-71.
    25.吴明晶,李学勇.池塘水体中亚硝酸盐预防的主要措施[J].黑龙江水产,2005(113):18-22.
    26.吴伟.应用复合微生物制剂控制养殖水体水质因子初探[J].湛江海洋大学学报,1997,17(1):16-20.
    27.吴中华,刘昌斌,刘存仁等.中国对虾慢性亚硝酸盐和氨中毒的组织病理学研究[J].华中师范大学学报(自科学版),1999,33(1):119-122.
    28.薛勇.养殖池中亚硝酸盐高的原因及解救措施[J].吉林畜牧兽医,2005(9):55.
    29.杨红生,周毅.滤食性贝类对养殖海区环境影响的研究进展[J].海洋科学,1998(2):42-44.
    30.姚传付.养鱼慎防亚硝酸盐[J].北京水产,2006(2):44.
    31.张平录.养殖水体中氮元素的转化与铵氮、亚硝酸盐的危害和防治[J].渔业致富指南,2006,11:45.
    32.张小玲.反硝化菌DNF409水体脱氮规律研究及其narG基因的中断.[硕士学位论文].武汉:华中农业大学图书馆,2006
    33.赵斌,何绍江.微生物学实验[M].北京:科学出版社,2002.
    34.郑平,冯孝善.废物生物处理理论和技术[M].杭州:浙江教育出版社,1997.
    35.钟全福,林岗.麦饭石对养殖水体水质调控的研究[J].福建师范大学学报,2001,17(2):118-120.
    36.周佳,刘文睿,黄遵锡.高原湖泊光合细菌处理养殖污水的初步研究[J].水利渔业,2006,26(2),70-72.
    37. Alleman, J.E. et al., Resting Cell Activity Nitrifying Microorganisms[J]. Water Research,1991(4),23-34.
    38. Arbiv R, Jvan R. Performance of atreatment systemforinorganic nitrogen removal in intensive aquaculture systems[J]. Aquacultural Engineering,1995(14):189-203.
    39. Blears MJ et al., DNA fingerprinting of Cryptosporidium parvum isolates using amplified fragment length polymorphism (AFLP), Journal of Parasitology,2000(86): 838-841.
    40. Breton J, Berks BC. Characterization of the paramagnetic iron-containing redox centers of Thiosphaera pantotropha periplasmic nitrate reductase. FEBS Lett,1994, 345:76-80.
    41. David Botstein et al., Construction of a Genetic Linkage Map in Man-Using Restriction Fragment Length Polymorphisms, American Society of Human Genetics, 1980(32):314-331.
    42. Farrelly V., F. A. Rainey, and E. Stackebrandt, Effect of genome size and RNA genecopy number on PCR amplification of 16S rRNA genes from a mixture of bacterial species, Appl Environ Microbiol 1995(61):2798-2801.
    43. Jensen, M. A., and N. Straus, Effect of PCR conditions on the formation of heteroduplex and single-stranded DNA products in the amplification of bacterial ribosomal DNA spacer regions, PCR Methods Apply,1993(3):186-194.
    44. Lewis W M. Morris D P. Toxicity of nitrite to fish:a review[J]. Trans.Am. Fish.1986. 115:183-195.
    45. Maarit Niemi, R., I. Heiskanen, K. Wallenius, and K. Lindstrom, Extraction and purification of DNA in rhizosphere soil samples for PCR-DGGE analysis of bacterial consortia, Journal Microbiol, Methods 2001(45):155-165.
    46. Martin-Laurent, F., L. Philippot, S. Hallet, R. Chaussod, J. C. Germon, G. Soulas, and G. Catroux, DNA extraction from soils:old bias for new microbial diversity analysis methods[J], Appl Environ Microbiol,2001(67):2354-2359.
    47. Mulder, Vandegraaf LA. Anaerobic ammonium oxidation discovered in a denitrification fluidized bed reactor. FEMS Microbiol Ecol,1995(16):177-183.
    48. Muyzer, G, E. C. de Waal, and A. G. Uitterlinden, Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA, Appl Environ Microbiol,1993(59): 695-700.
    49. Naoki Takaya. Applied denitrifying bacteria that produce low Levels of nitrous oxide. Applied and environment microbiology,2003,3152-3457.
    50. Picard, C., C. Ponsonnet, E. Paget, X. Nesme, and P. Simonet, Detection and meration of bacteria in soil by direct DNA extraction and polymerase chain reaction [J]. Appl Environ Microbiol,1992(58):2717-2722.
    51. Qiu, X., L. Wu, H. Huang, P. E. McDonel, A. V. Palumbo, J. M. Tiedje, and J. Zhou, Evaluation of PCR-generated chimeras, mutations, and heteroduplexes with 16S rRNA gene-based cloning, Appl Environ Microbiol [J],2001(67):880-887.
    52. Thompson Fabiano Lopes, Abreu Paulo Cesar, Wasielesky Wilson. Importance of biofilm for water quality and nourishment in intensive shrimp culture [J]. Aqua,2002, 203(3-4):263-278.
    53. U. S. EPA. Quality Criteria for Water,1976.
    54. Williams et al., DNA polymorphisms amplified by arbitrary primers are useful as genetic-markers [J], Nucleic Acids Research,1990(18):6531-6535.
    55. Willum J L. Use of biomass units in Shannon's formula [J]. Ecology,1968,49(1): 153-156.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700