用户名: 密码: 验证码:
复杂曲面高性能侧铣加工技术与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国航空航天、国防、运载和能源等领域不断拓展,一些起主导作用的精密复杂零件对加工的效率、成形的精度以及成品率等指标提出了更高要求。这些曲面类零件多需利用五轴加工中心进行加工。然而,传统加工方式大都从几何学层面规划刀具路径、设定进给速度,忽视了加工过程的动力学性能。实际中,铣削加工不仅仅是一个几何过程,也是物理过程。保证零件几何形状、成形表面精度的同时,维持加工系统的稳定、最大限度提高材料去除率,已经成为高性能加工的基本要求。为此,本文以高性能侧铣加工为研究对象,对其中的铣削力预测、被加工表面几何误差的计算和切削稳定性等关键技术进行了研究。
     1、建立刀具坐标系、旋转坐标系以及工件坐标系,分析了刀具跳动产生的原因及相关参数,给出了包含刀具跳动的一般机床坐标变换基础;进而以通用整体刀具为例给出了刀具切削刃上一点由刀具坐标系到旋转坐标系的坐标变换,并由此推导出了含跳动的刀具切削刃绕机床主轴旋转形成旋转体表面,同时给出了刀具切削刃上一点由旋转坐标系到工件坐标系的机床坐标变换。
     2、建立了适用于任意五轴加工轨迹的铣削力模型。依据刀位点、刀位矢量等刀位路径信息以及进给率、主轴转速等工艺参数信息建立了刀具切削刃真实空间扫掠面;综合考虑加工参数以及跳动的影响,建立基于刀具切削刃真实空间扫掠包络面的精确瞬时未变形切削厚度模型;结合该瞬时未变形切削厚度模型,建立高性能侧铣加工五轴任意轨迹铣削力模型,并推导出了侧铣加工铣削力系数识别模型,给出了刀具/工件组合的侧铣切削力系数曲线;以上述模型为基础,对跳动参数进行了分析和识别,给出了相应的实验结果,并对本文提出的铣削力精确模型和传统铣削力模型之间的差别进行了分析;利用平底立铣刀进行了一系列三轴、五轴加工实验用以验证本铣削力预测模型的精确性和有效性。
     3、建立了源于跳动的被加工表面几何误差求解模型并提出相应刀位补偿方法。结合跳动求解出刀位路径面上任何位置处刀具切削刃旋转体表面任一点处的速度矢量和法矢量,并利用速度矢量和法矢量间的空间位置关系以及包络原理推导出了刀具沿刀位路径的扫掠包络面;进而通过对该扫掠包络面和被加工表面最近距离分析,得到了源于刀具跳动的被加工表面几何误差;在此基础上,分析了刀具跳动各参数及刀具切削刃个数对上述被加工表面几何误差的影响规律;并利用最小二乘刀位规划原理对刀位路径面进行优化,结果表明该刀位规划方法能有效降低源于跳动的被加工表面几何误差。
     4、提出计算动态铣削系统稳定域的三阶全离散方法。在分析了动态切削系统颤振产生原因的基础上,建立了切削系统颤振的数学模型,并利用三阶全离散法对该数学模型进行求解,同时讨论了三阶全离散法的收敛性能,得到了其动态侧铣稳定性叶瓣图;考虑到实际加工中跳动诱导的侧铣颤振的多重再生性,建立了基于多重再生效应的颤振数学模型,并利用上述三阶全离散法基本原理计算跳动存在时侧铣动态加工的稳定性叶瓣图,得到了跳动参数对稳定叶瓣图的影响规律。
     最后以一典型结构比例件为例,对提出的被加工表面几何误差以及相应的刀位规划方法和切削稳定性叶瓣图计算方法进行了实例验证。可以发现,利用本文提出的方法可以有效降低被加工表面质量的同时,提高材料去除率,满足高性能加工基本要求。
With the development of aerospace, national defense, carrier and energy fields, some key workpieces with high accuracy need to improve machining efficiency and yield. These workpieces are machined using five-axis machining center. However, most classical tool path planning and feed rate scheduling methods only consider the machining process from a purely geometric perspective, and rarely take into account kinematic and mechanical properties of machine systems. Actually, the machining process is not only a geometry machining process, but also a physical machining process. Ensuring geometry accuracy, maintaining dynamic machining process stability and improving machining efficiency have been basic requirements of high performance machining. Therefore, taking high performance peripheral milling as research objective, predicting milling force, calculating geometric error and computing of machining process stability are studied.
     1、Introducing the cutter coordinate system, rotational coordinate system and workpiece coordinate system, the reason inducing the cutter runout is analyzed and the kinematic transformation basic rules of general machine are given. The transformation process of a point on the cutter edge from cutter coordinate system to the rotational coordinate system is derived. Subsequently, the rotational surface of the cutter edge about the spindle axis of machine is introduced. Simultaneously, the transformation principle of a point from rotational coordinate system to the workpiece coordinate system is derived.
     2、Cutting force prediction model, which is suitable for the five axis peripheral milling, is built. Using cutter location information and process parameters, the real sweep surface of cutter edge is processed. Then, the instantaneous uncut chip thickness model is developed. On the basis of this, the cutting force model is built, and then a coefficient detective model is proposed. Subsequently, cutter runout parameters are identified using the cutting force model and experimental results are showed. The predicted values computed by the proposed cutting force prediction model are compared with that of the classical method. Results show that the method in this paper is of higher accuracy. Finally, a series of three and five axis peripheral cutting force experiment are conducted to verify the validity, efficiency and accuracy of the proposed method.
     3、The geometry error induced by the cutter runout are introduced and the corresponding tool path compensation method is presented. Combining the general situation of the cutter runout, an arbitrary point's velocity vector and normal vector on the cutter edge's rotational surface about spindle axis are calculated. Utilizing the relationship between these two vectors and the envelope principle, the envelope-sweep surface along tool path is computed. Comparing the envelope surface with the machined surface, the geometry error induced by the cutter runout is calculated. Then the effect of the cutter runout parameters and the number of the cutter edges on the geometry error is studied. Finally, the error induced by the cutter runout is reduced significantly using the proposed tool path planning method.
     4、A new third-order full-discretization method to compute stability lobes of dynamic milling system is presented. Based on the mathematical model of chatter, the stability lobes of dynamic machining system are calculated using the above method and the convergence property of the method is discussed. Becsuse of the existence of the cutter runout, the chatter is not induced by single regenerative effect but multiple regenerative effect. Thus this paper gives the mathematical model of multiple regenerative effect and calculates conresponding stability lobes. Finally, the influence law of the cutter runout on the stability lobes is studied.
     Taking a typical scale workpiece as an example, the effectiveness of tool path planning method and stability prediction method are verified, and then the results are used to guide the machining process of the component. The results show that the accuracy of machined surface and material removal rate are improved. This meets the requirement of the high performance machining.
引文
[1]S Aykut, M Golcu, S Semiz, et al. Modeling of cutting forces as function of cutting parameters for face milling of satellite 6 using an artificial neural network[J]. Journal of Materials Processing Technology,2007,190(1-3):199-203.
    [2]W Hao, X Zhu, X Li, et al. Prediction of cutting force for self-propelled rotary tool using artificial neural networks[J]. Journal of Materials Processing TeFchnology,2006,180(1-3):23-29.
    [3]S-T Seong, K-T Jo, Y-M Lee. Cutting force signal pattern recognition using hybrid neural network in end milling[J]. Transactions of Nonferrous Metals Society of China,2009,19, Supplement 1(0):s209-s214.
    [4]S Tamas. Cutting force modeling using artificial neural networks[J]. Journal of Materials Processing Technology,1999,92-93(0):344-349.
    [5]任斐.基于坐标映射的复杂曲面五轴加工关键技术研究[D].大连:大连理工大学机械工程学院,2010.
    [6]石光漪,罗比特·虎克.力学与实践[J].1981,3(3):70-73.
    [7]刘亚君,夏伟.金属切削理论发展的历史回顾[J].2001,23(4):72-74.
    [8]Ernst H, Merchant M E. Chip format ion, friction and high quality machined surface surface treatment metals, American Society for Metals[C]. New York,1941, 29(2):299-305.
    [9]Lee L E, Shaffer D W. The theory of plastic applied to a problem of machining[J] Transactions of the ASME, journal of applied mechanics.1951,18(4):405-413.
    [10]Shaw M C. Metal cutting principles[M]. Oxford:Clarendon Press,1984.
    [11]Oxley P L B, Humphreys A G, Larizadeh A. The influence of rate of strain hardening in machining[J]. Proceeding of institute of mechanical engineers,1961 (175):881-891.
    [12]Moufki A, Molinari A, Dudzinski D. Mordeling of orthogonal cutting with a temperature dependent friction law[J]. Journal of Mechanics and the physics of solids,1998,46(10):2103-2138.
    [13]Molicari A, Estrii Y, Mercier S. Dependent of the coefficient of friction on the sliding conditions on high velocity range[J]. Journal of tribology,1999, 12(1):35-41.
    [14]E J A Armarego, A J R Smith, V Karri. Mechanics of cutting model for simulated oblique rotary tool cutting processes[J]. Journal of Materials Processing Technology,1991,28(1-2):3-14.
    [15]E J A Armarego, S Wiriyacosol. Oblique machining with triangular form tools-Ⅱ. Experimental investigation[J]. International Journal of Machine Tool Design and Research,1978,18(3):153-165.
    [16]E J A Armarego, S Wiriyacosol. Oblique machining with triangular form tools — Ⅰ. Theoretical investigation[J]. International Journal of Machine Tool Design and Research,1978,18(2):67-80.
    [17]R H Brown, E J A Armarego. Oblique machining with a single cutting edge[J]. International Journal of Machine Tool Design and Research,1964,4(1):9-25.
    [18]H-Y Feng, N Su. A Mechanistic Cutting Force Model for 3D Ball-end Milling[J]. Journal of Manufacturing Science and Engineering,2001,123(1):23-29.
    [19]A E Bayoumi, G Yucesan, L A Kendall. An Analytic Mechanistic Cutting Force Model for Milling Operations:A Theory and Methodology[J]. Journal of Engineering for Industry,1994,116(3):324-330.
    [20]H J Fu, R E DeVor, S G Kapoor. A Mechanistic Model for the Prediction of the Force System in Face Milling Operations[J]. Journal of Engineering for Industry,1984, 106(1):81-88.
    [21]E Budak. Analytical models for high performance milling. Part I:Cutting forces, structural deformations and tolerance integrity[J]. International Journal of Machine Tools and Manufacture,2006,46(12-13):1478-1488.
    [22]J H Ko, D-W Cho.3D Ball-End Milling Force Model Using Instantaneous Cutting Force Coefficients[J]. Journal of Manufacturing Science and Engineering,2005,127: 1-12.
    [23]Yusuf ALtinatas数控技术与制造自动化[M].北京:化工工业出版社,2002.
    [24]W A Kline, R E DeVor. The effect of runout on cutting geometry and forces in end milling[J]. International Journal of Machine Tool Design and Research,1983, 23(2-3):123-140.
    [25]W A Kline, R E DeVor, J R Lindberg. The prediction of cutting forces in end milling with application to cornering cuts[J]. International Journal of Machine Tool Design and Research,1982,22(1):7-22.
    [26]Y Sun, F Ren, D Guo, et al. Estimation and experimental validation of cutting forces in ball-end milling of sculptured surfaces[J]. International Journal of Machine Tools and Manufacture,2009,49(15):1238-1244.
    [27]I Lazoglu. Sculpture surface machining:a generalized model of ball-end milling force system[J]. International Journal of Machine Tools and Manufacture,2003, 43(5):453-462.
    [28]Lee P, Altintas Y. Prediction of ball end milling forces from orthogonal cutting data[J]. International Journal of Machine tools and manufacture, 1996,30:1059-1072.
    [29]Budak E, Altintas Y, Armarego E J A. Prediction of milling force coefficients from orthogonal cutting data[J]. ASME Journal of Engineering for Industry, 1996,118:216-224.
    [30]Wei Z C, Wang M J, Zhu J N, et al. Cutting force prediction in ball end milling of sculptured surface with z-level contouring tool path[J]. International Journal of Machine tools and Manufacture,2011,15(5):482-432.
    [31]Wei Z C, Wang M J, Han X G, et al. Cutting force prediction in generalized pocket machining[J].The international Journal of Advanced Manufacturing Technology,2010, 50(5):449-458.
    [32]Yang M, Park H. The prediction of cutting force in ball-end milling[J]. International Journal of Machine tools and Manufacture,1991,31:45-54.
    [33]Tai C, Fuh K. A Predictive force model in ball-end milling including eccentricity effects[J]. The international Journal of Advanced Manufacturing Technology, 1994,34:959-979.
    [34]Tai C, Fuh K. Model for cutting force prediction in ball-end milling[J]. The international Journal of Advanced Manufacturing Technology,1995,35:511-534.
    [35]Feng H Y, Meng C H. The Predict ion of Cutting Force in the Ball-End Mill ing Process-I: Model Formulation and Model Building Procedure[J]. The international Journal of Advanced Manufacturing Technology,1994,34:997-710.
    [36]A Lamikiz, L N Lopez de Lacalle, J A Sanchez, et al. Cutting force estimation in sculptured surface milling [J]. International Journal of Machine Tools and Manufacture,2004,44(14):1511-1526.
    [37]M Wan, W-H Zhang. Systematic study on cutting force modelling methods for peripheral milling[J]. International Journal of Machine Tools and Manufacture, 2009,49(5):424-432.
    [38]W S Yun, D W Cho. An Improved Method for the Determination of 3D Cutting Force Coefficients and Runout Parameters in End Milling[J]. The International Journal of Advanced Manufacturing Technology,2000,16(12):851-858.
    [39]W-S Yun, D-W Cho. Accurate 3-D cutting force prediction using cutting condition independent coefficients in end milling[J]. International Journal of Machine Tools and Manufacture,2001,41(4):463-478.
    [40]J H Ko, D-W Cho.3D Ball-End Milling Force Model Using Instantaneous Cutting Force Coefficients[J]. Journal of Manufacturing Science and Engineering,2005,127(1): 1-12
    [41]Martellotti M E. An Analysis of the Milling Process[J]. Transaction of ASME, 1941,63:677-700.
    [42]Martellotti M E. An Analysis of the Milling Process, Part 2:Down Milling [J]. Transaction of ASME,1941,63:677-700.
    [43]Yucesan G, Altintas Y. Prediction if Ball End Milling process[J]. ASME Journal of Engineering for Industry,1996,118:95-103.
    [44]Sim C, Yang M. The Prediction of the cutting force in ball-end milling with a flexible cutter[J]. International Journal of Machine Tools and Manufacture,1993, 33:267-284.
    [45]Feng H Y, Meng C H. A flexible ball-end milling system model for cutting force and machining error prediction[J]. ASME Journal of Manufacturing Science and Engineering,1996,118:461-469.
    [46]冯志勇.一种新的铣削力模型[J].天津大学学报,1998,3:314-320.
    [47]康永刚,王仲奇,吴建军,et al立铣切削力分类研究及精确铣削力模型的建立[J],航空学报,2007,28(2):481-489.
    [48]冯志勇.圆锥螺旋铣刀的铣削力仿真[J].天津大学学报,1998,4:447-453.
    [49]张廷贤,刘胜利,屈文然.铣削力建模与仿真[J].天津大学学报,1991,3:73-80.
    [50]G M Kim, P J Cho, C N Chu. Cutting force prediction of sculptured surface ball-end milling using Z-map[J]. International Journal of Machine Tools and Manufacture, 2000,40(2):277-291.
    [51]W Ferry, Y Altintas. Virtual Five-Axis Flank Milling of Jet Engine Impellers:Part 1---Mechanics of Five-Axis Flank Mill ing[J]. ASME Conference Proceedings,2007, 2007(42975):339-353.
    [52]Roth R, Gray P, Ismail F et al. Mechanistic modeling of 5-axis milling using an adaptive and local depth buffer[J]. Computer-Aided Design,2007,30:302-312.
    [53]G Dongming, R Fei, S Yuwen. An Approach to Modeling Cutting Forces in Five-Axis Ball-End Milling of Curved Geometries Based on Tool Motion Analysis[J]. Journal of Manufacturing Science and Engineering,2010,132(4):041004-041008.
    [54]M Wan, W H Zhang, G H Qin, et al. Efficient calibration of instantaneous cutting force coefficients and runout parameters for general end mills[J]. International Journal of Machine Tools and Manufacture,2007,47(11):1767-1776.
    [55]M Wan, W-H Zhang, J-W Dang, et al. New procedures for calibration of instantaneous cutting force coefficients and cutter runout parameters in peripheral milling[J]. International Journal of Machine Tools and Manufacture,2009,49(14):1144-1151.
    [56]D Jacobson, B Fussell, R Jerard. Tool Runout Estimation Using Feed Force Spectral Components [J]. ASME Conference Proceedings,2006,2006(47624):1113-1119.
    [57]X P Li, H Z Li. Theoretical modelling of cutting forces in helical end milling with cutter runout[J]. International Journal of Mechanical Sciences,2004,46(9): 1399-1414.
    [58]S Bedi, S Mann, C Menzel. Flank milling with flat end milling cutters[J]. Computer-Aided Design,2003,35(3):293-300.
    [59]K Sheltami, S Bedi, F Ismail. Swept volumes of toroidal cutters using generating curves[J]. International Journal of Machine Tools and Manufacture,1998,38(7): 855-870.
    [60]朱利民,郑刚,张小明,et al.刀具空间运动扫掠体包络面建模的双参数球族包络方法 [J].机械工程学报,2010(05):145-149+157.
    [61]D Blackmore, M C Leu, L P Wang. The sweep-envelope differential equation algorithm and its application to NC machining verif ication[J]. Computer-Aided Design,1997, 29(9):629-637.
    [62]Z C Chen, W Cai. An Efficient, Accurate Approach to Representing Cutter-Swept Envelopes and Its Applications to Three-Axis Virtual Milling of Sculptured Surfaces[J]. Journal of Manufacturing Science and Engineering,2008,130(3): 031004-031012.
    [63]方向,彭群生.多轴数控加工中刀具包络面的计算[J].计算机辅助设计与图形学学报,2000(08):609-613.
    [64]宫虎,五坐标数控加工运动几何学基础及刀位规划原理与方法的研究[D],大连:大连理工大学机械工程学院,2005.
    [65]黄泽华,王小椿,蔡永林.五坐标数控铣削加工刀具扫描体的求解[J].北京交通大学学报,2010(01):149-153.
    [66]ABDEL-MALEK K, YEH H J. Geometric representat ion of the swept volume using Jacobian rank-deficiency conditions[J]. Computer Aided Design,1997,29:457-468.
    [67]BLACKMORE D, LEU M C, WANG Liping. The sweep-envelope differential equation algorithm and its application to NC-machining verification [J]. Computer Aided Design,1997,29:629-637.
    [68]MARTIN R, STEPHENSON P. Sweeping of three-dimensional objccts[J]. Computer Aided Design,1990,22:223-234.
    [69]ELBER G, KIM MS. Offsets, sweeps, and Minkowski sums[J]. Computer Aided Design, 1999,31:163-173.
    [70]ROTH D, BEDI S, ISMAIL P, et al. Surface swept by a toroidal cutter during 5-axis machining[J]. Computer Aided Design,2001,33:57-63.
    [71]E Aras. Generating cutter swept envelopes in five-axis milling by two-parameter families of spheres[J]. Computer-Aided Design,2009,41(2):95-105.
    [72]L Zhu, X Zhang, G Zheng, et al. Analytical Expression of the Swept Surface of a Rotary Cutter Using the Envelope Theory of Sphere Congruence[J]. Journal of Manufacturing Science and Engineering,2009,131(4):041017-041017.
    [73]Wang W P, Wang K K. Geometric modeling for swept volume of moving solids[J]. IEEE Comput Graph Appl,1986,6(12):8-17.
    [74]Leu M C, Wang L P, and Blackmore D, A Verification Program for 5-Axis NC Machining With General APTTools[J]. CIRP Ann.,1997,46(1):419-424.
    [75]Leu M C, Wang L P, and Blackmore D. Simulation of NC Machining With Cutter De flection by Modeling Deformed Swept Volume[J]. CIRP Ann.,1998,47(1):441-446.
    [76]CHUNG Y C, PARK J W, SHIN H, et al. Modeling the surface swept by a generalized cutter for NC-verification [J]. Computer Aided Design,1998,30:587-593.
    [77]Hu Z J, Ling Z K. Swept Volumes Generated by the Natural Quadric Surfaces[J]. Comput. Graphics,1996,20 (2):263-274.
    [78]王哲,王知行,钟诗胜.刀具扫描体生成新算法及在数控加工仿真中的应用[J].机械工程学报,2001(01):28-31.
    [79]徐芝琦,陈志杨,叶修梓,et a1.通用刀具扫描体的快速造型[J].机械工程学报,2009(09):136-143.
    [80]严思杰,周云匕,陈学东.五轴NC加工中刀具运动包络面的计算[J].中国机械工程,2005,16(23):2120-2124.
    [81]CHIOU C J, LEE Y S. Swept surface determination for five-axis numerical control machining [J]. International Journal of Machine Tools and Manufacture,2002,42: 1497-1507.
    [82]WEINERT K, DU Shangjian, DAMM P, et al. Swept volume generation for the simulation of machining processes [J]. International Journal of Machine Tools and Manufacture, 2004,44:617-628.
    [83]DU Shangjian, SURMANN T, WEBBERO, et al. Formulating swept profiles for five-axis tool motions[J]. International Journal of Machine Tools & Manufacture,2005, 45:849-861.
    [84]Yang Jingzhou, Abdel-Malek Karim. Approximate swept volumes of NURBS surfaces or sol ids [J]. Computer Aided Geometric Design,2005:22:1-26.
    [85]Maeng SR, Baek N, Shin SY. Choi BK. A Z-map update method for linearly moving tools[J]. Computer Aided Design,2003,35:995-1009.
    [86]H Gong, N Wang. Analytical calculation of the envelope surface for generic milling tools directly from CL-data based on the moving frame method[J]. Computer-Aided Design,2009,41(11):848-855.
    [87]张世民,郭锐锋,彭健钧.五轴数控加工仿真中刀具扫掠体的计算[J].组合机床与自动化加工技术,2010,6:10-14.
    [88]Yang Jingzhou, Abdel-Malek Karim. Verification of NC machining processes using swept volumes [J]. The International Journal of Advanced Manufacturing Technology, 2004,1:82-91.
    [89]王军安.刀具扫描体技术在NC加工图形实验中的应用[J].机械科学与技术,2000,6:959-961+940.
    [90]乔咏梅,张定华,杨海成.数控加工仿真中刀具扫描体算法研究[J].西北工业大学学报,1995.2:231-234.
    [91]T L Schmitz, J Couey, E Marsh, et al. Runout effects in milling:Surface finish, surface location error, and stability[J]. International Journal of Machine Tools and Manufacture,2007,47(5):841-851.
    [92]Liu Xiong Wei. Five-axis NC cylindrical milling of sculptured surfaces [J]. Computer Aided Design,1995,27(12):887-94.
    [93]H Gong, L-X Cao, J Liu. Second order approximation of tool envelope surface for 5-axis machining[J]. Computer-Aided Design,2008(40):604-615.
    [94]Redonnet J-M, Rubio W, Dessein G. Side milling of ruled surfaces:Optimum positioning of the milling cutter and calculation of interference[J]. International Journal for Advanced Manufacturing Technology,1998:14:459-65.
    [95]Z LiMin, D Han, X YouLun. Third-order point contact approach for five-axis sculptured surface machining using non-ball-end tools (I):Third-order approximation of tool envelope surface [J]. Science China (Technological Sciences), 2010(07):1904-1912.
    [96]Menzel Cornelia, Bedi Sanjeev, Mann Stephen. Triple tangent flank milling of ruled surfaces[J]. Computer Aided Design,2004,35:375-378.
    [97]Monies F, Redonnet J-M, Rubio W, Lagarrigue P. Improved positioning of a conical mill for machining ruled surfaces:Application to turbine blades[J]. Journal of Engineering Manufacture,2000,214:625-634.
    [98]Chu Chih-Hsing, Chen JT. Tool path planning for five-axis flank milling with developable surface approximation[J]. Journal of Advanced Manufacturing Technology 2005,29:707-713.
    [99]H Gong, N Wang. Optimize tool paths of flank milling with generic cutters based on approximation using the tool envelope surface [J]. Computer-Aided Design, 2009(41):981-989.
    [100]Lartigue C, Due E, Affouard A. Tool path deformation in 5-axis flank milling using envelope surface [J]. Computer Aided Design,2003,35:375-382.
    [101]C J Chiou. Accurate tool position for five-axis ruled surface machining by swept envelope approach[J]. Computer-Aided Design,2004(36):967-974.
    [102]Senatore J, Monies F, Landon Y. Optimizing positioning of the axis of a milling cutter on an offset surface by geometric error minimization[J]. International Journal of Advance Manufacturing Technology,2007,37:861-871.
    [103]Ding Y, Zhu LM, Ding H. Semidefinite programming for Chebyshev fitting of spatial straight linewith applications to cutter location planning and tolerance evaluation[J]. Precision Engineering,2007,31:364-368.
    [104]Loney G C, Ozsoy T M. NC machining of free form surfaces[J]. Computer-Aid Design, 1987,19(2):85-90.
    [105]Elber G, Cohen E. Toolpath Generation for Freeform Surface Models[J]. Computer-Aided Design,1994,26:490-496.
    [106]He W, Lei M, Bin H Z. Iso-parametric CNC tool path optimization based on adaptive grid generation[J]. The International Journal of Advanced Manufacturing Technology, 2009,41:538-548.
    [107]Chen T, Shi Z L. A tool path generation strategy for three-axis ball-end milling of free-form surfaces[J]. Journal of Materials Processing Technology,2008,208: 259-263.
    [108]Feng H Y, Teng Z J. Iso-planar piecewise linear NC tool path generation from discrete measured data points[J]. Computer-Aided Design,2005,37:55-64.
    [109]Bobrow J E. NC machining tool path generation from CSG part representations [J]. Computer-Aid Design,1985,17:69-76.
    [110]Ding S, Mannan M A, Poo A N et al. Adaptive iso-planar tool path generation for machining of free-form surfaces[J]. Computer-Aided Design,2003,35:141-153.
    [111]杨肃,唐恒龄,廖伯瑜.机床动力学[M].北京:机械工业出版社,1977.
    [112]Tobias S A, Fishwick W. A Theroy of Regenerative Chatter[M]. London:the Engineer,1958.
    [113]宋清华.高速铣削稳定性及其加工精度研究[D].济南:山东大学机械工程学院,2006.
    [114]Taylor F W. On the art of cutting metals[M]. New York:American society of mechanical engineers,1907.
    [115]Tobias S A机床振动学[M].北京:机械工业出版社,1977.
    [116]Minis I, Yanushevsky R, Tembo A. Analysis of linear and nonlinear chatter in milling[J]. Annals of the CIRP,1990,39(1):459-462.
    [117]Y Altintas, E Budak. Analytical Prediction of Stability Lobes in Milling[J]. CIRP Annals - Manufacturing Technology,1995,44(1):357-362.
    [118]Y Altintas, S Engin, E Budak. Analytical Stability Prediction and Design of Variable Pitch Cutters[J]. Journal of Manufacturing Science and Engineering,1999, 121(2):173-178.
    [119]Y Altintas, D Montgomery, E Budak. Dynamic Peripheral Milling of Flexible Structures[J]. Journal of Engineering for Industry,1992,114(2):137-145.
    [120]Y Altintas, E Shamoto, P Lee, et al. Analytical Prediction of Stability Lobes in Ball End Milling[J]. Journal of Manufacturing Science and Engineering,1999, 121(4):586-592.
    [121]E Budak. An Analytical Design Method for Milling Cutters With Nonconstant Pitch to Increase Stability, Part I:Theory[J]. Journal of Manufacturing Science and Engineering,2003,125(1):29-34.
    [122]E Budak. An Analytical Design Method for Milling Cutters With Nonconstant Pitch to Increase Stability, Part 2:Application[J]. Journal of Manufacturing Science and Engineering,2003,125(1):35-38.
    [123]E Budak. Analytical models for high performance milling. Part Ⅱ:Process dynamics and stability[J]. International Journal of Machine Tools and Manufacture,2006, 46(12-13):1489-1499.
    [124]E Budak, Y Altintas. Analytical Prediction of Chatter Stability in Milling---Part Ⅱ:Application of the General Formulation to Common Milling Systems[J]. Journal of Dynamic Systems, Measurement, and Control,1998,120(1):31-36.
    [125]E Budak, Y Altintas. Analytical Prediction of Chatter Stability in Milling---Part I:General Formulation[J]. Journal of Dynamic Systems, Measurement, and Control, 1998,120(1):22-30.
    [126]E Budak, L Kops. Improving Productivity and Part Quality in Milling of Titanium Based Impellers by Chatter Suppression and Force Control[J]. CIRP Annals Manufacturing Technology,2000,49(1):31-36.
    [127]E Budak, E Ozturk. Dynamics and stability of parallel turning operations[J], CIRP Annals - Manufacturing Technology,2011,60(1):383-386.
    [128]E Budak, A Tekeli. Maximizing Chatter Free Material Removal Rate in Milling through Optimal Selection of Axial and Radial Depth of Cut Pairs[J]. CIRP Annals Manufacturing Technology,2005,54(1):353-356.
    [129]E Budak, L T Tune. A New Method for Identification and Modeling of Process Damping in Machining[J]. Journal of Manufacturing Science and Engineering,2009,131(5): 051019-051010.
    [130]梁睿君,叶文华.薄壁零件高速铣削稳定性预测与验证[J].机械工程学报,2009,45(11):146-151.
    [131]李忠群,刘强.基于MATLAB的铣削加工颤振稳定域仿真算法及实现[J].机械设计与制造,2007,7:109-111.
    [132]刘强,尹力.一种面向数控工艺参数优化的铣削过程动力学仿真系统研究[J].中国机械工程,2005,12:1146-115().
    [133]P V Bayly, B P Mann, T L Schmitz, et al. Effects of radial immersion and cutting direction on chatter instability in end-milling[M], American Society of Mechanical Engineers,13, Manufacturing Engineering Division, MED,2002.
    [134]P V Bayly, J E Halley, B P Mann, et al. Stability of interrupted cutting by temporal finite element analysis[C]. Trans ASME, Journal of Science and Engineering,2003, 125:220-225.
    [135]B P Mann, K A Young. An empirical approach for delayed oscillator stablility and parametric identification[J]. Proceedings of the Roya] Society A, Mathematical, Physical and Engineering Sciences,2006,462:2145-2160.
    [136]N K Garg, B P Mann, N H Kim, et al. Stability of a time-delayed system with parametric excitation[J]. Journal of Dynamic Systems, Measurement, and Control, 2007,129:125-135.
    [137]O Elbeyli, J Q Sun. On the semi-discretization method for feedback control design of linear systems with time delay[J]. Journal of Sound and Vibration,2004, 273:429-440.
    [138]E Ozlu, E Budak. Analytical Modeling of Chatter Stability in Turning and Boring Operations---Part Ⅱ:Experimental Verification[J]. Journal of Manufacturing Science and Engineering,2007,129(4):733-739.
    [139]E Ozlu, E Budak. Analytical Modeling of Chatter Stability in Turning and Boring Operations---part I:Model Development[J]. Journal of Manufacturing Science and Engineering,2007,129(4):726-732.
    [140]E B Kivanc, E Budak. Development of Analytical Endmill Deflection and Dynamics Models[J]. ASME Conference Proceedings,2003,2003(37203):85-94.
    [141]E B Kivanc, E Budak. Structural modeling of end mills for form error and stability analysis[J]. International Journal of Machine Tools and Manufacture,2004,44(11): 1151-1161.
    [142]C-M Liao, B Balachandran, M Karkoub. Drill-String Dynamics:Reduced-Order Models[J]. ASME Conference Proceedings,2009,2009(43833):451-460.
    [143]G Lin, B Balachandran, E H Abed. Dynamics and Control of Supercavitating Vehicles[J]. Journal of Dynamic Systems, Measurement, and Control,2008,130(2): 021003-021011.
    [144]X H Long, B Balachandran. Stability Analysis of a Variable Spindle Speed Milling Process[J]. ASME Conference Proceedings,2005,2005(47438):899-908.
    [145]M X Zhao, B Balachandran. Dynamics and stability of milling process [J]. International Journal of Solids and Structures,2001,38(10-13):2233-2248.
    [146]T Insperger, J Gradisek, M Kalveram, et al. Machine Tool Chatter and Surface Quality in Milling Processes[J]. ASME Conference Proceedings,2004,2004(47136): 971-983.
    [147]T Insperger, G Stepan. Stability of the Damped Mathieu Equation With Time Delay[J]. Journal of Dynamic Systems, Measurement, and Control,2003,125(2):166-171.
    [148]T Insperger, G Stepan. Updated semi-discretization method for periodic delay-differential equations with discrete delay[J]. International Journal for Numerical Methods in Engineering,2004,64(1):117-141.
    [149]T Insperger, G Stepan, F Hartung, et al. State Dependent Regenerative Delay in Milling Processes[J]. ASME Conference Proceedings,2005,2005(47438):955-964.
    [150]Y Ding, L Zhu, X Zhang, et al. A full-discretization method for prediction of milling stability[J]. International Journal of Machine Tools and Manufacture,2010, 50(5):502-509.
    [151]Y Ding, L Zhu, X Zhang, et al. Second-order full-discretization method for milling stability prediction[J]. International Journal of Machine Tools and Manufacture, 2010,50(10):926-932.
    [152]Y Ding, L Zhu, X Zhang, et al. Numerical Integration Method for Prediction of Milling Stability [J]. Journal of Manufacturing Science and Engineering,2011, 133(3):031005-031009.
    [153]I Tamas. Full-discretization and semi-discretization for milling stability prediction:Some comments [J]. International Journal of Machine Tools and Manufacture,2010,50(7):658-662.
    [154]F Ismail, E Soliman, A new method for the identification of stability lobes in machining[J]. International Journal of Machine Tools and Manufacture,1997, 37(6):763-774.
    [155]E Solis, C R Peres, J E Jimenez, et al. A new analytical-experimental method for the identification of stability lobes in high-speed milling[J]. International Journal of Machine Tools and Manufacture,2004,44(15):1591-1597.
    [156]G Quintana, J Ciurana, I Ferrer, et al. Sound mapping for identification of stability lobe diagrams in milling processes[J]. International Journal of Machine Tools and Manufacture 49,2009, (3-4):203-211.
    [157]何耀雄,周云匕,周济.广义螺旋运动与复杂回转刀具几何建模[J].航空学报,2002,23(2):135139.
    [158]周济,周艳红.数控加工技术[M].北京:国防工业出版社,2002.
    [159]Koenigsberger F, Sabberwal A J P. The Prediction of Cutting Force in End Milling with Applicat ion to Cornering Cuts[J]. International Journal in Machine Tool Design and Research,1982,22:538-549.
    [160]刘军,王冬红,张永生,et all. 基于单位四元数的机载三线阵影像光束法平差[J],测绘学报,2008,37: 451-457.
    [161]施法中.计算机辅助几何设计与非均匀有理B样条[M].北京:高等教育出版社,2001.
    [162]王刚.基于散乱点云的卷曲模型建模和精度评价[D].大连:大连理工大学机械工程学院,2007.
    [163]施吉林,张宏伟,金光日.计算机科学计算[M].北京:高等教育出版社,2005.
    [164]Xiaojian Zhang, CaiHua Xiong, Ye Ding. Improved Full-Discretization Method for Milling Chatter Stability Prediction with Multiple Delays[J]. Lecture Notes in Computer Science,2010,6425/2010:541-552.
    [165]ZHANG Xiaojian, XIONG CaiHua, DING Ye, et al. Variable-step integration method for milling chatter stability prediction with multiple delays[J]. SCIENCE CHINA, 2011,54(12):3137-3154.
    [166]Min Wan, Yi-Ting Wang, Wei-Hong Zhang, et al. Prediction of chatter stability for multiple-delay milling system under different cutting force models[J]. International Journal of Machine Tools & Manufacture,2011,51:281-295.
    [167]Y. Altintas, S. D. Merdol. Virtual High Performance Milling[J], CIRP Annals Manufacturing Technology,2007,56(1),81-84.
    [168]E. Budak. Analytical models for high performance milling. Part I:Cutting forces, structural deformations and tolerance integrity[J]. International Journal of Machine Tools & Manufacture,2006,46:1478-1488.
    [169]E. Butlak. Analytical models for high performance milling. Part Ⅱ: Process dynamics and stability [J]. International Journal of Machine Tools & Manufacture, 2006,46:1489-1499.
    [170]刘强.高性能加工机床与虚拟加工技术[J].航空制造技术,2008,17:32-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700