用户名: 密码: 验证码:
南四湖水环境污染特征及其重金属离子去除机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南四湖是山东省最大的淡水湖泊,同时也是我国华北地区最大的淡水湖泊,作为南水北调东线工程的重要输水通道和调蓄湖泊,在保障周边地区经济社会稳定发展和生态环境文明方面起着至关重要的作用。近年来,南四湖整个湖区水质已基本属于中度富营养化和富营养化水平,富营养化已成为南四湖面临的最重要的水环境问题之一。由于国家对南水北调沿线采用了严格的污染排放标准,有关部门采取综合防治措施,以确保在南水北调东线工程投入运行前,各入湖河流水质提前达到《地表水环境质量标准》(GB3838-2002)中Ⅲ类以上标准。但是,南四湖湖区作为一个庞大的、复杂的生态系统,其与外界物质、能量和信息的交流受多种影响因素。尤其是湖区水质污染受到特别的关注。在湖区水环境水质污染的影响因素中,除了通过河道流入湖区的污染水体外,还有湖区周边的面源污染、高空大气沉降和湖区内水生生物新陈代谢、湖底沉积物二次污染等。在这样的背景下,从不同学科出发,选择南四湖水环境中一个或几个具有代表性的问题进行研究,就显得具有重要的理论指导意义和现实社会应用价值。其中,由于湖泊沉积物在影响湖区水环境中的特殊作用和地位,越来越引起人们的关注。随着研究成果的不断丰富,对湖泊沉积物的形成过程、组成成份、形态特征及迁移运动规律有了更深的理解掌握。开展对湖区表层沉积物中的重金属和营养盐进行相关研究,可为调水前沉积物治理积累数据资料,为湖区开展流域污染综合治理提供科学依据。总体来说,受人类活动的影响,近二十年来南四湖水环境发生了很大的变化,并且这种变化的趋势还在进一步加剧,特别是像南四湖二级大坝和南水北调东线这种改变自然生态景观的人为工程的建设,对南四湖现代水环境的影响更是难以估量的。
     基于以上考虑,本文对南四湖水环境污染特征及其重金属离子去除机理进行了相关研究,主要结论如下:
     1、南四湖沉积物中营养盐的含量及分布
     湖泊柱状沉积物中保存有湖区环境变化的丰富信息,营养盐含量的变化是湖泊富营养化渐进过程的标志。同一水体不同深度的底泥中积累的氮、磷物质也就记录着人为活动和自然变化对湖泊环境的影响。因此建立与恢复柱状沉积物中的营养盐含量的变化序列,对于研究湖泊环境污染历史具有重要的理论意义,并且可为现代湖泊环境的整治工程提供科学依据。
     (1)磷的含量及重直分布。对分别取自南阳湖和昭阳湖湖区的两个柱状沉积物进行分析,柱状沉积物中总磷含量的统计值表明,不同地点所采集的柱状岩芯中总磷的含量差别较大,南阳湖Core—1岩芯的平均值高达787 mg/kg,昭阳湖Core—2岩芯的平均值仅为590 mg/kg。由最小值和最大值的差距来看,Core—1号岩芯的最小值为512mg/kg,最大值为1374mg/kg,两者之间的差距超过2.5倍,Core—2岩芯的最小值为520mg/kg,最大值为768mg/kg,差距低于1.5倍。两个岩柱沉积物在总磷含量垂直变化上,分布曲线体现出从岩芯底部向顶部逐渐升高的趋势。南阳湖和昭阳湖在岩芯的底部磷含量基本都是处于500-550mg/kg左右的含量,南阳湖沉积物中磷含量上升较快,昭阳湖磷含量从底部向上部也呈现逐渐上升趋势,但在底部和中段表现不是非常明显,没有南阳湖上升幅度大。总体来看,昭阳湖岩芯中磷含量,对应深度上低于南阳湖。这可能与磷的来源、湖泊湖流运动规律或湖泊沉积环境有关系。
     (2)总氮、总有机碳、总碳含量及分布。南四湖不同地点沉积物中总氮、总有机碳和总碳含量存在差异。南阳湖柱状沉积物中总氮最大值为6056mg/kg,为最小值的近10倍,平均值为2240 mg/kg;总有机碳最大值为5.61%,为最小值的10倍多,平均值为2.21%;总碳最大值为7.56%,最小值为1.48%。昭阳湖柱状沉积物中总氮最大值为11228mg/k,为最小值的10倍多,平均值为5707mg/kg;总有机碳最大值为9.62%,为最小值的12倍多,平均值为5.35%;总碳最大值为12.37%,最小值为6.66%。由数据分析看出,不同地点所采集的柱状岩芯中总氮、总有机碳、总碳的含量差别较大。昭阳湖岩芯中总氮的平均值约为南阳湖总氮平均值的2.5倍;南阳湖岩芯中有机碳的平均值为2.21%,而昭阳湖岩芯的平均值则高达5.35%,由最小值和最大值的差距来看,昭阳湖岩芯总碳、总有机碳、总氮含量的最小值、最大值都普遍比南阳湖里的大。在垂直变化上,两个柱状岩芯中总碳、总有机碳、总氮含量的变化。可以看出曲线的变化趋势与总磷的变化趋势相似,曲线变化也呈现出有底部到顶部逐渐上升的趋势。
     通过对南四湖上级湖表层沉积物与柱状沉积物分析结果,可以得出以下结论:济宁市及其他市县的城市生活污水、农业退水和工业废水排放进入南阳湖是南四湖有机质和TP污染的主要来源;柱状沉积物中营养元素具有较稳定的垂直分布,并具有明显的由底部向顶部逐渐上升分布特征,反映了流域社会经济的发展导致营养元素的释放量增加,造成了湖泊现代沉积物中营养元素的积累。
     2.南四湖沉积物重金属含量和形态组成研究
     对南四湖重金属元素形态组成分析上,利用的是本课题组2005年9月在南四湖主要入湖河流及湖区采集的28个表层(0~10cm)沉积物样品。采集时对样品现场进行pH、Eh测定,样品装入密封袋中低温运回实验室,冷冻干燥后进行沉积物粒度组成、重金属元素形态、TOC含量等分析。分析表明,丰水季节,南四湖流域泗河、京杭运河、洙赵新河、洗府河上游、上级湖南部湖区及下级湖区表层沉积物中重金属人为污染程度较弱,重金属元素形态组成主要反映了其自然属性,Cr, Cu、Ni、Zn以残渣态为主,Pb、Mn主要赋存于残渣态和可氧化态。老运河、洗府河入湖口、白马河表层沉积物中Cr、Cu、Ni、Zn的可氧化态、酸提取态、可还原态含量明显增加,其次生相富集系数最高达10.5,明显受到人为污染,污染源主要是济宁市及白马河上游地区;随着表层沉积物中有机质的矿化分解及环境条件的改变,这些水体沉积物中Cr、Ni、Cu、Zn等重金属元素可发生形态转化,具有较高的潜在生态风险。
     对于南四湖沉积物重金属含量的空间分布,本文在两个方面进行了研究。是沉积物含量垂直分布上,按照湖泊沉积物地球化学样品采集工作方法要求,利用重力采样器在南阳湖和昭阳湖各采集了一个长0.37m的柱状沉积岩芯,标号分别为core-1、core-2。对每个岩柱前面15cm每0.5cm取样,后面每1.0cm取样。每样品各取样52个,分别登记编号。样品分析项目包括:总氮(TN)、总有机碳(Org-C)、总磷(TP)、金属元素(汞、砷、铅、铜、镍、锌等)、210Pb等。重金属元素等由中国地质科学院地球化学研究所实验室测试,测试过程严格按照生态地球化学评价样品分析技术要求进行。本研究采用的是210Pb纪年模式中的第一种计算模式,即CIC模式,计算出结果如下:南阳湖平均沉积速率为0.35cm/a,昭阳湖平均沉积速率为0.26cm/a。该研究结果与其他学者的研究结论基本吻合。在垂直方向上,汞的含量是较高的,富集系数达到12.5。二是重金属含量水平分布上。利用抓式取样器,分别在南四湖上级湖、下级湖和主要入湖河流河口区三个湖区单元,采集了40个沉积物样品,通过利用地积累指数和潜在生态风险指数两种指标相结合的方法,利用在室内化验分析取得的测试结果进行综合评价。结果表明,Cd是湖区主要污染元素,As污染次之,其它金属元素均属于较轻的污染程度。主要入湖河流河口区和上级湖区处于很强生态危害污染状态,下级湖处于轻微生态危害状态。因此,在南四湖水环境的治理保护当中,对重金属Cd和Hg的富集及其生态效应问题应引起高度重视。
     3.南四湖富营养化评价与原因分析
     济宁市及周边地区工农业和旅游业的迅猛发展发展,产生的大量污染物被排入南四湖,使其水质急剧恶化,出现富营养化现象。南四湖水质的恶化,不仅制约着济宁市社会经济的发展,还影响着数百万人民群众的生活质量的提高和在南水北调工程中所起的作用。通过选取了与水体富营养化关系密切的叶绿素a(Chla).总磷(TP)、总氮(TN)、透明度(SD)和高锰酸盐指数(CODMn)五项代表性的检测指标作为调查项目,采用综合营养状态指数(TLI)作为评价方法,对南四湖2008年8月份的62个水质样品进行计算。根据计算数值,采用0-100的一系列连续数字对南四湖营养状态进行分级。结果表明,四个湖区中南阳湖的叶绿素a、总磷、总氮和高锰酸盐指数的含量最高,分别为0.056 mg/m3、0.43 mg/L、3.38 mg/L和7.3 mg/L;微山湖中含叶绿素a、总磷和高锰酸盐指数的含量最低,分别为0.01 mg/m3、0.03 mg/L和5.16 mg/L;昭阳湖中的总氮含量最低为1.62mg/L。而透明度的值却与叶绿素a、总磷、总氮和高锰酸盐指数的值变化趋势正好相反,南阳湖的透明度只有0.47 m,昭阳湖最高达到0.72 m,微山湖为0.63 m。通过综合营养状态指数法,南四湖四个湖区的污染程度由重到轻分别是:南阳湖、独山湖、微山湖和昭阳湖。
     南四湖出现富营养化并不是偶然的,既有天然因素又有人为因素。湖区水体浅、流速慢、循环周期长为南四湖发生富营养化提供了自然条件;人类活动所产生的大量工业废水、生活污水和现代农业过量使用化肥、农药形成面源污染等进入南四湖,是南四湖营养盐迅速增加,导致水体富营养化的人为因素。
     4.南四湖重金属离子去除机理研究
     研究结果表明,重金属污染已成为亟待解决的南四湖水环境水环境问题之一。除了工程措施外,选择合适材料开展对南四湖水环境中重金属污染去除的研究也很有意义。为控讨重金属离子去除去除机理,本文利用密度泛函理论[Density functional theory (DFT)],在两个方面进行了研究。一是壳聚糖吸附Hg2+,pb2+和Ag+离子的机理研究。壳聚糖是一类重要的天然类多糖衍生物,在废水处理、贵金属富集和生态修复方面发挥着重要。各种金属离子的电子结构不同,通过对壳聚糖进行化学修饰,人们可以改变所形成的吸附复合物的稳定性,以便进行选择性吸附和工业操作,但由于目前实验手段的限制,实验上确定金属离子与壳聚糖的相互作用本质还存在较大的困难,而现代量子化学方法为人们探索这种作用机理提供了一种强有力的工具。计算结果表明,过渡金属离子Hg2+,Pb2+和Ag+主要吸附在壳聚糖中的氨基氮原子和羟基氧原子之间,并与壳聚糖主链上的氧原子存在较强的相互作用,Hg2+和Pb2+离子的结合能比Ag+的结合能大得多;Hg2+,Pb2+和Ag+等重金属离子与壳聚糖的相互作用主要为静电相互作用。二是硅表面吸附铜原子和水合铜离子的研究。研究结果表明,铜离子与Si(111)表面的相互作用主要包括部分的共价键作用和静电作用;在Si(111)表面水合铜离子的配位数为4,当水分子数目大于5时,水分子之间形成分子间氢键;在水溶液中,水合铜离子可以稳定的吸附在Si(111)表面。
Nansi Lake in Shandong Province is the largest freshwater lake, but also the largest freshwater lake in northern China. Nansi Lake as an important water channels and flood storage lakes in the south-east-line project, plays a vital role in protection of economic, social stability, development in surrounding areas and ecological civilization. In recent years, eutrophication has become one of the most important water environmental issues of Nansi Lake. Since the state adopted strict standards for pollutant discharge, relevant departments will take corresponding integrated prevention and measures to ensure that the river water into the lake ahead of schedule to achieve criteria Class III ("Surface Water Environment Quality Standard")(GB3838-2002), before the south-east-line project putted into operation. However, Nansi Lake as a large and complex ecosystem, its material, energy and information exchange to the outside are constrained by many factors. In addition to polluted waters through the river into the lake, as well as the non-point pollution, high-altitude air settlement, aquatic metabolism in the lake district and the secondary pollutants of lake bottom sediments are all the factors of the ambient water quality. Under this background, this paper studied one or several aspects of the water environment in Nansi Lake from different disciplines. The study is of great significance in theory and practice. As lake sediments play an important and key role in affecting the lake water environment, they are attracting more and more attention. As the research is incessantly deepened, We now have a better understanding of formation, constituent, characteristic, migration regularity and motion law of lake bottom sediments. Heavy metals in the surface sediments and nutrient salts in the lake district were studied, which can accumulate valuable data for sediment before water transfer and can offer scientific evidence and technique guide for prevention and control of the pollution in major river valleys. Overall, with the impact of increasing the intensity of human activities, water environment in Nansi Lake has already undergone great changes in the past 20 years and this trend is further exacerbated. The engineering construction project, especially the secondery dam of Nansi Lake and the east line of the south to north water project, can change natural landscape. The environmental repercussions are inestimable. Owing to the above factors, an extensive research of water environment in Nansi Lake was conducted. The main conclusions are:
     1.Content and distribution of nutrient salts in Nansi Lake.The core sediments in lake record more information of environmental changes and the change of nutrient salts content is an important symbol of gradual process of the eutrophication in lakes. N and P accumulated in different depth water sediments record the effect of human activities and nature change on the lake environment. Therefore, establishing and recovering of sequence transformation of the content of nitrogen have an important theoretical meaning for researching the pollution history and can offer scientific evidence for regulation project of lake environment.
     (1) The content of P in horizontal direction
     On the basis of analyseis of the two core sediments collected from Nangyang Lake and Zhaoyang Lake, we concluded that the content of total phosphorus in the cylindrical core from different locations has great difference. The average contents of core-1 and core-2 were 787mg/kg and 590mg/kg respectly. The maximum value of core-1 was 1374mg/kg and the minimum was 512mg/kg, and the maximum value was two times than minimum value. The maximum value of core-2 was 768mg/kg and the minimum was 520mg/kg, and the maximum value was 1.5 times than minimum value.
     The distribution curve of the content of P in horizontal direction in the two core sediments reflects a trend of a gradual increase from the core at the bottom to the top. The contents of phosphorus in the bottom of the core in Nangyang Lake and Zhaoyang Lake were both about 500-550mg/kg. The content of phosphorus in Nanyang lake sediments increased rapidly, and the phosphorus content from the bottom to top in Zhaoyang Lake also showed a gradual upward trend, but at the bottom and the middle of the performance were not very clear.
     Overall, the corresponding depth of the phosphorus content of the core in Zhaoyang Lake is below the Nanyang Lake. This may have a close relation to the source of phosphorus and the lake motion law. (2)The content and distribute of total organic carbon and total organic nitrogenous:
     The different areas of Nansi Lake have different contents of total organic carbon and total organic nitrogenous. The maximum of the total nitrogenous of the sediments in Nanyang Lake was 6056mg/kg about ten times higher than the minimum and the average value was 2240mg/kg. The maximum of the organic carbon of the sediments in Nanyang Lake was 5.61% about ten times higher than the minimum and the average value was 2.21%. The maximum of total carbon in Nanyang Lake was 7.56% and the minimum was 1.48%. The maximum of the total nitrogenous of the sediments in Zhaoyang Lake was 11228mg/kg about ten times higher than the minimum and the average value was 5707 mg/kg. The maximum of the organic carbon of the sediments in the lake was 9.62% about twelve times higher than the minimum and the average value was 5.35%. The maximum of total carbon was 12.37% and the minimum was 6.66%. From the data analysis we can see that there is a world of difference among the different locations of the cylindrical cores collected in the total nitrogen, total organic carbon, and total carbon content. The average of total nitrogen in Zhaoyang Lake core is about 2.5 times than the average total nitrogen in Nanyang Lake. The average organic carbon of the core of Nanyang lake was 2.21%, while the average of the core of Zhaoyang Lake was as high as 5.35%. Across the gap between the minimum and maximum terms, the total carbon, organic carbon and the total nitrogen contents of the minimum and maximum of the core of Zhaoyang Lake, were generally higher than Nanyang Lake. Changes in the vertical, the two cylindrical core of total carbon, total organic carbon, total nitrogen content changes. Changes can be seen that the curve trends are similar to the trends in total phosphorus curve, which is also shown a gradual upward trend from the bottom to the top.
     Through analyzing the surface and the core sediments in the upper lakes of Nansi Lake, we have come to the conclution:Dmestic wastewater, aricultural wastewater and idustrial wstewater discharged to Nanyang Lake were the main sources of pollution in Nansi Lake. Nutrient elements in sdiments had a stable Vertical distribution and had a clear gradual increase from the bottom to the top, which reflected that the local socio-economic development led to the increasing emissions of nutrients and the accumulation of nutrients in the modern lake sediments.
     2.The contents and morphology of heavy metals in the sediments of Nansi Lake.
     In this paper, spatial distribution characteristics of heavy metals in the sediments of Nansi Lake were studied from horizontal and perpendicular distributions two aspects. One Study is the contents and morphology of heavy metals in Horizontal Direction. Forty sediment samples from the lower and upper of Nansi Lake and its main inflow rivers were collected by grabing sampler in three lots. The potential ecological risk index (RI) and geological acumination index (Igeo), as the quantitative diagnostic tools, are used to evaluate the results of chemical analyses. The result showed:the main pollution element in the particles was Cd. And As was the secondary pollution element and the pollutions by other metallic element were slight. The potential ecological risk was quite strong at the upper lake and the estuary, and the ecological risk of the lower lake was very light. Another study is the contents of the sediments in the vertical distributions. According to the requirement of geochemical lake sediment survey, two columnar sediment core with a depth of 0.37m were collected by gravity sampler in Nanyang Lake and Zhaoyang Lake, labeled core-1 and core-2. We take a sample every 0.5 cm in front of 15 cm of each sample pillar and every 1 cm in the back.52 samples registered and numbered were taken from each sample pillar. Analysis of samples includes Org-C, TN, TP,210Pb and heavy metals (including Hg As Pb Cu Ni Zn). Heavy metals were tested in the Institute of Geophysical and Geochemical Exploration (IGGE) of the Chinese Academy of Geological Sciences (CAGS) and the procedure of the research test strictly met the standards of ecogeochemical evaluation method. The conclusions are as follows:(1) The average deposition rate in Nanyang Lake was 0.35cm/a and 0.26cm/a in Zhaoyang Lake. The above mentioned results are almost in agreement with the results of other scholars'studies. On the vertical directation, Hg content was high and the accumulation coefficient reached 12.5. Therefore, it is worthwhile to pay more attention to the concentration of Cu, Hg, and its ecological effect during the process of water environmental treatment and protection in Nansi Lake. Analysis of the speciation of heavy metals are based on 28 surface sediment samples (0-1 cm) collected by this research group in Nansi Lake and its main inflow rivers in September 2005. pH and Eh were measured at the scene and samples placed in sealable bags were transported into laboratory at a low temperature. Then freeze dried, afterward the samples were analyzed for the sediment, the speciation of heavy metals and the content of TOC. The analysis shows:heavy metal artificial pollution in the surface sediments of Nansi Lake and its main inflow rivers-Si River, Jinghang Great Canal, Zhuzhao River, the upper reaches of Guangfu River and the upper south lake and the lower lake was fairly light. The morphology and composition of heavy metal mainly reflect its nature. Cr, Cu, Ni, Zn mainly existedin residual fraction; and Pb and Mn mainly existed in residual fraction and oxidizable fraction. Residual fraction and oxidizable fraction of Cr, Cu, Ni and Zn in the surface sediments of the former canal, lake inlet of the Guangfu river and Baima river increased obviously. The bioconcentration coefficient was high to 10.5. These are important signals for artificial pollution.The most pollution sources were the upper reaches of the Baima river and the city of Jining. As organic matter in the surface sediments decomposes and environmental changes, these heavy metals in water can transform, which has a highly potential ecological risks.
     3、Analysis and assessment on eutrophication of Nansi lake.With the fast development of agriculture, industry and tourism in Jining and its surrounding areas, enormous quantities of pollutants have been discharged into the Nansi Lake. Now the water quality is rapidly deteriorated and eutrophication is happening. The water deterioration of Nansi Lake limits not only the development of jining society and economy in Jining but also the improvement of millions of citizens'life quality and the function in south-to-north water transfer project. The five typical tests (Chl-a, TP, TN. SD and CODmMn) which have close relation with the eutrophication are monitored with integrated nutrition state index (TLI). According to the calculating data of sample, using the number from 0 to 100 to grade the entrophication state of Nansi Lake. The results indicate that Chl-a, TP, TN and CODMn in Nanyang Lake were all the highest in the four lake areas and were 0.056mg/m3,0.43mg/L,3.38mg/ and 7.3mg/L respectively. Chl-a, TP and CODMn in Weishan Lake were the lowest and were 0.01mg/m3,0.03mg/1,5.16mg/l respectively. The lowest TN in Chaoyang Lake is 1.62mg/1. The trend of transparency is negatively related with the change in Chl-a TP, TN, SD and CODMn. The transparency of Nansi Lake was only 0.47m, the transparency of Chaoyang Lake was as high as 0.72m and the transparency of Weishan Lake was 0.63m. Through the index of entrophication of four lakes in Nansi Lake, the order of the pollution for serious level to light level in the four key river systems is:Nanyang Lake, Dushan Lake, Weishan Lake and Zhaoyang Lake.
     The major causes of the entrophication of Nansi Lake are not only natural factors but also factitious factors. Low water level, slow rate and long cycle provide the entrophication of Nansi Lake with natural conditions. Human activities make enormous quantities of industrial waste water and domestic sewage and in modern agriculture, overuse of chemical fertilizers and pesticides causes an non-point pollution, which makes the nutrient salts sharply increasing in Nansi Lake. All of these lead to the eutrophication of water bodies.
     4、Research of the mechanism of adsorbing heavy metal ions onto chitosan and clean Si. Chitosan is an important class of natural polysaccharides derivatives, which plays an important in wastewater treatment, precious metal enrichment, removal of heavy metals in lake sediments and ecological restoration. Because of its repeating unit with the active groups (such as amino, hydroxyl), Chitosan can react with a variety of metal ions such as Hg2+, Cd2+, Cu2+, Ni2+ and Zn2+, then forming a more stable chelate. Since the electronic structures of various metal ions are different, the stability of complexes formed has a big difference. By chemical modification of chitosan, we can change the stability of chelate formed for selective adsorption and industrial operations. In the past few decades, a series of studies of Chitosan adsorbing metal ions have been done in different environments. It is generally believed that the mechanism of Chitosan adsorbing metal ions would be chelate mechanism and electrostatic attraction mechanism. In neutral solution, the interaction between Chitosan and heavy metals is chelate mechanism. However, great difficulties have been encountered to determine the interaction mechanism between metal ions and the chitosan because of the restrictions of experimental methods. While the Quantum Chemical Method to research of the mechanism has become a powerful tool.
     To find out the nature of interaction between heavy metal ions and chitosan and to provide the theoretical basis for the removal of heavy metals in lake sediments, the density functional theory (DFT) was first introduced in to study the interaction betwwen ions (Hg2+, Pb2+ and Ag+) and chitosan and calculate the chitosan adsorption energy. The results show that transition metal ions (Hg2+, Pb2+ and Ag+) are mainly adsorbed on the amino nitrogen atoms and hydroxyl oxygen atoms of the chitosan, and have strong interaction with oxygen atoms in the chitosan main chain. The binding energy of Hg2+ and Pb2+ ions is much greater than Ag+. The interaction mechanism between Hg2+, Pb2+ and Ag+ and other heavy metal ions and chitosan is mainly electrostatic interactions.
引文
[1]李玉凤.基于SPOT5卫星影像的南四湖水体信息提取与土地覆被分类研究.山东大学硕士论文,2008,P2-3
    [2]宋宪国,李媛.南四湖富营养化评价指标的优选[J].山东环境,1998,85:25
    [3]Li,X.M.,An,W.C.,Wang,B.Water Environment in Nansi Lake and Influence to Passing Water. International Symposium on Environmental Issues for East Asia's Sustainable Development. Weihai, China.2006
    [4]詹道强.解决南四湖地区水资源短缺的应对措施,徐州市自然科学优秀学术论文.2002-2003
    [5]陈磊裴海燕解军.改善南四湖水质的关键问题分析[J].中国给水排水.2007,23(20):6-7
    [6]Moore T R,Souza W A,Koprivanjak J F.Oontrols on the sorption of dissolved organic carbon by soul[J]. soil science,1992,2:120-129
    [7]USEPA (1994c) EPA's Contaminated Sediment Management Washington DC Strategy. EPA 823-R-94-001
    [8]USEPA (1998) EPA's Contaminated Sediment Management and Strategy EPA 8 23-R-98-001
    [9]陈瑞生,胡德良,曾凤英等.湘江水体污染的生物学评价.北京,中国环境科学出版社,P:165-215
    [10]李任伟 李原.黄河三角洲沉积物烃类污染及来源[J].中国环境科学,2001,21(4):301-305
    [11]马梅,童中华,王怀瑾等。乐安江水和沉积物样品的生物毒性评估,环境化学.1997,16(2):167-171
    [12]康跃惠,麦碧娴.珠江三角洲河口及邻近海区沉积物中含氯有机污染物的分布特征[J].中国环境科学,2000,20(3):245-249
    [13]张祖陆,牛振国,孙庆义等.南四湖底泥污染及其变化过程.中国海洋科学,1999,19(1):29-32)
    [14]Salomons,W, De Rooji, N.M., Kerdik, H. Bril, I.Sediment as a source for contaminants Hydrobiologia,1987,149:13-30
    [15]Rydin, F., Brunberg, A. Seasonal dynamics of phosphorous in Lake Erken surface sediments.Arch Hydorbiol Speclssues AdvancL imnol.1998,51:17-167
    [16]李小亮.浅水湖泊氮磷转化规律的数值研究.河海大学硕士论文,2006,P:45-46
    [17]张振克,王苏民.中国湖泊沉积记录的环境演变——研究进展与展望.地球科学进展,1999,14(4):417—421
    [18]张丽旭,蒋晓山,赵敏等.长江口洋山海域表层沉积物重金属的富积及其潜在生态风险评价[J].长江流域资源与环境,2007,16(3):351-356.
    [19]Bermejo,.J. C. S., Beltran, R., Ariza, J. L. Spatial variations of heavy metals contamination in sediments from Odiel river (Southwest Spain)[J]. Environment International,2003,29:69-77
    [20]姚志刚,鲍征宇,高璞.湖泊沉积物中重金属的环境地球化学州.地质通报,2005(11):997-1001
    [21]Long E R, Eield J, MacDONALD D D, Predictiontoxicity in marne sedimentswith munerical sediment quality guidelines[J]. Environ.Toxcical.Chem.,1998,17(4):714-727
    [22]王立析,陈静生,洪松.水体沉积物重金属质量基准沉积物[J].环境科学与技术,2001,94(2):4-8
    [23]Van Der Kooij L A, Van De Meent D,Van Leeuwen C J, et al.Deriving quality criteria for water and sediment from the results of aquatic toxicity tests and product standards:application of the equilibrium partitioning methods [J]. Water Research,1991
    [24]Webster J,Ridgway I.The application of the equilibrium partitioning approach for establishing sediment quality criteria at two UK sea disposal and outfall sites[J]. Marine Pollution Bulletin.1994.18(11):653-661
    [25]Bianchan,T.S.,Engelhaupt,E.,Westman,P.Cyanobacterial blooms in the Baltic Sea:Natural or human-induced [J]. Limnology and Oceanography,2002,45: 716-726
    [26]Nixon, S. W. Coastal marine eutrophication:a definition, social causes,and future concerns[J]. Ophelia,1995,41:199-219
    [27]金相灿,刘树坤,章宗涉等.中国湖泊环境,第1册[M].北京:海洋出版社,1995.P:234-302
    [28]金相灿.我国湖泊富营养化研究中的主要科学问题.环境科学学报,200828(1);21-23
    [29]Inamori, R., Gui, P., Dass, Investigating CH4 and N2O emissions from ecoengineering wastewater treatment processes using constructed wetland microcosms. Process Biochem.2007.42:363-373
    [30]Wohemade C J. Ability of restored wetlands to reduce nitrogen and phosphorus concentrations in agricultural drainage water[J]. Journal of Soil and Conservation,2000,53(3):303-309
    [31]张建,何苗,邵文生等.人工湿地处理污染河水的持续性运行研究[J].环境科学,2006,27(9):1760-1764
    [32]刘红,代明利,刘学燕.人工湿地系统用于地表水质改善的效能及特征[J].环境科学,2004,25(4):65-69
    [33]申欢,孙亚军,胡洪营.等滞留型城市景观河道的污染治理[J].中国给水排水,2006,22(20):66-68
    [34]朱棣.生态学杂志Chinese Journal ofEcology 2004,23(3):144~148
    [35]张建,张波.南水北调东线南四湖新薛河入湖口人工湿地工程设计.中国给水排水,2008,24(2):49-51
    [36]李晓文,肖笃宁,胡远满.辽河三角洲滨海湿地景观规划预案设计及其实施措施的确定[J].生态学报,2001,21(3):353-364
    [37]黄立南,蓝崇钰.湿地处理污水的研究[J].生态科学,1996,15(2):117-120
    [38]杨丽原.南四湖现代沉积环境的底球化学特征及污染分析[D].博士学位论文.中国科学院南京地理与湖泊研究所,2004
    [39]沈吉,张祖陆,孙庆义等.南四湖沉积剖面中色素与有机碳同位素特征的古环境意义.湖泊科学,1998,10(2):17-22
    [40]张祖陆,彭利民,孙庆义.南四湖水质污染综合评价及水质分区[J].地理学与国土研究,1998,14(4):30-33
    [4]] 杨丽原,沈吉,张祖陆等.南四湖表层底泥重金属和营养元素的多元分析.中国环境科学,2003,23(2):206-209
    [42]安文超.南四湖及主要入湖河口沉积物的污染特征及磷吸附释放研究(D)博士学位论文,2008,P:104
    [43]Wenchao An, Xiaoming Li. Phosphate adsorption characteristicw at the sediment-wate interface and phosphorus fractions in Nansi Lake,China, and its main inflow rivers.Environmental Monitoring and Assessment.2008
    [44]安文超,李小明.南四湖及主要入湖河流表层沉积物对磷酸盐的吸附特征。环境科学,2008,29(5):1295-1302
    [45]汪艳雯,岳钦艳.山东省南四湖底泥中磷的形态分布特征.环境科学,2009,29(2): 125-129
    [46]苗群.南四湖水环境质量评价研究.博士学位论文,青岛大学系统理论,2008
    [47]张祖陆,梁春玲,管延波.四湖湖泊湿地生态健康评价.人口、资源与环境,2008,18(1):180-184
    [48]张祖陆,辛良杰,梁春玲.近50年来南四湖湿地水文特征及其生态系统的演化过程分析[J].地理研究,2007,26(5):957-966
    [49]王洪道,窦鸿身,王宪柜等.我国的湖泊[M].北京:商务印书馆,1984,P:33-34
    [50]山东省地质矿产局,山东省环境地质图集,济南:山东省地图出版社,1996.P:5-6
    [51]鲁孟胜,孔凡顺,庄学厚.山东西南部南四湖流域环境地质综合调查[J].中国地质,2003,30(4):424-428
    [52]曹瑞民.南四湖的形成过程探讨(Ⅰ)[J].海洋湖沼通报,1989(2):12-17.
    [53]杨丽原.南四湖现代沉积环境的地球化学特征及污染分析[D].博士学位论文.中国科学院南京地理与湖泊研究所.2004
    [54]安文超.南四湖及主要入湖河口沉积物的污染特征及磷吸附释放研究(D),博士学位论文,山东大学环境科学与工程学院,2008
    [55]牛明香,赵庚星.南四湖湿地遥感信息分区分层提取,地理与地理信息科学,2004,20(2):45-52
    [56]闫理钦,田逢俊,南四湖湿地生态系统与水禽分布调查报告,山东林业科 技,1999(1):39-41
    [57]国家计委、水利部.南水北调工程总体规划(R),2002
    [58]林治安,赵秉强,孟庆光等.我国南四湖流域种植业结构变迁与农业投入产出的特色分析[J].作物杂志,2007(5):7-11
    [59]济宁市统计局编,济宁统计年鉴,2006,P:199-200
    [60]张祖陆,孙庆义.彭利民等.南四湖地区水环境问题探析[J].湖泊科学,1999,11(1):86-90
    [61]宋印胜.山东省地面沉降及防治建议,论沿海地球减灾与发展[M].北京:地震出版社,1991:407-411
    [62]王晓军,潘恒健,杨丽原等.南四湖表层沉积物重金属元素的污染分析[J].海洋湖沼通报,2005,2:23-29
    [63]刘恩峰,沈吉,杨丽原等.南四湖及主要入湖河流表层沉积物重金属形态组成及污染研究[J].环境科学,2007,26(8);1377-1383
    [64]张祖陆,彭利民,孙庆义.南四湖水质污染综合评价及水质分区[J].地理学与国土研究,1998,14(4):30-33
    [65]Haygarth P M. Agriculture as a source of phosphorus transfer to water:sources and pathways[J]. Scope Newsletter,1997,21:1-15
    [66]Haygarth P M, Jarvis S C. Trans of phosphorus from agricultural soils[J]. Advances in Agronomy,1999,66:195-249
    [67]Lu S Y, Yu G, Zhang P Y. Agricultural Runof Contaminant Discharge in Dianchi Valley Agricultural District of China[J]. Environment and Pollution.2007,31(3/4):394-414
    [68]金相灿.湖泊富营养化控制和管理技术[M].北京:化学工业出版社,2001.P:45-174
    [69]Jin X C, Chu Z S, Yi Wl, et al. The influence of phosphorus on Microcyst[s growth and the changes of other environnlental factors during this process in nlicroeosnl experinlents[J]. Journal of Environmental Science.2005,17: 937-941
    [70]Paerl H.W, Fulton R.S.,Moisander P H and Dyble J.Harmful freshwater algal blooms,with an emphasis on cyanobacteria[J].The Scientific World Journal, 2001,1:76-113
    [71]Martin Sondergaard, JensPeder Jensen, ErikJeppesen.Role of sediment and internal loading of phosphorus in shallow lakes, Hydrobiologia.2003,506: 135-145
    [72]Shengrui Wang, Xiangcan Jin, Qinyun Bua.Effects of dissolved oxygen supply level on phosphorus release from lake sediments. Colloids and Surfaces A: Physicochem. Eng. Aspects 316 (2008) 245-252
    [73]J.M. Anderson.Nitrogen and phosphorus budgets and the role of sediments in six shallow Danish Lakes.Archive fur Hydrobiologie 74 (1974) 527-550
    [74]A.Kleeberg,H.P. Kozerski.Phosphorus release in lake Groger Muggelsee and its implications for lake restoration.Hydrobiologia 342/343 (1998)9-26
    [75]B. Bostrom, K. Pettersson.Different patterns of phosphorus release from lake sediments in laboratory experiments.Hydrobiologia 92 (1982)415-429
    [76]马兰花段毅.和海域柱状沉积物中氨基酸组成和含量特征与古环境[J].沉积学报,1999,17(A12):794-797
    [77]吕晓霞,翟世奎.牛丽凤.长江口柱状沉积物中有机质C/N比的研究[J].环境化学,2005,24(3):255-259
    [78]M.Liu, P.J. Baugh.Historical record and sources of polycyclic aromatic hydrocarbons in core sediments from the Yangtze Estuary, China.Environmental Pollution 110(2000)357-365
    [79]Bianchan,T.S.,Engelhaupt,E.,Westman,P.,et al. Cyanobacterial blooms in the Baltic Sea:Natural or human-induced[J].Limnology and Oceanography,2002, 45:716-726
    [80]Nixon.,S.W. Coastal marine eutrophication:a definition, social causes, and future concerns[J]. Ophelia,1995,41:199-219
    [81]金芳,黄俊华,汤新燕等.梁子湖沉积物有机质碳同位素特征及其古气候指示意义[J].地质科技情报,2007,26(3):13-18
    [82]卜跃先,苏绍眉.洞庭湖氮磷平衡研究.人民长江,2002,(33):23-25.
    [83]杨士建,赵秀兰.骆马湖的氮磷平衡及实施截污工程对水质改善效果的研究 [J].云南环境科学,2003,(22):38-40
    [84]谯华,周从直,谢有奎.湖泊富营养化的形成机理与预防对策[J].环境科学导论,2007,26(6):45-48
    [85]金相灿.湖泊富营养化研究中的主要科学问题.中国环境科学(J),2008(28):21—23
    [86]胡开林,邓柳,王丽风.城市污水处理与受纳湖库水体富营养化成因分析[J].昆明理工大学学报(理工版),2004,29(4):169-172
    [87]黄清辉.浅水湖泊内源磷释放及其生物有效性——以太湖、巢湖和龙感湖为例[D].博士学位论文,中国科学院生态环境研究中心,2005
    [88]杨丽原,沈吉,刘恩峰等.南四湖现代沉积物中营养元素分布特征[J].湖泊科学,2007,19(4):390-396
    [89]杨丽原,王晓军,刘恩峰.南四湖表层沉积物营养元素分布特征[J].海洋湖泊通报,2007,(2):40-44
    [90]苗群.南四湖水环境质量评价研究[D].博士学位论文,青岛大学系统理论专业,2008
    [91]山东省淮河流域水利管理局等,河海大学公共管理学院.南四湖健康生命系统维持战略研究.2009,P:150-152
    [92]荆红卫,华蕾,孙成华等.北京城市湖泊富营养化评价与分析[J].湖泊科学,2008,20(3):357-363
    [93]王明翠,刘雪芹,张建辉.湖泊富营养化评价方法及分类标准[J].中国环境监测,2002,18(5):47-50
    [94]常会庆,车青梅.富营养化水体的评价方法研究[J].安徽农业科学,2007,35(32):10407-10409
    [95]Cai Huaqing, Liu Jiankang Lorenz King. A comprehensive model for assessing lake eutrophication [J]. CHINESE JOURNAL OF APPLIED ECOLOGY, 2002,13 (12):1674-1678
    [96]郭献军,罗新正.烟台门楼水库水质富营养化原因与治理对策[J].烟台大学学报(自然科学与工程版),2004,17(3):225-229
    [97]高爱环,李红缨,郭海福.水体富营养化的成因、危害及防治措施[J].肇 庆学院学报,2005,26(5):41-44
    [98]唐卫华,宋虎堂,范志华.水体富营养化的原因、危害及防治[J].天津职业院校联合学报,2006,8(2):52-54
    [99]陈振民,徐胜利,马慧敏.我国地表水体富营养化原因分析及治理方法探讨[J].郑州经济管理干部学院学报,2006,21(1):87-88
    [100]朱建荣.长江口外海区叶绿素a浓度分布及其动力成因分析[J].地球科学,2004,34(8):757-762
    [101]苏晓峰.湖泊富营养化原因及其防治[J].科学思考科学前沿,2007(102):13
    [102]秦伯强.太湖水环境面临的主要问题、研究动态与初步进展[J].湖泊科学,1998,10(4):1-9
    [103]朱晨,李红莉,高虹等.南四湖上级湖表层沉积物中多环芳烃的含量及分布特征[J].中国环境监测,2009(2):75-78
    [104]Eleonora Wcislo, Dawn Ioven, Rafal Kucharski.. Human health risk assessment case study an abandoned metal smelter site in Poland, Chemosphere,2002,(47):507-515
    [105]US EPA,1996b.Recommendations of the Technical Review Workgroup for Lead for an Interim Approach to Assessing Risks Associated with Adult Exposure to Lead in Soil. Technical Review Workgroup for Lead, US Environmental Protection Agency/
    [106]王三根编箸.微量元素与健康.上海科技普及出版社,2004,P:1-24
    [107]Xiaodong Zou,Tao Yuan, Ying Zhu. Heterogeneous distribution of copper in different grain size and density fractions of contaminated surface sediment from Nansi Lake, Environ Geol (2007) 51:813-820
    [108]Filgueiras A V, Lavilla I, Bendicho C. Comparison of the standard SM&T sequential extraction method with small-scale ultrasound-assisted single extractions for metal partitioning in sediments [J]. Analytical and Bioanalytical Chemistry,2002,374(1):103~108.
    [109]Quevauviller Ph, Rauret G, Lopez-Sanchez J F, et al. Certification of trace metal extractable contents in a sediment reference material (CRM 601) following a three-step sequential extraction procedure [J]. the Science of the Total Environment,1997,205:223-234.
    [110]Tokalioglu S, Kartal S, Elci L. Determination of heavy metals and their speciation in lake sediments by flame atomic absorption spectrometry after a four-stage sequential extraction procedure [J]. Analytica Chimica Acta,2000, 413:33~40.
    [111]金相灿.沉积物污染化学[M].北京:中国环境科学出版社,1992:,P:327-356.
    [112]Tuzen M. Determination of trace metals in the River Yesilirmak sediments in Tokat, Turkey using sequential extraction procedure [J]. Microchemical Journal, 2003,74:105-110.
    [113]Abd El-Azim H, El-Moselhy Kh M. Determination and partitioning of metals in sediments along the Suez Canal by sequential extraction [J]. Journal of Marine Systems,2005,56:363-374.
    [114]霍文毅,黄风茹,陈静生等.河流颗粒物重金属污染评价方法比较研究[J].地理科学,1997,17(1):81-86.
    [115]Chen S Y, Lin J G. Bioleaching of heavy metals from sediment:significance of pH [J]. Chemosphere,2001,44:1093~1102.
    [116]Saeki K, Okazaki M, Matsumoto S. The chemical phase changes in heavy metals with drying and oxidation of the lake sediments [J]. Water Research, 1993,27:1243~1251.
    [117]Tack F M, Callewaert O W J J, Verloo M G. Metal solubility as a function of pH in a contaminated dredged sediment affected by oxidation [J]. Environmental Pollution,1996,91(2):199~208.
    [118]Teasdale P R, Apte S C, Ford P W, et al. Geochemical cycling and speciation of copper in waters and sediments of Macquarie Harbour, Western Tasmania[J]. Estuarine, Coastal and Shelf Science,2003,57:475~487.
    [119]Wallschlager D, Desai M V M, Spengler M. How humic substances dominate mercury geochemistry in contaminated floodplain soil and sediments [J]. Journal of Environmental Quality,1997,27:1044~1054.
    [120]Perin G, Fabris R, Manente S, et al. A five-year study on the heavy metal pollution of Guanabara bay sediments (Rio de Janeiro, Brazil) and evaluation of the metal bioavailability by means of geochemical speciation[J]. Water Research,1997,31(12):3017~3028.
    [121]杨丽原,沈吉,张祖陆等.南四湖表层底泥重金属污染及其风险性评价[J].湖泊科学,2003a,15(3):251-256.
    [122]杨丽原,沈吉,张祖陆等.近四十年来山东南四湖环境演化的元素地球化学记录[J].地球化学,2003b,32(5):453-460
    [123]弗斯特纳U,维特曼G T W主编,王忠玉,姚重华译.水环境的金属污染[M].北京:海洋出版社,1988,31-204.
    [124]刘恩峰,沈吉,刘兴起等.太湖MS岩芯重金属元素地球化学形态研究[J].地球化学,2004,33(6):602-610.
    [125]D. L. Higgitt, D. E. Walling, M. J. Haigh Estimating rates of ground retreat on mining spoils using caesium-137 Applied Geography, Volume 14, Issue 4, October 1994, Pages 294-307
    [126]Q. He and D. E. Walling. Interpreting particle size effects in the adsorption of 137Cs and unsupported 210Pb by mineral soils and sediments Journal of Environmental Radioactivity Volume 30, Issue 2,1996, Pages 117-137
    [127]R. Buscail,, P. Ambatsian, A. Monaco, M. Bernat Marine Geology,210Pb, manganese and carbon:indicators of focusing processes on the northwestern Mediterranean continental margin 1997, Volume (137):271-286
    [128]杨丽原.南四湖现代沉积环境的地球化学特征及污染分析[D].博士学位论文.中国科学院南京地理与湖泊研究所.2004
    [129]吴丰昌,万国江.湖泊沉积物中的年纹理与近代环境变化研究进展[J].地质地球化学,1992(2):50-53
    [130]吴丰昌,万国江.中国地区湖泊沉积物中137Cs分布特征和环境意义[J].湖泊科学,2009,21(1):1-9.
    [131]张祖陆,沈吉等.南四湖的形成及水环境演变[J].海洋与湖沼,2002,33(3):314-321
    [132]李生盛,任德贻.准格尔矿区主采煤层中铅和硒的异常高值与成因研究[J].中国矿业大学学报.2006,35(5):612-616.
    [133]陈晶,黄文辉,张爱云.我国部分地区煤及煤矸石中汞的分布特征.煤田地质与勘探,2006,34(1):5-7
    [134].赵一阳,鄢明才.黄河、长江、中国浅海沉积物化学元素丰度比较[J].科学通报,1992,(13)::122-124.
    [135]陈静生,洪松,王立新等.中国东部河流颗粒物的地球化学性质[J].地理学报,2000,55(4):417-427
    [136]Bermejo, J. C. S., Beltran, R., Ariza, J. L.Spatial variations of heavy metals contamination in sediments from Odiel river (Southwest Spain)[J].Environment International,2003,29:69-77.
    [137]Luoping Zhang, Xin Ye, Huan Feng.Heavy metal contamination in western Xiamen Bay sediments and its vicinity, China[J].Marine Pollution Bullein,2007,54:974-982
    [138]Chapman.P.M.., Chapman, P.J. Allard and G.A. Vigers. Development of sediment quality values for Hong Kong special administrative region:a possible model for other jurisdictions, Marine Pollution Bulletin 38 (1999), pp. 161-169
    [139].H. Feng, X. Han, W. Zhang and L. Yu. A preliminary study of heavy metal contamination in Yangtze River intertidal zone due to urbanization, Marine Pollution Bulletin 49 (2004), pp.910-915.
    [140]沈吉,张祖陆.山东南四湖成湖时代浅析[J].湖泊科学,2000,12(1):91-93.
    [141]张祖陆,彭利民,孙庆义.南四湖水质污染综合评价及水质分区[J].地理学与国土研究,1998,14(4):30-33.
    [142]贾振邦,周华,赵智杰等.应用地积累指数法评价太子河沉积物中重金属污染[J].北京大学学报(自然科学版),2000,36(4):525-530.
    [143]刘晶,滕彦国,崔艳芳等.土壤重金属污染生态风险评价方法综述[J].环境监测管理与技术,2007,19(3):6-11.
    [144]杨丽原,沈吉,张祖陆等.南四湖表层底泥重金属污染及其风险性评价[J].湖 泊科学,2003,15(3):252-256.
    [145]弓晓峰,陈春丽,周文斌等.鄱阳湖底泥中重金属污染现状评价[J].环境科学,2006,27(4):732-736
    [146]丁振华,贾洪武,刘彩娥等.黄浦江沉积物重金属的污染及评价[J].环境科学与技术,2006,29(2):64-66
    [147].朱广伟,陈英旭,,周根娣等.运河(杭州段)沉积物中重金属分布特征及变化[J].中国环境科学,2001,21(1):65-69
    [148]于文金,邹欣庆.灌河口潮滩重金属累积特征及污染评价[J].地球化学,2007,36(4):425-433.
    [149]Muller G. Index of geoaccumulation in sediments of the Rhine River. Geojournal,1969,2(3):108-118
    [150]刘文新,栾兆坤,汤鸿霄.乐安江沉积物中金属污染的潜在生态风险评价.生态学报,1999,19(2):206-211
    [151]滑丽萍,华路,高娟等,中国湖泊底泥的重金属污染评价研究.土壤(Soils),2006,38(4):366-373
    [152]杨丽原,沈吉.南四湖表层底泥重金属污染及其风险性评价.湖泊科学,2003(3):253.256
    [153]赵一阳,陈毓蔚.试论南黄海中部泥的物源及成因[J].地球化学1991(2):112-117.
    [154]鄢明才.黄河、长江、中国浅海沉积物化学元素丰度比较[J].科学通报,1992,13:1202-1204
    []55] 张丽旭,蒋晓山,赵敏等.长江口洋山海域表层沉积物重金属富积及其潜在生态风险评价[J].长江流域资源与环境,2007,16(3):351-356
    [156]钱易、汤鸿霄、文湘华等著.水体颗粒物和难降解有机物的特性与控制技术原理·下卷难降解有机物.中国环境科学出版社,2000
    [157]邹家庆主编.工业废水处理技术.化学工业出版社,2003.
    [158]Fengchin Wu, Ruling Tseng, Rueyshin Juang, A review and experimental verification of using chitosan and its derivatives as adsorbents for selected heavy metals Journal of Environmental Management 91 (2010) 798-806
    [159]蒋挺大编著.壳聚糖,化学工业出版社,2001,P2-3
    [160]张延坤,刘国忠.甲壳素与壳聚糖及其衍生物的制备及应用。日用化学工业,1998(4):36-40
    [161]李沁华,刘宇涛,邹翰等.以聚乙二醇为致孔剂的壳聚糖吸附、缓释葡萄糖的研究.暨南大学学报(自然科学版),1995,(3):81-8
    [162]蒋挺大编著.壳聚糖.化学工业出版社,2007,P:13-14
    [163]W.S.Wan Ngah, K.H. Liang. Adsorption of Gold(Ⅲ) Ions onto Chitosan and N-Carboxymethyl Chitosan:Equilibrium Studies. Ind. Eng. Chem. Res.38 (1999) 1411-1414
    [164]夏文水,陈洁.甲壳素和壳聚糖的化学改性及其应用.无锡轻工业学院学报,1994,13(2):162-171
    [165]N.K. Lazaridis, G.Z. Kyzas, A.A. Vassiliou, D.N. Bikiaris, Chitosan Derivatives as Biosorbents for Basic Dyes, Langmuir 23 (2007) 7634-7643
    [166]Y.C. Wong, Y.S. Szeto, W.H. Cheung, G. McKay. Equilibrium Studies for Acid Dye Adsorption onto Chitosan, Langmuir 19 (2003) 7888-7894
    [167]李静,高玉杰,任继春.天然高分子絮凝剂壳聚糖[J].天津造纸,2003,25(1)33-34
    [168]胡家震,陈东辉.壳聚糖在水处理中的应用[J].福建环境,2002,19(3):26-28
    [169]Hongjuan Ma, Min Wang. Radiation degradation of Congo Red in aqueous solution. Chemosphere 2007 (68):1098-1104
    [170]Galindo, C, Kalt, A. UV-H2O2 oxidation of monoazo dyes in aqueous media: a kinetic study. Dyes Pigments,1998,40:27-35
    [171]陈炳稔,汤又文,万春华等.可再生甲克素的特性研究.中国第一届甲壳质化学学术会议筹委编,中国第一届甲壳质化学学术会议论文摘要集,大连:1996
    [172]严俊.甲壳素的化学和应用.化学世界,1984,(11):26-31
    [173]陈云彩.天然有机高分子絮凝剂研究与应用.工业水处理,1999,19(4):7
    [174]李晶,胡文容,裴海燕.壳聚糖絮凝剂在柠檬酸废水污泥处理中的应用[J].工业水处理,2008,28(8):18-21.
    [175]周能,蒋先明,黎应涛等.壳聚糖净化味精废水的研究[J].广西化工,1999, 28(3):57-60
    [176]蔡伟民,叶筋,陈佩空.壳聚糖季铵盐的合成及其絮凝性能[J].环境污染与防治,1999,21(4):1-4
    [177]花蓓,张兰军.壳聚糖对啤酒废水处理的应用研究[J].扬州大学学报:自然科学版,1998,1(2):76-78
    [178]Maruca R., Interaction of heavy Meatalswith Chitinand Chitosan, Journal of Applied Polymer Science,1982,27:4827-4837
    [179]Catherine A., Interaction of Lead and Chromium with Chitinand Chrosan, Journalof Applied Polymer Science,1980,25:1587-1599。
    [180]Limin Zhou, Yiping Wang. Zhirong Liu, Qunwu Huang, Characteristics-of equilibrium, kinetics studies for adsorption of Hg(Ⅱ), Cu(Ⅱ), and Ni(Ⅱ) ions by thiourea-modified magnetic chitosan microspheres, Journal of Hazardous Materials, Volume 161, Issues 2-3,30 January 2009, Pages 995-1002
    []81] 姚瑞华,孟范平,张龙军等.改性壳聚糖对重金属离子的吸附研究和应用进展[J].材料导报,2008,22(4):65-70
    [182]Xue-fei Sun, Shu-guang Wang, Xian-wei Liu, etal. The Effects of Ph and Ionic Strength on Fulvicacid Uptake By Chitosan Hydrogel Heads. Colloids and Surfaces a:Physicochemical and Engineering Aspects,2008,324:28-34
    [183]Ling Huang, Maolin Zhai, Radiation-induced degradation of carboxymethylated chitosan in aqueous solution.Carbohydrate Polymers 67 (2007) 305-312]
    [184]Choi, W. S., Ahn, K. J., Lee, D. W., etal. Preparation of chitosan oligomers by irradiation. Polymer Degradation and Stability,2002,78,533-538
    [185]Hai, L., Diep, T. B., Nagasawa, N., Yoshii, F.,& Kume, T. Radiation depolymerization of chitosan to prepare oligomers. Nuclear Instruments and Methods in Physics Research B,2003.208,466-470
    [186]Britto, D. D.,& Campana-Filho, S. P. A kinetic study on the thermal degradation of N,N,N-trimethylchitosan. Polymer Degradation and Stability, 2004,84:353-361
    [187]C. Peniche-Covas, M. S. Jimenez, A. Nunez, characterization of silver-binding chitosan by thermal analysis and electron impact mass spectrometry.Carbohydrate Polymers, Volume 9, Issue 4,1988, Pages 249-256
    [188]H. K. So, S. P. Meyers.Reviews of Environmental Contamination & Toxicology.,2000(163):1-4
    [189]C. Crini,Preparation, characterization and sorption properties of crosslinked starch-based exchangers.Carbohydrate Polymers.2005 (60) 67-75
    [190]E. Piron, A. Domard Interaction between chitosan and uranyl ions. Part 2. Mechanism of interaction. International Journal of Biological Macromolecules, 1998(22):33-40.
    [191]R. A. A. Muzzarelli, Removal of uranium from solutions and brines by a derivative of chitosan and ascorbic acid. Carbohydrate Polymers,1985(5):85-89
    [192]A.J.Varma,S.V.Deshpande,J.F. Kennedy, Metal complexation by chitosan and its derivatives:a review,Carbohydr. Polymer.2004,55:77
    [193]Chihpin Huang, Ying-Chien Chung, Ming-Ren Liou, Adsorption of Cu(Ⅱ) and Ni(Ⅱ) by pelletized biopolymer.Journal of Hazardous Materials,1996(45):265-277
    [194]S. Qian, G. Huang, J. Jiang, F. He, Y. Wang, Studies of adsorption behavior of crosslinked chitosan for Cr(VI), Se(VI).Journal of Applied Polymer Science,2000(77):3216-3219
    [195]M. L. Ferreira, M. E. Gschaider, heoretical and experimental study of M2t adsorption on biopolymers. Ⅲ. Comparative kinetic pattern of Pb, Hg and Cd Carbohydrate Polymers,2004(56):321-332
    [196]A.D. Becke. Density-functional thermochemistry. III. The role of exact exchange, Journal of Chemistry and.Physical,1993(98):5648-5652
    [197]N.C. Braier, R. A. Jishi, Density functional studies of Cu21 and Ni21 binding to chitosan.Journal of Molecular Structure (Theochem),2000 (499):51-55
    [198]Daugy E., Mathiez P., Salvan F., et al. 7×7Si(111)-Cu interfaces:Combined LEED, AES and EELS measurements, Surface Science,1985,(154):267-276
    [199]Kemmann H.; Muller F., Neddermeyer H., AES, LEED and TDS studies of Cu on Si(111)7×7 and Si(100)2×1. Surface Science,1987(192):11-25
    [200]Vaz C. A. F., Steinmuller S. J., Moutafis C, et. al., Structural and morphological characterisation of hybrid Cu/Si(0 01) structures. Surface Science,2007 (601):1377-1383
    [201]Reitzle A., Renner F. U., Lee T. L., et. al..Electrochemical growth of copper on well-defined n-Si(111):H surfaces. Surface Science,2005 (576):19-28
    [202]Mutombo P., Chab Ⅴ.Theoretical STM images of Cu atoms on a Sie111T surface. Surface Science 2003 (532-535) 645-649
    [203]Zhang Y. P., Yang L., Lai Y. H., et. al.. Formation of ordered two-dimensional nanostructures of Cu on the Si(111)-(7_7) surface. Surface Science,2003 (531):L378-L382
    [204]Savchenkov A., Shukrinov P., Mutombo P., et. Initial stages of Cu/Si interface formation. Surface Science 2002 (507-510) 889-894
    [205]Shukrinov P., Savchenkov A., Mutombo P., et. al.Initial stages of adsorption in the Cu/Si(111) system. Surface Science.2002(506) 223-227
    [206]Koshikawa T. Y.T., Jalochowski M., Bauer E. Dynamic observations of the formation of thin Cu layers on clean and hydrogen-terminated Si(111) surfaces. Surface Science,2001 (480:118-127
    [207]Koshikawa T., Yasue T., Tanaka H., et. al. Surface structure of Cu/Si(111) at high temperature. Surface Science 1995 (331-333):506-510
    [208]Yasue T., Koshikawa T., Tanaka H., et. Initial stage of Cu growth on Si(111)7× 7 surface studied by scanning tunneling microscopy. Surface Science, 1993,(287):1025-1029
    [209]Tosch S., Neddermeyer H. Nucleation of Cu on Si(111)7×7 and atomic structure of the Cu/Si(111) interface. Surface Science.1989, (211-212):133-142
    [210]Karttunen A. J., Rowley R. L., Pakkanen T. A., Ab Initio Study on Adsorption of Hydrated Na+and Cu+Cations on the Cu(111) Surface. Surface Chemistry B, 2005,109 (50):23983-23992
    [211]Karttunen A. J., Pakkanen T. A.Ab Initio Study on the Adsorption of Hydrated Na+ and Ag+ Cations on a Ag(111) Surface. The journal of Physical and Chemistry B.2006,110 (29), pp:14379-14385
    [212]Liu Y, Liu Y, Wang H., Suo, Y. Theoretical study on adsorption of Au+ and hydrated Au-cations on clean Si(111) surface..Surface Science 601 (2007) 1265-1270
    [213]Liu Y.; Wang Z., Suo Y., Theoretical Study on Adsorption of Na+ and Na+ (H2O)n (n=1-6) on a Clean Si(111) Surface. The journal of Physical and Chemistry C, 2007,111 (8):3427-3432
    [214]Frisch M. J., Trucks G. W., Schlegel H. B., et. al. Gaussian 03, revision B.03, Gaussian, Inc.:Pittsburgh, PA,2003
    [215]Becke A. D.Density-functional thermochemistry. Ⅲ. The role of exact exchange.Journal of Chemical Physics 1992(98):5648-5653
    [216]Lee C., Yang W., Parr R. G., A force field for simulating ethanol adsorption on Au(111) surfaces. A DFT study.Physical Review. B 1989,(37):785-191
    [217]Burda J. V, Pavelka M., Simanek M.,Theoretical Study of Hydrated Copper(Ⅱ) Interactions with Guanine:A Computational Density Functional Theory Study.The journal of Physical and Chemistry A,2008,112 (2):256-267
    [218]Tan W., Li X., Meng X., et. al. Density Functional Theory Study of Ozone Adsorption on CuO(110) Surface, Chemical Research in Chinese Universities. 2009(30):164-169
    [219]Xue Y., Tang Z. Density Functional Study of the Properties of CO Adsorption on SnO_2(110) Surface. Chemical Research in Chinese Universities. 2009(30):583-587
    [220]Moller C., Plesset M. S..Note on an Approximation Treatment for Many-Electron Systems. Physical Review 1934(46):618-622
    [221]Hay P. J., Wadt W. R.Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg.Journal of Chemical Physics.1985(82):270-284
    [222]Foresman J. B., Frisch A. E., Exploring Chemistry with Electronic Structure methods,2nd ed.; Gaussian Inc.:Pittsburgh, PA,1995
    [223]Miyoshi E., Mori H., Tanaka S., et.al.Theoretical study of interactions between the Si(111) surface and metal atoms.Surface Science,2002(514):383-388
    [224]Liu Y., Li M., Suo Y Theoretical study of interaction between atoms of Au, Ag, Cu and clean Si(111) surface. Surface Science 2006 (600):5117-5122
    [225]Delley B.An all electron numerical method for solving the local density functional for polyatomic molecules. The Journal of Chemistry of Physical 1990, 92:508-518
    [226]Delley B., J. Fast Calculation of Electrostatics in Crystals and Large Molecules. The Journal of Physical and Chemistry,1996,100 (15),p:6107-6110
    [227]Delley B.From molecules to solids with the DMol3 approach. The Journal of Chemistry and Physical 2000,113:7756-1166
    [228]Lee H. M., Min S. K., Lee E. C., et. al. Hydrated copper and gold monovalent cations:Ab initio study. The J.ounal of Chemistry and Physical,2005,122: 064314-064324
    [229]合淑英,徐亚同.太湖蓝藻的成因与启示[J].上海化工,2007,32(9):1-3
    [230]金相灿.湖泊富营养化研究中的主要科学问题——代“湖泊富营养化研究”专栏序言[J].环境科学学报,2008(1):21-23
    [231]秦伯强,杨柳燕,陈非洲等.湖泊富营养化发生机制与控制技术及其应用[J].科学通报,2006,51(16):1857-1866
    [232]Maasdam, R., Claassen, T. H. L. Trends in water quality and algal growth in shallow Frisian Lakes, the Netherlands[J]. Water Science and Technology,1998, 37:177-184
    [233]Padisak, J., Reynolds, C. S. Selection of phytoplankton associations in Lake Balaton, Hungary, in response to eutrophication and restoration measures, with special reference to cyanoprokaryotes[J]. Hydrobiologia,1998,384:41-53
    [234]Hoeg, S., Kohler, J. Phytoplankton selection in a river lake system during two decades of changing nutrient supply[J]. Hydrobiologia,2000,424:13-24
    [235]苏玉萍.筑坝河流营养特征研究——以福建省敖江山仔大坝河段为例[D].博十学位论文.福建师范大学.2006
    [236]陈磊,裴海燕,解军.改善南四湖水质的关键问题分析[J].中国给水排水,2007,23(20): 6-10
    [237]刘冬梅,王育才.陕西水资源污染农业非点源贡献分析.西北农林科技大学学 报(社会科学版).2008(8):92-96
    [238]李先宁,吕锡武,宋海亮.生态工程富营养化水体净化技术[C].中国水环境污染控制与生态修复技术高级研讨会,浙江杭州,2004:1261-1265
    [239]纪荣平,李先宁,吕锡武.人工介质富集微生物对太湖梅梁湾水源地水质改善效果试验研究[C].中国水环境污染控制与生态修复技术高级研讨会,浙江杭州,2004:120-124
    [240]安树青.湿地生态工程-湿地资源利用与保护的优化模式[M].北京:化学工业出版社,2007,328-383
    [241]Drenner, R. W., Day, D. J., Basham, S. J. Ecological water treatment system for removal of phosphorus and nitrogen from polluted water [J]. Ecological Applications,1997,7(2):381-391
    [242]朱棣,聂晶,王成等.一种新型的人工湿地生态工程设计——以山东省南四湖为例[J].生态学杂志,2004,23(3):144-148
    [243]张建,何苗,邵文生等.人工湿地处理污染河水的持续性运行研究[J].环境科学,2006,27(9):1760-1764
    [244]周杰,章永泰,杨贤智.人工曝气复氧治理黑臭河流[J].中国给水排水,2002,17(4):47-49
    [245]张建,张波,靖玉明等.南水北调东线南四湖新薛河入湖口人工湿地工程设计[J].中国给水排水,2008,24(2):49-51
    [246]刘红,代名利.人工湿地系统用于地表水水质改善的效能及特征[J].环境科学,2004,25(4):65-69
    [247]蕾切尔·卡逊(Rachel Carson),寂静的春天,上海译文出版社,2008
    [248]刘大瀓,第一部《环境教育法的诞生——记美国环境教育(J).环境教育,1997(10):67-69
    [249]李放,邢扬.日本的环境保护.环境保护与循环经济.2009(7):12-13
    [250]胡文容,李越中.赴日考察环境技术[J].国际学术动态,2003(1):35-37

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700