用户名: 密码: 验证码:
几种重要激光晶体的生长与物性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自1960年第一台红宝石激光器运转以来,激光以其完全不同于普通光源的优点,如具有单色性、方向性和相干性等特质,再加上由此而来的超高亮度、超短脉冲等性质,已成为二十世纪最重要的技术发明之一,被广泛地应用于微(光)电子、通讯、医疗、军事、科研、教育、勘探等众多领域。激光材料是激光技术发展的核心和基础,特别是激光晶体在激光技术的各个关键发展阶段均起了举足轻重的作用。进入21世纪,激光和激光技术正以其强大的生命力继续推动着光电子技术和产业的发展,同时人们也对激光主要工作物质—激光晶体提出了更新的和更高的要求,使其成为当前材料科学与工程发展的前沿领域和研究热点。
     稀土钒酸盐LnVO4家族是一类研究较早的激光晶体,在常温常压下有两种多型:四方锆石(ZrSiO4)结构,空间群I41/amd和单斜独居石(CePO4)型,空间群为P21/n。一般来说,较大的Ln离子优先形成独居石型结构,这是因为它具有较高的氧配位数(CN=9)而在锆石中配位数仅为8。但直到近二十年来随着激光二极管泵浦固体激光(LDPSSL)技术的飞速发展才得到重视,掺入三价稀土激活离子,例如Nd3+,Yb3+,Tm3+,Er3+和Ho3+,的一系列大尺寸高光学质量的四方锆石型LnVO4(Ln=Y,Gd,Yb和Lu)单晶已经被成功地由提拉法生长出来。其中YVO4晶体也因其优异的性质而成为了最受人们关注的“明星”晶体之一。然而在钒酸盐家族里面,具有最大稀土离子半径的LaVO4和最小稀土离子半径的ScVO4还一直少人问津,性质报道也不多,因而可以算得上是一片未被开垦过的处女地。
     相对于传统的Nd3+离子,Yb3+离子拥有一系列优点:相对简单的电子能级:2F7/2基态和2F5/2激发态,这意味着掺Yb3+离子的激光晶体具有准三能级结构可以避免各种上能级的寄生过程,如激发态吸收,荧光自猝灭等;具有较长的荧光寿命和较高的量子效率;在900-980 nm存在较宽的吸收带等。因此随着InGaAs激光二极管的发展,目前准三能级的Yb3+作为激活离子已获得广泛应用,但是Yb3+离子的准三能级性质导致对较低的激光能级的热布局,因而不可避免导致在该波段出现重吸收,这使得Yb3+激光的性质强烈依赖于温度。这使得Yb激光晶体的热学性能也变得尤为重要。对于单斜的硅酸盐Lu2SiO5和硼酸盐GdCa4O(BO3)3激光晶体而言,低对称性的结构更将导致其热学性能出现强烈的各向异性,弄清楚这些关系对于设计出高效的激光器件十分有意义。本论文通过大量的实验研究和理论计算,对上述几种激光晶体的生长机理以及各向异性的物理性能作了较完整的研究,主要包括以下几方面的工作:
     1、利用不同的籽晶方向进行了生长了单斜Nd:LaVO4晶体,解决了提拉法生长中出现的体螺旋现象,成功地生长了大尺寸、高质量的单斜Nd:LaVO4晶体,其中最大晶体尺寸为φ28×21 mm3。实验发现当沿着任意籽晶方向或垂直于(010)晶面生长时Nd:LaV04晶体中出现了典型的体螺旋生长情况,而当籽晶方向垂直于(101)晶面时,晶体出现严重的长脚现象。如果采用垂直于(001)或(001)晶面方向的籽晶进行生长,晶体螺旋的形成将大大降低。
     2、采用x射线单晶衍射解析了单斜LaVO4晶体的结构,结合PBC理论和AE模型进行了生长形貌预测。组分过冷以及成分挥发的影响也加以考虑,并首次精确测定了LaVO4晶体的熔点:N2气氛下为2122.24K。根据Jackson理论给出了沿不同籽晶方向的生长得到的理想晶熔界面,并与实际生长的晶体形貌进行了比对,提出了提拉法中体螺旋形成的籽晶引发机理。该工作对提拉法中籽晶方向的优化提供了理论依据。
     3、采用提拉法和浮区法反复多次进行了0.5 at.%和1 at.%Nd掺杂的ScVO4晶体的生长,通过优化生长工艺参数,最终由浮区法得到了可以用于激光实验的3×3×1mm3无色透明且没有宏观缺陷的Nd:ScVO4体块单晶。
     4、通过原位和非原位热分析实验分析了ScVO4晶体高温热转化行为,揭示了提拉法生长晶体不能得到单晶的原因。实验发现钒氧化物的非一致熔融挥发造成了ScVO4熔体中Sc-V计量比的显著改变,并且在富钪区形成了一个新的金属相Sc2VO5,而ScVO4的晶化主要在富钒区进行,此外首次测定了Sc2VO5的晶体结构。进一步的结构分析表明,ScVO4的高温不稳定性直接来自其较小的离子半径和锆石型的晶体结构的失配。与此同时,在晶化时诱发了两种不同的从金红石晶格到阴离子缺陷的萤石晶格的拓扑转变。电子结构分析进一步表明该结构转变是由Sc-O键的共价性增强所驱动的,并且对标准热力学生成函数的计算也从能量学的角度支持上述结论。
     5、由密度泛函理论计算得到了ScVO4晶体的弹性常数:C11=240.93,C12=77.14,C13=100.76,C33=277.87,C44=23.22,C66=35.55;和光学性质,诸如介电常数,吸收谱,折射率谱,反射率谱以及能量损失谱。在1064nm处的沿[100]/[010]和[001]晶向的折射率分别为1.8295和2.0374。并结合晶体结构对其各向异性进行了深入分析。所得结果和已有实验值相吻合。采用浮区法生长的0.5 at.%的Nd:ScVO4晶体并实现了在1068nm的激光输出,最大平均输出功率为240 mW,具有较低的泵浦阈值(230mW)和对808nm较宽的吸收峰。
     6、采用单晶XRD获得了Lu2SiO5的晶体结构,其单胞参数为a=10.2550(2),b=6.6465(2),c=12.3626(4)A,以及β=102.4220(10)。,空间群为I2/a。在温度区间303.15~768.15K之间,热膨胀的主轴分量大小为aI=-1.0235×10-6 K,aII=4.9119×10-6K以及aIII=10.1105×10-6K。同时我们也计算了单胞体积和单斜角随温度的变化趋势。室温下LSO晶体的比热为139.54 J mol-1 K-1。另外,我们还测量了LSO晶体在303.15-572.45K之间的热扩散系数并计算了热导率的大小,其在303.15K时的主轴分量为kI=2.26 W m-1 K-1,kII=3.14 W m-1 K-1和kII=3.67 W m-1 K-1。并提出了结构模型,详尽地阐明了晶体微观结构和宏观热学性质各向异性之间的关系。
     7、测量了高Yb掺杂30 at.%的GdCOB的全部热物理性质,包括熔点,热膨胀,比热和热导率,并计算了Jackson因子。晶体的熔点随着Yb掺杂升高,在N2气氛下为1772.36K,熔化焓为106.55 kJ mol-1。Yb:GdCOB晶体的热膨胀各向异性明显小于其它Yb掺杂的单斜激光晶体,并且其热导率在373.15K上随温度反常变化,保持一线性升高趋势。在室温下,随着掺杂浓度升高,晶体的热膨胀系数降低而总的热导率保持不变。所有这些都说明,高掺杂的Yb:GdCOB晶体具有非常理想的热学性质,非常适合在高平均功率激光上应用。
Since the operation of the first Ruby laser device in 1960, laser has been proven to be one of the most important innovations and has been widely used in the fields of microelectronics, communication, medical treatment, military, reaserch, education and exploration, due to its unique optical characteristics, such as monochrome, orientation, coherence, which have been used to generate ultrabright and ultrashort pulses. Laser Materials, especially the laser crystals, played a vital role in the development of laser techniques and it can be expected that within 21st century laser and laser techniques will continue to support the fast progress of optoelectronics. At the same time, people will also propose newer and higher criteria for the laser crystals, which make them become the leading frontier and hot topic both in the fields of material science and engineering development.
     Rare-earth orthovanadate LnVO4 is an important functional crystal family, which has two polymorphs at ambient pressure:tetragonal zircon-type (ZrSiO4) structure with space group of I41/amd and monoclinic monazite-type (CePO4) structure with space group P21/n. Generally, larger Ln cations preferentially form the monazite type owing to the higher oxygen coordination number of 9 as compared to 8 for the zircon type. During the past two decades when the vast development has taken in the techniques of laser-diode pumping solid-state laser (LDPSSL), LnVO4 has been paied much attention to. Recently, a variety of tetragonal LnVO4 with large sized and high optical quality has been successfully grown by using the Czochraski method and many trivalent activated ions, such as Nd3+, Yb3+, Tm3+, Er3+ and Ho3+, have been doped in. YVO4, member of this family, has become one of the hottest stars in the laser crystals for its excellent performance. Nevertheless, just in this family the importance of LaVO4, one with the largest cation radius, and ScVO4, one with the smallest cation radius, has still not been valued, especially in the bulk size.
     Compared to the traditional Nd3+ ions, Yb3+ has a series of merits:a relatively simple electronic leve-ground state 2F7/2 and excited state 2F5/2, which means Yb-doped laser crystals have a quasi-three energy structure and can avoid any parasite process in the upper level, such as excited state absorption and fluorescence self-quenching; a long fluorescence lifetime and a high quantum efficiency; a broad absorption band in the wavelength of 900-980 nm. Thus with the development of InGaAs diodes, nowadays quasi-three level Yb, as a important activated ion, has been widely accepted. However, the quasi-three level properties of Yb ion will lead to the thermal population at the lower laser level, and thus a inevitable reabsorption will emerge at that band, which could make the properties of Yb laser strongly depends on the temperature. Therefore, the thermal performance of Yb-doped laser crystals is of key importance. For monoclinic silicates Lu2SiO5 and borates GdCa4O(BO3)3, low-symmetric structure will even yield a prominent anisotropy and thus for the design of a efficient laser device it should get to know those relationships. In this thesis, the growth mechanism and anisotropic physical properties of the above-mentioned laser crystals have been fully investigated, by a combination of experimental and theoretical means. It can be categorized in the following fileds:
     1. Monoclinic Nd:LaVO4 crystals with large size and high optical quality have been successfully grown in the Czochralski method by employing a variety of seeds orientations. It was found that Nd:LaVO4 crystal exhibits a typical bulk spiral growth habit when grown along an arbitrary direction or perpendicular to the (010) crystal face, and a severe footing growth when grown perpendicular to the (101) crystal face. Experiments also show that bulk spiral growth can be greatly reduced if growth proceeds perpendicular to the (001) or (001) crystal face.
     2. The crystal structure of monoclinic LaVO4 was determined by the x-ray single crystal diffraction. A morphology prediction based on the AE model of HP theory was made for the two representative crystals of the lanthanide orthovanadates:the monoclinic monazite type LaVO4 and the tetragonal zircon type YVO4. The effects of constituent supercooling and evaporation have also been evaluated, and the melting point of LaVO4 was reported for the first time: 2122.24 K at N2 atmosphere. The theoretical growth morphology was sketched using the Wulff construction and the shape of the ideal crystal-melt interface for various seed orientations was determined from the Jackson's theory. Making comparison with the actual growth morphology reveals a triggering mechanism of different seed crystal face orientations on the formation of bulk spiral. A highly axially symmetric crystal-melt interface consisting of large facets with similar growth velocities is much preferable according to our morphological analysis, and the use of such an appropriate seed crystal is advisable because it can greatly reduce the chance of bulk spiral formation. This result will also be beneficial for the selection of seed crystals in the Czochralski growth of other low-symmetry oxide crystals, a process that in the past has usually done by the method of trial and error.
     3. The growth of tetragonal ScVO4 crystals doped with 0.5 at.% and 1 at.% Nd ions have been explored by using Czochralski method and floating-zone method, respectively. Through optimizing the growth parameters, a transparent bulk Nd:ScVO4 crystal (3×3×1 mm3) with no macro-defects has been obtained by using the floating-zone method for further laser experiments.
     4. The thermal transition of ScVO4 has been determined by the in-situ and ex-situ thermal analysis experiments, respectively. The reason why single crystal can not be obtained by the Czochralski method was thus given. It was found that incongruent vanadium oxide vaporization brings about a more significant change in the Sc-V stoichiometry of the ScVO4 melt, where a novel tetragonal metallic phase Sc2VO5 was detected within the scandium excess region, while crystalline ScVO4 is obtained primarily near the vanadium excess region. Further structural analysis shows that the high-temperature instability of ScVO4 originates directly from the mismatch between the zircon-type structure and the small size of the scandium cation. Moreover, two distinct topotactic structural transitions from the rutile lattice to the anion-deficient fluorite lattice are triggered in the melt when crystallization begins. Electronic structure analysis further indicates that such structural transitions are driven by a strengthening of the covalency in the Sc-O bonds. The theoretical results on calculations of the standard thermodynamical functions of formation also tend to lend support to this conclusion.
     5. Within the framework of density functional theory, the elastic stiffness constants of ScVO4 was calculated as follows:C11=240.93, C12=77.14, C13=100.76, C33=277.87, C44=23.22, C66=35.55; anisotropic optical properties, such as constants, absorption spectrum, refractive index, reflectivity and energy loss spectrum were also calculated and evaluated for future applications. The refractive index in the [100]/[010] and [001] directions at 1064 nm is 1.8295 and 2.0374, respectively. All the calculated results tend to support the experimental data. The laser output at a wavelength of 1068 nm has been achieved in the 0.5 at.% Nd:ScVO4 crystal, with a maximum average output power of 240 mW and a threshold of 230 mW.
     6. The structure of the LSO crystal was determined by using single-crystal XRD data. The unit-cell parameters are a=10.2550(2), b=6.6465(2), c=12.3626(4) A, andβ=102.4220(10)°in space group I2/a. The principal coefficients of the thermal expansion tensor areαⅠ=-1.0235×10-6 K,αⅡ=4.9119×10-6 K andαⅢ=10.1105×10-6 K over the temperature range of 303.15 to 768.15K. The change of unit cell dimensions and monoclinic angle with temperature is also evaluated. The specific heat capacity of LSO is 139.54 J mol-1 K-1 at room temperature. The thermal diffusivity of the crystal was also measured over the temperature range of 303.15 to 572.45 K and the principal components of the thermal conductivity are kⅠ=2.26 W m-1 K-1, kⅡ=3.14 W m-1 K-1 and kⅡ=3.67 W m-1 K-1 at 303.15 K. The relationship between the crystal structures and the anisotropic thermal properties has been fully investigated. These results illustrate that LSO has relatively large thermal conductivity, which makes LSO quite suitable for laser applications.
     7. The thermophysical properties of GdCOB with a high Yb dopant content were thoroughly investigated. The crystal melts at 1772.35 K at N2 atmosphere and possesses an enthalpy of fusion equal to 106.55 kJ mol-1. The anisotropy in the thermal expansion is much weaker than that of other Yb doped monoclinic crystals and an anomalously linear temperature dependence in the thermal conductivity was observed above 373.15 K. The overall thermal expansion decreases while the overall thermal conductivity kept almost unchanged at room temperature. Such features and the anisotropy in thermal behavior including the thermal expansion and conductivity is much smaller with the doping, which have a great influence on crystal growth and processing and greatly affect the possible application of this material in high average power lasers.
引文
[1]周炳琨,高以智,陈倜嵘,陈家骅编著,激光原理(第五版),国防工业出版社(2004)。
    [2]蓝信钜等编著,激光技术(第三版),科学出版社(2009)。
    [3]徐军主编,激光材料科学与技术前沿,上海交通大学出版社(2007)。
    [4]徐军,徐晓东,苏良碧编著,掺镱激光晶体材料,上海科学普及出版社(2005)。
    [5]姜中宏主编,新型光功能玻璃,化学工业出版社(2008)。
    [6]A.A. Kaminskii, Laser Crystals:Their Physics and Properties, Springer, Berlin, 1981.
    [7]A.A. Kaminskii, Crystalline Lasers:Physical Processes and Operating Schemes, CRC Press, Boca Raton, FL,1996.
    [8]A.A. Kaminskii, Phys. Stat. Sol. (a) 200(2003),215-296.
    [9]张建秀,山东大学博士学位论文(2006)。
    [10]S. Chenais, F. Druon, S. Forget, F. Balembois, P. Georges, Progress in Quantum Electronics,30(2006) 89-153.
    [11]范建东,山东大学硕士学位论文(2006)。
    [12]Muller, G. (2007). Cryst. Res. Technol.,42,1150-1161.
    [13]S. M. Koohpayeh, D. Fort, J. S. Abell, Progess in Cryst. Growth Characterization Mater.54,121 (2008).
    [14]武安华,申慧,徐家跃,小川贵代,和田智之 功能材料,38,4036,2007.
    [1] Chakoumakos, B. C, Abraham, M. M. & Boatner, L. A. (1994). J. Solid State Chem., 109,197-202.
    [2] Oka, Y., Yao, T. & Yamamoto, N. (2000). J. Solid State Chem., 152,486-491.
    [3] DeShazer, L. (1994). Laser Focus World., 30, 88-93.
    [4] Mougel, F., Kahn-Harari, A., Aka, G. & Pelenc, D. (1998). J. Mater. Chem., 8, 1619-1623.
    [5] Campos, S., Denoyer, A., Jandl, S., Viana, B., Viven, D., Loiseau, P. & Ferrand, B. (2004). J. Phys.: Condens. Matter., 16,4579-4590.
    [6] Zhang, J. X., Wang, J. Y., Zhang, H. J., Xu, F. H., Wang, Z. P., Shao, Z. S., Zhao, H. Y. & Wang, Y. P. (2005). J. Cryst. Growth., 184,108-111.
    [7] Zhang, J. X., Wang, K. P., Wang, J. Y., Zhang, H. J., Yu, W. T., Wang, X. P., Wang, Z. P., Lu, Q. M., Ba, M. F., Ran, D. G., Ling, Z. C. & Xia, H. R. (2005). Appl. Phys. Lett, 87, 061104.
    [8] Thibault, F., Pelenc, D., Druon, F., Zaouter, Y., Jacquemet, M. & Georges, P. (2006). Opt. Lett., 31,1555-1557.
    [9] Liu, J., Zhang, H., Wang, J. & Petrov, V. (2007). Opt. Lett., 32,2909-2911.
    [10]Rice, C. E. & Robinson, W. R. (1976). Acta Cryst., B32,2232-2233.
    [11] Stouwdam, J. W., Raudsepp, M. & van Veggel, F. C. J. M. (2005). Langmiur, 21, 7003-7008.
    [12]Liu, J. F. & Li, Y. D. (2007). Adv. Mater. (Weinheim, Ger.), 19,1118-1122.
    [13]Fan, W. L., Bu, Y. X., Song, X. Y., Sun, S. X. & Zhao, X. (2007). Cryst. Growth Des., 7,2361-2366.
    [14]Zhang, L. Z., Hu, Z. S., Lin. Z. B. & Wang, G. F. (2004). J. Cryst. Growth., 260, 460-463.
    [15]Zhang, L. Z., Lin. Z. B. & Wang, G. F. (2006). Mater. Res. Innov., 10,421-423.
    [16]Bruni, F. J. (1978). Crystals: Growth Properties and Applications, edited by C. J. M., Roojmans, Vol. 1, pp 53-70, Berlin: Springer.
    [17]Chaminade, J-P., Viraphong, O. & Miyazawa, S. (2002). J. Cryst. Growth, 237-239, 864-868.
    [18]Uecker, R., Wilke, H., Schlom, D. G., Velickov, B., Reiche, P., Polity, A.,Bernhagen, M. & Rossberg, M. (2006). J. Cryst. Growth, 295, 84-91.
    [19]Muller, G. (2007). Cryst. Res. Technol., 42,1150-1161.
    [20]Crnogorac, N., Wilke, H., Cliffe, K. A., Gelfgat, A. Y. & Kit, E. (2008). Cryst. Res. Technol., 43,606-615.
    [21]Teitel, M., Schwabe, D. & Gelfgat, A. Y. (2008). J. Cryst. Growth, 310, 1343-1348.
    [22] Zhang, L. Z. (2005). PhD thesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, China.
    [23]Egli, P. H. & Johnson, L. R. (1963). The Art and Science of Growing Crystals, edited by J. J., Gilman, pp 200-203, New York: John Wiley & Sons.
    [24] Jiang, M. H. (1981). Crystal Growth, edited by K. C., Zhang & L. H., Zhang, pp 214-216, Beijing: Science Press. (In Chinese)
    [25]Oka, K., Unoki, H., Shibata, H. & Eisaki, H. (2006). J. Cryst. Growth, 286, 288-293.
    [26]Zhang, H., Meng, X., Zhu, L., Wang, C., Chow, Y. T. & Lu, M. (2000). Opt. Mater., 14,25-30.
    [27]Sheldrick, G. M. (1997). SHELXS-97: Program for the Solution of Crystal Structure, University of Goettingen, Germany.
    [28]Hartman, P. & Perdok, W.G. (1955). Acta Cryst., 8,49-52.
    [29]Hartman, P. & Bennema, P. (1980). J. Cryst. Growth, 49,145-156.
    [30]Hartman, P. (1987). Morphology of Crystals, Part A, edited by I., Sunagawa, pp 269-319, Tokyo: Terra Scientific Publishing.
    [31]Bennema, P. (1993). Handbook of Crystal Growth 1, Fundamentals, Part A, edited by D. T. J., Hurle, pp. 477-581, Amsterdam: North-Holland.
    [32]Grimbergen, R., Meekes, H, Bennema, P., Strom, C. & Vogels, L. (1998). Acta Cryst., A54,491-500.
    [33]Bennema, P., Meekes, H., Boerrigter, S. X. M., Cuppen, H. M., Deij, M. A., van Eupen, J., Verwer, P. & Vlieg, E. (2004). Cryst. Growth Des., 4,905-913.
    [34] Bennema, P., Meekes, H. (2004). Nanoscience Structure and Assembly at Solid-Fluid Interfaces, edited by X. Y, Liu & J. J., De Yoreo, Vol. 1, ppl77-207, New York: Kluwer.
    [35] Myerson, A. S. (1999). Editors. Molecular Modeling Applications inCrystallization, Cambridge: University Press.
    [36]Panina, P.,van de Ven, R., Janssen, F.F.B.J., Meekes, H., Vlieg, E. & Deroover, G. (2009). Cryst. Growth Des., 9, 840-847.
    [37]Liu, X.Y., Boek, E.S., Briels, W.J. & Bennema, P. (1995). Nature, 374, 342-345.
    [38] Docherty, R., Clydesdale, G., Roberts, K. J. & Bennema, P. (1991). J. Phys. D: Appl. Phys., 24, 89-99.
    [39]Pajaczkowska, A., Gloubokov, A., Klos, A. & Woensdregt, C. F. (1997). J. Cryst. Growth, 171,387-391.
    [40] Woensdregt, C. F., Janssen, H. W. M., Gloubokov, A. & Pajaczkowska, A. (1997). J. Cryst. Growth, 171, 392-400.
    [41]Wang K. P., Zhang, J. X., Wang, J. Y., Yu, W. T., Zhang, H. J., Wang, Z. P., Wang, X. P. & Ba, M. F. (2005). Cryst Growth Des., 5,1555-1558.
    [42]Strom, C. S. (1980). Z. Kristallogr., 153,99-113.
    [43]Strom, C. S. (1981). Z. Kristallogr., 154,31-43.
    [44]Strom, C.S.& Bennema, P. (1997). J. Cryst. Growth, 173,150-158.
    [45]Berkovitch-Yellin, Z. (1985). J. Am. Chem. Soc., 107, 8239-8253.
    [46]Wulff, G. (1901). Z. Kristallogr. Miner., 34,449-531.
    [47]Rappe, A. K., Casewit, C. J., Colwell, K. S., Goddard III, W. A. & Skiff, W. M. (1992). J. Am. Chem. Soc., 114,10024-10035.
    [48]Huheey, J. E. (1978). Inorganic chemistry: principles of structure and reactivity, 2nd ed., New York: Harper & Row.
    [49] Pauling, L. & Pauling, P. (1975). Chemistry, San Francisco: W. H. Freeman and Company.
    [50]Rappe, A. K. & Goddard, W. A. (1991). J. Phys. Chem., 95,3358-3363.
    [51]Woensdregt, C. F. (1992). Phys. Chem. Miner., 19, 52-58.
    [52] Woensdregt, C. F. (1992). Phys. Chem. Miner., 19,59-69.
    [53] Woensdregt, C. F. (1993). Faraday Discuss., 95,97-107.
    [54]Meng, X. L., Zhu, L., Zhang, H. J., Wang, C. Q., Chow, Y. T. & Lu, M. K. (1999). J. Cryst. Growth, 200,199-203.
    [55] Wu, S. F., Wang, G. F., Xie, J. L., Wu, X.Q. & Li, G. S. (2003). J. Cryst. Growth, 249,176-178.
    [56] Wu, S. F., Wang, G. F. & Xiea, J. L. (2004). J. Cryst. Growth, 266, 496-499.
    [57] Jackson, K. A. (1979). Crystal Growth: a Tutorial Approach, edited by W., Bardsley, D. T. J., Hurle & J. B., Mullin, ppl39-155, Amsterdam: North-Holland.
    [58] Jackson, K. A. (2004). Kinetic Processes: Crystal Growth, Diffusion, and Phase Transitions in Materials, Weinheim: Wiley-VCH.
    [59]Hurle, D.T.J. & Rudolph, P. (2004). 50 years Progress in Crystal Growth, edited by R. S., Feigelson, pp 119, Amsterdam: Elsevier.
    [1]B. C. Chakoumakos, M. M. Abraham and L. A. Boatner, J. Solid State Chem. 109,197(1994).
    [2]Fang, Z. M.; Hong, Q.; Zhou, Z. H.; Dai, S. J,; Weng, W. Z.; Wan, H. L. Catal. Lett.1999,61,39.
    [3]Martinez-Huerta, M. V.; Coronado, J. M.; Fernandez-Garcia, M.; Iglesias_Juez, A.; Deo, G.; Fierro, J. L. G.; Banares, M. A. J. Catal.2004,225,240.
    [4]Liu, J.; Chen, W.; Liu, X.; Zhou, K.; Li, Y. Nano Res.2008,1,46.
    [5]Maunders, E. A.; DeShazer, L. G.; J. Opt. Soc. Am.1971,61,684.
    [6]Bass, M. IEEE J. Quantum Electron.1975,11,938.
    [7]Jia, C. J.; Sun, L. D.; Luo, F.; Jiang, X. C.; Wei, L. H.; Yan, C. H. Appl. Phys. Lett.2004,84,5305.
    [8]Liu, J. F.; Li, Y. D. Adv. Mater.2007,19,1118.
    [9]Gu, M.; Liu, Q.; Mao, S.; Mao, D.; Chang, C. Cryst. Growth. Des.2008,8, 1422.
    [10]Deng, H.; Yang, S.; Xiao, S.; Gong, H.; Wang, Q. J. Am. Chem. Soc.2008,130, 2032.
    [11]Kaminskii, A. A.; Ueda, K.; Eichler, H. J.; Kuwano, Y.; Kouta, H.; Bagaev, S. N.; Chyba, T. H.; Barnes, J. C.; Gad, G. M. A.; Murai, T.; Lu, J. Opt. Commun. 2001,194,201.
    [12]Kaminskii, A. A.; Rhee, H.; Eichler, H.J.; Ueda, K.; Oka, K.; Shibata, H. Appl. Phys. B 2008,93,865.
    [13]Wu, X. C.; Tao, Y. R.; Dong, L.; Zhu, J. J.; Hu, Z. J. Phys. Chem. B 2005,109, 11544.
    [14]Maunier, C.; Doualan, J. L.; Moncorge, R.; Speghini, A.; Bettinelli, M.; Cavalli, E. J. Opt. Soc. Am. B 2002,19,1794.
    [15]Barnes, N. P.; Storm, M. E.; Cross, P. L.; Skolant, M. W. IEEE J. Quantum Electron 1990,26,588.
    [16]DeShazer, L. Laser Focus World 1994,30,88.
    [17]Wanmaker, W. L.; Bril, A.; ter Vrugt, J. W.; Broos, J. Philips Res. Rep.1966,21, 270.
    [18]Huignard, A.; Buissette, V.; Franville, A.; Gacoin, T.; Boilot, J. J. Phys. Chem. B.2003,107,6754.
    [19]Hou, Z.; Yang, P.; Li, C.; Wang, L; Lian, H.; Quan, Z.; Lin, J. Chem. Mater. 2008,20,6686.
    [20]Chen, Y. F. Opt. Lett.2004,29,1915.
    [21]Erdei, S. J. Cryst. Growth 1993,134,1.
    [22]Zheng, H.; Yang, H.; Zhang, Y.; Zhou, J.; Xia, H.; Wu, X.; Jiang, Y J. Cryst. Growth 1996,160,136.
    [23]Dess, H. M.; Bolin, S. R. Trans. Mater. Soc. AIME 1967,239,359.
    [24]Nirwan, F. M.; Gundu Rao, T. K.; Gupta, P. K.; Pode, R. B. Phys. Stat. Sol. (a) 2003,198,447.
    [25]Riwotzki, K.; Haase, M. J. Phys. Chem. B 1998,102,10129.
    [26]Huignard, A.; Gacoin, T.; Boilot, J. P. Chem. Mater.2000,12,1090.
    [27]Yu, M.; Lin, J.; Wang, Z.; Fu, J.; Wang, S.; Zhang, H. J.; Han, Y C. Chem. Mater.2002,14,2224.
    [28]Wu, H.; Xu, H. F.; Su, Q.; Chen, T. H.; Wu, M. M. J. Mater. Chem.2003,13, 1223.
    [29]Wu, X.; Tao, Y.; Song, C.; Mao, C.; Dong, L.; Zhu, J. J. Phys. Chem. B 2006, 110,15791.
    [30]Milligan, W. O.; Vernon, L. W. J. Phys. Chem.1952,56,145.
    [31]Ageeva, N. K.; Azarov, V. V.; Galaktionov, A.D.; Fotiev, A. A.; Khodos, M. Ya.; Shul'gin, B. V. J. Appl. Spectrosc.1973,19,1044.
    [32]Yao, B.; Wu, K.; Zhang, C.; Zhang, H.; Wang, Z.; Wang, J.; Yu, H.; Yu, Y.; Jiang, M. J. Cryst. Growth 2010,312,720.
    [33]Zagumennyi, A. I.; Kutovoi, S. A.; Sirotkin, A. A.; Kutovoi, A. A.; Vlasov, V. I.; Iskhakova, L. D.; Zavartsev, Y D.; Luthy, W.; Feurer, T. Appl. Phys. B 2009,99, 159.
    [34]Shannon, R. D. Acta Cryst. A 1976,32,751.
    [35]Cong, H.; Zhang, H.; Sun, S.; Yu, Y.; Yu, W.; Yu, H.; Zhang, J.; Wang, J.; Boughton, R. I. J. Appl. Cryst.2010,43,308.
    [36]Oka, K.; Unoki, H.; Shibata, H.; Eisaki, H. J. Cryst. Growth 2006,286,288.
    [37]Klimm, D.; Ganschow, S.; Bertram, R.; Doerschel, J.; Bermudez, V.; Klos, A. Mater. Res. Bul.2002,37,1737.
    [38]Zhang, J.; Wang, K.; Wang, J.; Zhang, H.; Yu, W.; Wang, X.; Wang, Z.; Lu, Q.; Ba, M.; Ran, D. G.; Ling, Z. C.; Xia, H. R. Appl. Phys. Lett.2005,87,061104.
    [39]Higuchi, M.; Shimizu, T.; Takahashi, J.; Ogawa, T.; Urata, Y.; Miura, T.; Wada, S.; Machida, H. J. Cryst. Growth 2005,283,100.
    [40]Shonai, T.; Higuchi, M.; Kodaira, K. J. Cryst. Growth 2001,233,477.
    [41]Higuchi, M.; Sagae, H.; Kodaira, K.; Ogawa, T.; Wada, S.; Machida, H. J. Cryst. Growth 2004,264,284.
    [42]Sheldrick, G. M. SHELXTL Crystallographic Software Package, version 5.1; Bruker-AXS:Madison, WI,1998.
    [43]Carvajal, J. J.; Garcia-Munoz, J. L.; Sole, R.; Gavalda, Jna; Massons, J.; Solans, X.; Diaz, F.; Aguilo, M. Chem. Mater.2003,15,2338.
    [44]Segall, M. D.; Lindan, P. L. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. J. Phys.:Condens. Matter 2002,14,2717.
    [45]Milman,V.; Winkler, B.; White, J. A.; Pickard, C. J.; Payne, M. C.; Akhmatskaya, E. V.; Nobes, R. H. Int. J. Quantum Chem.2000,77,895.
    [46]Vanderbilt, D. Phys. Rev. B 1990,41,7892.
    [47]Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett.1996,77,3865.
    [48]Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976,13,5188.
    [49]Kresse, G.; Furthmuller, J. Phys. Rev. B 1996,54,11169.
    [50]Payne, M. C.; Teter, M. P.; Allan, D. C.; Arias, T. A.; Joannopoulos, J. D. Rev. Mod. Phys.1992,64,1045.
    [51]Press, W. W.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P. Numerical Recipes in Fortran:The Art of Scientific Computing,2nd ed.; Cambridge University Press:New York,1992, p.418.
    [52]Segall, M. D.; Pickard, C. J.; Shah, R.; Payne, M. C. Mol. Phys.1996,89,571.
    [53]Segall, M. D.; Shah, R.; Pickard, C. J.; Payne, M. C. Phys. Rev. B 1996,54, 16317.
    [54]Alonso, J. A.; Casais, M. T.; Martinez-Lope, M. J. J. Dalton Trans.2004,9, 1294.
    [55]Lide, D. R. ed. CRC Handbook of Chemistry and Physics,90th ed.; CRC Press/Taylor & Francis:Boca Raton, FL,2009.
    [1]Reddy, C. V.; Murthy, K. S.; Kistaiah, P. J. Phys. C:Solid State Phys.1988,21, 863.
    [2]Subbarao, E. C.; Agrawal, D. K.; McKinstry, H. A.; Sallese, C. W.; Roy, R. J. Am. Ceram. Soc.1989,73,1246.
    [3]Zhang, S.; Zhou, S.; Li, H.; Li, L. Inorg. Chem.2008,47,7863.
    [4]Shafi, S. P.; Kotyk, M. W.; Cranswick, L. M. D.; Michaelis, V. K.; Kroeker, S.; and Bieringer, M. Inorg. Chem.2009,48,10553.
    [5]Kim, N.; Hsieh, C.; Stebbins, J. F. Chem. Mater.2006,18,3855.
    [6]Hill, R. Proc. Phys. Soc. A 1952,65,349.
    [7]Nye, J. F. Physical Properties of Crystals,2nd ed.; Oxford University Press: Oxford,1985, p.145.
    [8]Wang, R.; Li, F.; Wu, X.; Yang, H. Chin. J. Lasers 2000,27,449.
    [9]Koechner, W. Solid-State Laser Engineering,6th ed; Springer-Verlag:Heidelberg, 1996.
    [10]Gaume, R.; Viana, B.; Vivien, D.; Roger, J.; Fournier, D. Appl. Phys. Lett.2003, 83,1355.
    [11]M. J. Weber, Ed. Handbook of optical materials, CRC Press, Boca Raton, Florida 2003.
    [12]Alton, W. J.; Barlow, A. J. J. Appl. Phys.1967,38,3023.
    [13]In the calculation of reflectivity by Fresnel's formula we assume that the orientation of the crystal surface is parallel to the optical axis.
    [14]Thompson, B. A.; Minassian, A.; Damzen, M. J. Appl. Opt.2004,43,3174.
    [15]Yao, B.; Wu, K.; Zhang, C.; Zhang, H.; Wang, Z.; Wang, J.; Yu, H.; Yu, Y.; Jiang, M. J. Cryst. Growth 2010,312,720.
    [1]Melcher, C. L. & Schweitzer, J. S. (1991). IEEE Nuclear Science Symposium and Medical Imaging Conference, Santa Fe, NM,228-231;
    [2]Chen, J. M., Zhang, L. Y. & Zhu, R. Y. (2005). IEEE Trans. Nucl. Sci.,52, 3133-3140.
    [3]Moses, W. W. & Derenzo, S. E. (1999). IEEE Trans. Nucl. Sci.,46,474-478.
    [4]Moses, W. W. (2002). Nucl. Instrum. Methods Phys. Res., Sect. A,487,123-128.
    [5]Brandle, C. D., Valentino, A. J. & Berkstresser, G. W. (1986). J. Cryst. Growth, 79,308-315.
    [6]Melcher, C. L., Manente, R. A., Peterson, C. A. & Schweitzer, J. S. (1993). J. Cryst. Growth,128,1001-1005.
    [7]Hautefeuille, B., Lebbou, K., Dujardin, C., Fourmigue, J. M., Grosvalet, L., Tillement, O.& Pedrini, C. (2006). J. Cryst. Growth,289,172-177.
    [8]Matsumura, H., Watanabe, S., Nakamura, O.& Ito, T. (2007). J. Cryst. Growth, 308,348-351.
    [9]Yoshikawa, A., Nikj, M., Boulon, G.& Fukuda, T. (2007). Opt. Mater.,30, 6-10.
    [10]Farhi, H., Lebbou, K., Belkahla, S., Grosvalet, L., Hautefeuille, B., Caramanian, A., Dujardin, C., Tillement, O.& Pedrini, C. (2008). Opt. Mater.,30, 1461-1467.
    [11]Lee, J. K., Muenchausen, R. E., Lee, J. S., Jia, Q. X., Nastasi, M., Valdez, J. A., Bennett, B. L., Cooke, D. W.& Lee, S. Y. (2006). Appl. Phys. Lett.,89,101905.
    [12]Rack, P. D., Peak, J. D., Melcher, C. L.& Fitz-Gerald, J. M. (2007). Appl. Phys. Lett.,91,244102.
    [13]Bayramian, A. J., Bibeau, C., Schaffers, K. I., Marshall, C. D.& Payne, S. A. (2000). Appl. Opt.,39,982-985.
    [14]Druon, F., Balembois, F., Georges, P., Brun, A., Couryaud, A., Honninger, C., Salin, F., Aron, A., Aka, G.& Vivien, D. (2000). Opt. Lett.,25,423-425.
    [15]DeLoach, L. D., Payne, S. A., Chase, L. L., Smith, L. K., Kway, W. L.& Krupke, W. F. (1993). IEEE J. Quantum Electron.,29,1179-1191.
    [16]Krukpe, W. F. (1999). Curr. Opin. Solid State Mater. Sci.,4,197-201.
    [17]Haumesser, P. H., Gaume, R., Viana, B., Antic-Fidancev, E.& Vivien, D. (2001). J. Phys.:Condens. Matter,13,5427-5447.
    [18]Jacquemet, M., Jacquemet, C., Janel, N., Druon, F., Balembois, F., Georges, P., Petit, J., Viana, B., Vivien, D.& Ferrand, B. (2005). Appl. Phys. B:Lasers Opt., 80,171-176.
    [19]Campos, S., Denoyer, A., Jandl, S., Viana, B., Vivien, D., Loiseau, P.& Ferrand, B. (2004). J. Phys.:Condens. Matter,16,4579-4590.
    [20]Thibault, F., Pelenc, D., Druon, F., Zaouter, Y., Jacquemet, M.& Georges, P. (2006). Opt. Lett.,31,1555-1557.
    [21]Li, W. X., Xu, S. X., Pan, H. F., Ding, L. E., Zeng, H. P., Lu, W., Guo, C. L., Zhao, G. J., Yan, C. F., Su, L. B.& Xu, J. (2006). Opt. Express,14,6681-6686.
    [22]Xu, S. X., Li, W. X., Hao, Q., Zhai, H.& Zeng, H. P. (2008). Chin. Phys. Lett., 25,548-551.
    [23]Denoyer, A., Levesque, Y., Jandl, S., Guillot-Noel, O., Goldner, P., Viana, B., Thibault, F.& Pelenc, D. (2008). J. Phys.:Condens. Matter,20,125227.
    [24]Gustafsson, T., Klintenberg, M., Derenzo, S. E., Weber, M. J.& Thomas, J. O. (2001). Acta Cryst. C57,668-669.
    [25]Speakman, S. A., Porter, W. D., Spurrier, M. A.& Melcher, C. L. (2006) Mater. Res. Bull.,41,423-435.
    [26]Sheldrick, G. M. (1997). SHELXS-97:Program for the Solution of Crystal Structure, University of Goettingen, Germany.
    [27]Bruker (2005). APEX2 Software Suite (Version 2.0-2), Bruker AXS Inc., Madison, Wisconsin, USA.
    [28]Hahn, T. (2005). International Tables for Crystallography, Volume A 5th, Netherlands:Springer.
    [29]Felsche, J. (1973). Struct. Bonding (Berlin),13,99-197.
    [30]Carvajal, J. J., Garcia-Munoz, J. L., Sole, R., Gavalda, J., Massons, J., Solans, X., Diaz, F.& Aguilo, M. (2003). Chem. Mater.,15,2338-2345.
    [31]Ye, Q.& Chai, B. H. T. (1999). J. Cryst. Growth,197,228-235.
    [32]Nye, J. F. (1985). Physical Properties of Crystals:Their Representation by Tensors and Matrices, Oxford:Clarendon Press.
    [33]Krishnan, R. S., Srinivasan, R.& Devanarayanan, S. (1979). Thermal Expansion of Crystals, Oxford:Pergamon Press.
    [34]Biswal, S. P., O'Connor, S.& Bowman, S. R. (2004). CLEO/QWLS 2004, Conference on Lasers & Electro-Optics CLEO'04, San Fransisco (CA), USA, May 16-21, paper CThT62, Technical Digest CD-ROM.
    [35]Ho, C. Y., Barron, T. H. K., Cezairliyan, A.& Gaal, P. S. et al. (1998). Thermal Expansion of Solids, edited by Taylor, R. E., USA:ASM International.
    [36]Gaume, R., Viana, B., Vivien, D., Roger, J. P.& Fournier, D. (2003). Appl. Phys. Lett.,83,1355-1357.
    [37]Parker, W. J., Jenkins, R. J., Butler, C. P.& Abbott, G. L. (1961).J. Appl. Phys., 32,1679-1684.; Cowan, R.D. (1963). J. Appl. Phys.,34,926-927.
    [38]O'Bryan, H. M., Gallagher, P. K.& Berkstresser, G. W. (1988). J. Am. Ceram. Soc.,71, C42-C43.
    [39]Sun, Z. Q., Li, M. S.& Zhou, Y. C. (2009). J. Eur. Ceram. Soc.,29,551-557.
    [40]Miyazaki, N., Tamura, T., Kurashige, K., Ishibashi, H.& Susa, K. (1997). J. Cryst. Growth,182,73-80.
    [41]Silvestre, O., Grau, J., Pujol, M. C., Massons, J., Aguilo, M., Diaz, F., Borowiec, M. T., Szewczyk, A., Gutowska, M. U., Massot, M., Salazar, A.& Petrov, V. (2008). Opt. Express,16,5022-5034.
    [42]Zhang, J. X., Wang, K. P., Wang, J. Y., Zhang, H. J., Yu, W. T., Wang, X. P., Wang, Z. P., Lu, Q. M., Ba, M. F., Ran, D. G., Ling, Z. C.& Xia, H. R. (2005). Appl. Phys. Lett.,87,061104.
    [43]Ran, D. G., Xia, H. R., Sun, S. Q., Liu, F. Q., Ling, Z. C., Ge, W. W., Zhang, H. J.& Wang, J. Y. (2007). Cryst. Res. Technol.,42,920-925.
    [44]Zhao, S. R., Zhang, H. J., Wang, J. Y., Kong, H. K., Cheng, X. F., Liu, J. H., Li, J., Lin, Y. T., Hu, X. B., Xu, X. G., Wang, X. Q., Shao, Z. S.& Jiang, M. H. (2004). Opt. Mater.,26,319-325.
    [45]Zhang, H. J., Liu, J. H., Wang, J. Y., Wang, C. Q., Zhu, L., Shao, Z. S., Meng, X. L., Hu, X. B., Jiang, M. H.& Chow, Y. T. (2002). J. Opt. Soc. Am. B-Opt. Phys.,19,18-27.
    [46]Qin, L. J., Meng, X. L., Shen, H. Y., Zhu, L., Xu, B. C., Huang, L. X., Xia, H. R., Zhao, P.& Zheng, G. (2003). Cryst. Res. Technol.,38,793-797.
    [47]Yu, H. H., Zhang, H. J., Wang, Z. P., Wang, J. Y., Yu, Y. G., Cheng, X. F., Shao, Z. S., Jiang, M. H., Ling, Z. C.& Xia, H. R. (2007). J. Appl. Phys.,101, 113109.
    [48]Eitel, W. (1952). Thermochemical Methods in Silicate Investigation, New Brunswick:Rutgers University Press.
    [49]Gopal, E. S. R. (1966). Specific Heats at Low Temperatures, New York: Plenum Press.
    [50]Xu, D.(1997) in Science and Technology of Crystal Growth, edited by Zhang, K.C.& Zhang, L.H., Beijing:Science Press. (In Chinese)
    [1]G. Aka, A. Kahn-Harari, D. Viven, J. M. Benitez, F. Salin, J. Godard Eur. J. Solid State Inorg. Chem.33,727 (1996)
    [2]M. Iwai, T. Kobayashi, I. Furuya, Y. Mori and T. Sasaki, Jap. J. App. Phys.36, L276(1997).
    [3]J. M. Eichenholz, D. A. Hammons, L. Shah, Q. Ye, R. E. Peale, M. Richardson, and B. H. T. Chai, App. Phys. Lett.74,1954 (1999).
    [4]V. Lupei, G Aka and D. Vivien, Appl. Phys. Lett.81,811 (2002).
    [5]B. Denker, B. Galagan, L. Ivleva, V. Osiko, S. Sverchkov, I. Voronina, J. E. Hellstrom, G Karlsson and F. Laurell, Appl. Phys. B:Lasers & Optics 79,577 (2004).
    [6]B. Wei, Z. Lin, L. Zhang and G Wang, Cryst. Growth Des.8,186 (2008).
    [7]M. Abarkan, J. P. Salvestrini, D. Pelenc, and M. D. Fontana, J. Opt. Soc. Am. B 22,398 (2005).
    [8]J. J. Adams, C. A. Ebbers, K. I. Schaffers, and S. A. Payne, Opt. Lett.26,217 (2001).
    [9]Y. F. Chen, K. W. Su, T. H. Lu and K. F. Huang, Phys. Rev. Lett.96,033905 (2006).
    [10]C. Pawlaczyk, E. Markiewicz, A. Klos, W. Hofman and A. Pajaczkowska, Phys. Stat. Sol. A 203,2103 (2006).
    [11]S. Zhang, Y. Fei, B. H. T. Chai, E. Frantz, D. W. Snyder, X. Jiang and T. R. Shrout, Appl. Phys. Lett.92,202905 (2008).
    [12]F. Mougel, K. Dardenne, G. Aka, A. Kahn-Harari and D. Vivien, J. Opt. Soc. Am. B 16,164(1999).
    [13]A. Pajaczkowska, A. Klos, B. Hilczer, N. Menguy and A. Novosselov, Cryst. Growth Des.1,363(2001).
    [14]L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W L. Kway and W. F. Krupke, IEEE J. Quantum Electron.29,1179 (1993).
    [15]P. Haumesser, R. Gaume, B. Viana, E. Antic-Fidancev and D. Vivien, J. Phys. Condens. Matter 13,5427 (2001).
    [16]A. Brenier, J. Luminescence 92,199 (2001).
    [17]F. Druon, F. Balembois, P. Georges, A. Brun, A. Courjaud, C. Honninger, F. Salin, A. Aron, F. Mougel, G. Aka and D. Vivien, Opt. Lett.25,423 (2000).
    [18]S. Chenais, F. Druon, F. Balembois, G. Lucas-Leclin, P. Georges, A. Brun, M. Zavelani-Rossi, F. Auge, J. P. Chambaret, G. Aka and D. Vivien, Appl. Phys. B: Lasers & Optics 72,389 (2001).
    [19]F. Druon, S. Chenais, F. Balembois, P. Georges, A. Brun, A. Courjaud, C. Honninger, F. Salin, M. Zavelani-Rossi, F. Auge, J. P. Chambaret, A. Aron, F. Mougel, G Aka and D. Vivien, Optical Materials 19,73 (2002).
    [20]H. Jiang, J. Wang, H. Zhang, X. Hu, B. Teng, C. Zhang and P. Wang, Chem. Phys. Lett.357,15(2002).
    [21]J. E. Hellstrom, V. Pasiskevicius, F. Laurell, B. Denker, B. Galagan, L. Ivleva, S. Sverchkov, I. Voronina and V. Horvath, Laser Phys.17,1204 (2007).
    [22]C. Krankel, R. Peters, K. Petermann, P. Loiseau, G Aka and G Huber, J. Opt. Soc. Am. B 26,1310(2009).
    [23]G Aka, F. Mougel, F. Auge, A. Kahn-Harari, D. Vivien, J. M. Benitez, F. Salin, D. Pelenc, F. Balembois, P. Georges, A. Brun, N. Le Nain and M. Jacquet, J. Alloys Compd.303-304,401 (2000).
    [24]S. Chenais, F. Druon, S. Forget, F. Balembois and P. Georges, Progress in Quantum Electronics 30,89(2006)
    [25]R. Gaume, B. Viana, D. Vivien, J. P. Roger and D. Fournier, Appl. Phys. Lett. 83,1355 (2003).
    [26]J. Bodzenta, A. Kazmierczak-Balata, K. B. Wokulska, J. Kucytowski, T. Lukasiewicz and W. Hofman, Appl. Opt.48, C46 (2009).
    [27]D. Klimm, S. Ganschow, R. Bertram, J. Doerschel, V. Bermudez and A. Klos, Mater. Res. Bull.37,1737(2002)
    [28]F. Mougel, A. Kahn-Harari, G Aka and D. Pelenc, J. Mater. Chem.8,1619 (1998)
    [29]G Aka, A. Kahn-Harari, F. Mougel, D. Vivien, F. Salin, P. Coquelin, P. Colin, D. Pelenc and J. P. Damelet, J. Opt. Soc. Am. B 14,2238(1997)
    [30]K. A. Jackson, Kinetic Processes:Crystal Growth, Diffusion, and Phase Transitions in Materials (Weinheim, Wiley-VCH,2004).
    [31]J. F. Nye, Physical Properties of Crystals (Clarendon, Oxford,1985).
    [32]H. Cong, H. Zhang, J. Wang, W. Yu, J. Fan, X. Cheng, S. Sun, J. Zhang, Q. Lu, C. Jiang and R. I. Boughton, J. Appl. Crystallogr.42,284 (2009).
    [33]J. Zhang, K. Wang, J. Wang, H. Zhang, W. Yu, X. Wang, Z. Wang, Q. Lu and M. Ba, Appl. Phys. Lett.87,061104 (2005).
    [34]Science and Technology of Crystal Growth, edited by D. Xu, K. C. Zhang, and L. H. Zhang (Science Press, Beijing,1997) (in Chinese).
    [35]W. J. Parker, R. J. Jenkins, C. P. Butler and G. L. Abbott, J. Appl. Phys.32, 1679(1961).
    [36]D. G. Cahill and R. O. Pohl, Solid State Commun.70,927 (1989).
    [37]T. N. Khamaganova, V. K. Trunov and B. F. Dzhurinskii, Russ. J. Inorg. Chem. 36,855 (1991).
    [38]R. Norrestam, M. Nygren and J.-O. Bovin, Chem. Mater.4,737(1992)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700